
    
 
 

1376 
  

Vol 44 No. 8 

August 2023 

 

Journal of Harbin Engineering University 

 ISSN: 1006-7043 

Artificial Intelligence and Machine Learning Techniques to Predict the 

Compressive Strength of Concrete at High Temperature 

 
Dr.S. Thenmozhi1, Batchu Ramanjaneyulu2, Naga Dheeraj Kumar Reddy Chukka3, Sayali S. 

Chavan4, Chintala Siddartha5, Swapnil Balkrishna Gorade6 

1
Professor, Department of Civil Engineering, St.Joseph's College of Engineering, OMR, Chennai-600119, India. 

2
Assistant Professor, Department of Civil Engineering, CVR College of Engineering, Hyderabad, Telangana-

501510, India. 
3
Assistant Professor, Department of Civil Engineering, Aditya College of Engineering and Technology, 

Surampalem, India. 
4
Construction Management Student, Department of Civil Engineering, Pimpri Chinchwad College of 

Engineering, Nigdi, Pune, Maharashtra, India 
5
Assistant Professor, Department of Civil Engineering, Guru Nanak Institutions Technical Campus, Hyderabad, 

Telangana, India. 
6
Assistant Professor, Department of Civil Engineering, Pimpri Chinchwad College of Engineering, Nigdi, 

Pune, Maharashtra, India 

 

Abstract: The nature of the components used to make concrete is significantly impacted by high temperatures, 

which in turn lessens the concrete's strength qualities. Increasing the concrete's compressive strength to the 

optimum level takes effort and time. However, the use of supervised machine learning (ML) techniques enables 

the first, very accurate prediction of the desired result. This study uses 207 data points to anticipate the 

compressive strength of concrete at high temperatures using a decision tree (DT), an artificial neural network 

(ANN), bagging, and gradient boosting (GB). The chosen models were run using Anaconda navigator 

programme and Python code. Both information about the input variables and the output parameter are 

needed by the programme. One output parameter (compressive strength) was chosen out of a total of nine 

input parameters (water, cement, coarse aggregate, fine aggregate, fly ash, superplasticizers, silica fume, nano 

silica, and temperature). Statistics such as the coefficient correlation (R2), mean absolute error (MAE), mean 

square error (MSE), and root mean square error (RMSE) were used to assess the effectiveness of the deployed 

ML algorithms. R
2
 for individual models using DT and ANN was 0.83 and 0.82, respectively, but R

2
 for models 

using the ensemble approach and gradient boosting was 0.90 and 0.88. This shows a significant link between 

the actual and expected results. Ensemble methods performed worse than the k-fold cross-validation, 

coefficient correlation (R
2
), and fewer errors (MAE, MSE, and RMSE). Sensitivity studies were also performed to 

see how each input variable contributed to the results. It has been established that employing the ensemble 

machine learning method would raise the model's level of performance. 

Keywords: concrete; compressive strength; high temperature; prediction; decision tree; bagging; gradient 

boosting 

 

1. Introduction 

 Concrete technology is always being updated and 

improved since it is very inexpensive compared to 

other building materials and is frequently 

employed in engineering constructions throughout 

the globe *1+. Concrete is in great demand due to 

urbanization's quick and technologically 

sophisticated growth *2+, as it has several desirable 

qualities such compressive strength, shape-ability, 

and environmental resistance *3+. The benefits of 

concrete are also listed as include porosity, impact 

resistance, fire resistance, durability, and acoustic 

insulation *4+. Due of its many advantages, it may 

be used to build infrastructure, including dams, 

tunnels, bridges, and reservoirs *5+. The 

economical factor is greatly influenced by the local 

availability of materials such water, binding 

material, coarse aggregate, and fine aggregate *6+. 

Compared to concrete, other construction 

materials like steel have many more qualities but 

are not as affordable. However, the techniques of 

adding additional materials, such as fly ash, silica 
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fume, other cementitious material, and other 

fibres, are frequently used to create concrete a 

more favourable material with enhanced qualities 

*7-9+. In order to reduce environmental concerns 

and the price of the material, using waste 

materials in concrete is essential *10+.  

Concrete's characteristics are significantly 

impacted by heat and fire in both the fresh and 

hardened stages *11+. Chimneys, chemical 

factories, and buildings used in the atomic industry 

are a few examples of structures or structural 

components that are subjected to extreme 

temperatures. Additionally, it is difficult to cast and 

cure concrete in hot environments, and at high 

temperatures, concrete loses its mechanical 

qualities (compressive and flexural strength), 

which eventually reduces its durability *12+. Due to 

the rise in fire-related events, research into 

developing novel materials and techniques for 

defending against high temperatures has become 

increasingly important *13,14+. In addition to 

degrading cement composites, the action of fire is 

regarded as a high frequency calamity that 

contributes to the material's spalling *15,16+.  

According to the research *17+, one of the 

important variables affecting the safety of utilising 

structures is a structure's ability to withstand the 

impact of high temperatures brought on by a fire. 

More study is necessary for this problem. Concrete 

is a material that is frequently used and is regarded 

as one of the greatest materials for preventing 

high temperatures. A prolonged exposure to heat 

can cause the components of concrete to dissolve 

(during the stages of the hydration of C-S-H and 

Ca(OH)2, and at the stage of the creation of 

calcium aluminate gels). The physicochemical 

characteristics of concrete may deteriorate as a 

result. Therefore, researchers focus on examining 

how increased temperature affects the mechanical 

characteristics of hardened concrete. When cooled 

in various environments (air and water), the 

variations in the flexural and compressive strength 

of both regular and high-performance concrete 

have also been studied *20+. The increased 

porosity of the cement matrix and a decline in 

strength characteristics cause the breakdown 

reaction in cement composite material (concrete). 

When the cement matrix is subjected to high 

temperatures of around 600 to 700 C, calcium 

hydro silicate residues may be seen there *21+.  

Regarding the effects of high temperature, the 

performance of various types of concrete, such as 

lightweight concrete, has also been examined *22+. 

The mechanical characteristics of concrete heated 

to temperatures of up to 800 C *23–25+ or greater 

*26–28+ have been the subject of much 

investigation. It has been demonstrated that the 

qualities of concrete, which also involve various 

energy projects, are significantly affected by the 

change in natural temperature (which relies on the 

climate zone). 

Despite being a largely non-combustible 

substance, concrete's chemical, physical, and 

mechanical characteristics are immediately 

impacted by high temperatures *31+. The spilling, 

perforation, and cracking of concrete are brought 

on by thermal stresses, decomposition, and 

dehydration *32+. Additionally, at high 

temperatures, the strength characteristics of the 

components of concrete are diminished. For 

cement paste to function properly inside the 

concrete matrix, a defined temperature range is 

needed. The strength of concrete is not favourably 

impacted by cement paste at high temperatures. 

This is particularly true for high-strength concrete 

since it needs a normal temperature to get the 

necessary strength *33+.  

The heating rate, temperature, or circumstances of 

the structural elements, i.e., the application, are 

just a few of the causes of concrete failure due to 

fire. Since the aggregate, hydrated cement paste, 

and interfacial transition zone all undergo 

microstructural changes when concrete is exposed 

to high temperatures, it is often challenging to 

analyse the direct impact of high temperatures on 

concrete. Previous research has shown that input 

parameters and output outcomes are directly 

correlated. The beneficial element of these 

strategies is that supervised machine learning 

methods may also take the impact of temperature 

change into account. When taking into account the 

parameter of temperature change, ML algorithms 

perform better and with less variation. The 

number of parameters and the set of data used to 

build the model are two factors that affect how 

well ML techniques function. The innovative 

feature of the authors' study strategy is the 
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addition of a second parameter (the temperature 

impact) for forecasting concrete strength. This 

study looked at the ML techniques and how they 

compared in terms of performance. In order to 

investigate how well the chosen ML techniques 

performed in predicting the compressive strength 

of concrete, this study incorporated the 

temperature impact as an input parameter.  

 

2. Research Significance 

 This study used both individual and group 

machine learning algorithms to predict the 

compressive strength of concrete subjected to high 

temperatures. The bagging regressor and gradient 

boosting regressor were employed as ensemble 

machine learning algorithms, along with the 

decision tree (DT) and artificial neural network 

(ANN) as a system. This study is interesting in that 

it examines the degree to which individual and 

ensemble machine learning algorithms are 

accurate, as well as in that it rates how well each 

method predicts the compressive strength of 

concrete at high temperatures. Additionally, 

statistical markers that are utilised to assess the 

model's correctness are contrasted in this study. 

This study demonstrates that when compared to 

individual machine learning approaches, ensemble 

algorithms produced a strong association. 

Additionally, the k-fold cross-validation approach 

and statistical tests were used to assess the validity 

and accuracy of all the used models. The 

importance of the temperature parameter to the 

prediction of compressive strength is shown 

through sensitivity analysis, though. The 

comparison of the applied machine learning 

methodologies with the methods used in the 

literature is another goal of this study. 

3. Methodology 

3.1. Supervised Machine Learning (ML) Techniques 

 In civil engineering, machine learning techniques 

are used increasingly frequently to forecast the 

mechanical characteristics of concrete. Examples 

of their use are provided in Table 1. For concrete 

samples of varied ages, the hit and try method can 

be used to measure the compressive or flexural 

strength. We employed machine learning methods 

to predict results for input data in order to get 

around some limitations in this strategy. Support 

vector machine (SVM) and k-fold crossvalidation 

were used by Hao et al. to forecast the 

compressive strength of concrete in a maritime 

environment. They claimed that the SVM 

outperforms the artificial neural network (ANN) 

and decision tree (DT) in terms of performance. 

Using a backpropagation artificial neural network 

(BP-ANN), Chengyeo et al.  predicted the 

compressive strength of concrete in a wet-dry 

condition. It has been demonstrated that the BP-

ANN offers more accuracy for both the actual and 

anticipated results. In order to forecast the 

compressive strength of concrete with limestone 

filler, Hocine et al. used the ANN model. Their 

data's training, testing, and validation yield a good 

correlation (over 97%) with the actual data. To 

forecast the compressive strength of concrete, 

Behfernia et al. employed the ANN and adaptive 

neuro-based fuzzy inference (ANFIS). The ANN 

model was shown to be an effective tool for 

forecasting the compressive strength of concrete. 

Effective machine learning models were used by 

Hoang et al. sto forecast the strength of concrete. 

They claimed that when compared to the support 

vector regressor and multilayer perceptron (MLR), 

the trained models of the gradient boosting 

regressor (GBR) and extreme gradient boosting 

(XGBoost) performed better. 

3.2. Description of the Obtained Data 

 The Appendix A contains the data points that were 

used to run the machine learning algorithms on 

the models *20+. The information from the 

published article describes how concrete behaves 

in a heated environment. Cement, water, fine and 

coarse aggregates, fly ash, superplasticizer, nano 

silica, silica fume, and temperature were used as 

the input factors, while compressive strength was 

taken as the output parameter. These settings 

were used in the Jupiter Python software to 

display the relative frequency distributions of 

these parameters graphically, as seen in Figure 1. 
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Figure 1. Contour plots showing the relative 

distribution of the parameters. 

 

3.3. Machine Learning Approaches 

 The many methods that are employed to forecast 

the compressive strength of concrete at high 

temperatures are described in this section. Both 

ensemble and individual algorithms were used to 

predict the concrete's strength attribute 

(compressive strength). The models were 

performed using gradient boosting, bagging, and 

decision tree approaches. All three of the machine 

learning techniques that were used made use of 

Python coding in Anaconda software.   

A supervised machine learning method called a 

decision tree is employed for both the distribution 

of regression problems and the categorization of 

issues. The decision tree's structure, which consists 

of nodes, branches, and roots, is similar to a 

flowchart. The core node displays a test on an 

attribute; each branch displays the results, and 

each leaf node indicates the class tag. The route 

taken from the root to the leaf serves as a 

representation of the categorization rule. There 

are three main types of decision tree nodes that 

come in triangular, square, and circular forms. In 

general, it may be considered a straightforward 

method for comprehending and interpreting. The 

organisation of bagging in a way that can increase 

the stability and accuracy of the machine learning 

algorithms used in regression and classification is 

known as bootstrap aggregating or bagging. It is 

often applied to lessen the differences between 

actual and expected results. Although bagging may 

be used with any sort of method, it is most 

frequently used with decision tree approaches. It is 

also regarded as one of the model averaging 

technique's special situations. Bagging is a parallel 

ensemble machine learning method that, by 

including supplemental data during the training 

phase, explains the variance of predicted models. 

In the new dataset, each element has an equal 

probability of showing up.   

The widespread consensus is that one of the 

effective methods for developing predictive 

models is gradient boosting. It is an ensemble 

machine learning approach that is frequently used 

for classification and regression issues. It creates a 

projected model out of a collection of weak 

predicted models, often a decision tree. The 

resultant technique is therefore referred to as a 

gradient boosting tree when the decision tree 

outputs the result as a weak learner. The field of 

learning to rank can also benefit from the use of 

gradient boosting. It is also employed in data 

processing for high energy physics. The artificial 

neural network (ANN) algorithm has a network of 

neurons that resembles the brain. The ANN, which 

serves as a model of the human brain, is simply a 

collection of interconnected units or nodes 

(sometimes referred to as artificial neurons). These 

neural networks pick up information by analysing 

examples. They create probability-weighted 

associations between the input and result and are 

kept within the data structure of the net itself. 

They contain a known "input" and "result" Today, 

there is a lot of interest in using ANNs in the field 

of civil engineering, particularly to forecast the 

mechanical characteristics of concrete. This is 

because it can anticipate concrete's real strength 

values with a high degree of precision. 

 

4. Result and Analysis 

4.1. Statistical Analysis 

Figure 2 displays the statistical findings for the 

actual and anticipated compressive strengths of 

concrete achieved at high temperatures (using 

supervised machine learning methods), as well as 

their error distribution. The correlation coefficient 

(R
2
) value and the model's accuracy degree of 

performance were compared. As shown in Figure 

3a, the DT (individual algorithm) model looked to 

be superior, with an R2 value of 0.83. Figure 3b 

depicts the error distribution of the model. At a 

level of 14.5 MPa and 101.4 MPa, respectively, the 
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minimum and maximum error values of the DT 

model were identified. The errors had an average 

value of 51.2 MPa. However, only 7.1% of the data 

revealed errors over 100 MPa, as shown in Figure 

3b, with 50% of the errors data falling between 30 

and 70 MPa. 

 
Figure 2. Numerical analysis results showing the 

relationship between the actual and predicted 

results, including the error distribution of models 

 

The bagging (ensemble algorithm) model's 

prediction capability shows a significant correlation 

with the actual results. The bagging regressor's 

example yielded the greatest R
2
 value (0.90). In 

turn, 0.82, 0.83, and 0.88 were the corresponding 

values of R
2
 for the ANN, DT, and GB. These 

findings show that the forecast was quite accurate. 

Figure 2c and Figure 2d provide the graphical 

depiction of the expected and observed findings 

for the compressive strength of concrete at high 

temperatures. When predicting the strength 

property of concrete at raised temperatures, the 

bagging regressor's maximum and minimum error 

values were equivalent to 94.1 and 12.95 MPa, 

respectively. Figure 2d demonstrates that 59.92% 

of the erroneous data were found between 30 and 

70 MPa. 

The prediction and actual results for the 

compressive strength of concrete at high 

temperatures show that the gradient boosting 

(ensemble ML method) model is more accurate. 

According to Figure 3e, gradient boosting 

performed almost as well as the bagging regressor 

(with smaller margin for the bagging regressor 

because the R
2
 value was equivalent to 0.88). In 

Figure 3f, the error distribution is displayed. The 

gradient boosting regressor had a mean value of 

50.76 MPa and a maximum and minimum error of 

114.5 and 6 MPa, respectively. Additionally, for the 

regressor, only 4.76% of the erroneous values were 

above 100 MPa. 

The ANN model likewise shows a greater 

performance when compared to the DT method, 

according to the same statistical outcome. The 

ANN model generated the R2 value of 0.82, as 

shown in Figure 3g, and suggested a strong 

relationship with a lower variation between the 

actual and anticipated outcome. Figure 3h displays 

the error distribution for the ANN model. The 

error's greatest and minimum values, which were 

24.58 and 0.29 MPa, respectively, are shown by 

the distribution. The average value, however, was 

9.158 MPa. Additionally, it was discovered that 

57.14% of the incorrect data fell between 0 and 10 

MPa and 19.04% of the data fell between 10 and 

15 MPa. 

4.2. k-Fold Cross Validation and Statistical Checks 

We used the k-fold cross validation method to 

assess the model's real-world performance. This 

approach is typically used to examine how well 

models really function. The data were separated 

into 10 groups and randomly sorted for this test. 

One group was designated for model validation 

while the other eight were used for training 

purposes. By carrying out the same procedure ten 

times, the average value was determined. To get 

the models' most accurate performance, the 10-

fold cross validation test was applied. Applying 

statistical checks was crucial in order to determine 

the model's performance level.  

the introduction of the correlation coefficient (R
2
), 

mean absolute error (MAE), mean square error 

(MSE), and root mean square error (RMSE) for 

assessing the k-fold cross validation. All of the 

applied machine learning (ML) methods (DT, ANN, 

bagging, and gradient boosting) underwent 

validation. In comparison to the ANN, DT, and GB, 

the bagging model's modest levels of errors and 

concurrently increasing value of the correlation 

coefficient (R
2
) suggested a higher degree of 

accuracy. Table 3 includes the specifics of the 

analysis utilised for the k-fold cross validation 

procedure. Additionally, all machine learning 

algorithms were assessed using the statistical tests, 
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including mean absolute error (MAE), mean square 

error (MSE), and root mean square error (RMSE). 

The correlation coefficient (R2) grew as the error's 

magnitude decreased. In comparison to the MAE 

values of the DT (7.54 MPa), ANN (9.15 MPa), and 

GB (6.93 MPa), the bagging regressor generated a 

value of MAE equal to 5.65 MPa. In a similar vein, 

the ANN's MSE and RMSE were greater than those 

of the DT, bagging, and GB, although its R2 value 

was lower than those of the other regressors. 

Additionally, the statistical breakdown of the k-fold 

cross validation, including the correlation 

coefficient and errors. R
2
 for the DT had an average 

value of 0.42 and a minimum and maximum value 

of 0.03 and 0.82, respectively. The bagging 

regressor had an average R
2
 value of 0.44 and a 

minimum and maximum R
2
 value of 0.03 and 0.77, 

respectively (Figure 4b). Similar to this, the 

gradient boosting had an average R
2
 value of 0.54 

and a lowest and highest value of 0.11 and 0.87, 

respectively. The average R
2
 value for the ANN was 

0.42, with maximum and minimum values of 0.84 

and 0.037, respectively (Figure 2d). Figure 4a 

shows the average error values for the DT, which 

were 12.96, 269.79, and 15.26 MPa, respectively. 

Figure 4b shows the average error values for 

bagging, which were 13.64, 316.80, and 16.31 

MPa, respectively. The similar pattern was seen for 

the GB regressor as well, which had an average 

MAE value of 13.79 MPa and MSE and RMSE 

values of 282.08 and 15.72 MPa, respectively (see 

Figure 2c). Additionally, the ANN model's average 

MAE, MSE, and RMSE values were 13.44, 258.98, 

and 15.28 MPa, respectively. 

4.3. Sensitivity Analysis of the Compressive 

Strength of Concrete at High Temperatures 

 As indicated in Figure 3, sensitivity analysis was 

carried out to examine the variables that have a 

major impact on the prediction of the compressive 

strength of concrete at high temperatures. The 

model's ability to forecast the strength of concrete 

depends on every variable that was used to run it. 

Cement, however, has the greatest impact on the 

strength of concrete predictions. Its impact on the 

outcomes was assessed to be 32%. The effects of 

fly ash, superplasticizers, silica fume, water, 

temperature, nano silica, fine aggregate, and 

coarse aggregate were each projected to have a 

respective impact of 16%, 15%, 14%, 2%, 6%, 3%, 

10%, and 2%. The number of input parameters and 

the number of data points used to run the model 

affect the outcome of the sensitivity analysis. The 

used ML technique, however, identifies the 

influence of each parameter. The various amounts 

of the concrete mix and the inclusion of additional 

input parameters cause the findings of these 

assessments to fluctuate. 

 
Figure 3. Bar chart indicating the performance of 

input parameters with regards to predicting of 

the compressive strength of concrete. 

4.4. Discussion 

 In this study, the effectiveness of several models is 

compared to experimental data on the 

compressive strength of concrete subjected to high 

temperatures. For making predictions, supervised 

machine learning methods were combined 

(bagging, gradient boosting) and utilised alone 

(ANN, DT). In terms of prediction performance, the 

bagging regressor performed better than the ANN, 

DT, and GB. However, because the performance of 

the models is directly influenced by the input 

parameters and the data points used to train the 

model, it is challenging to analyse and suggest the 

optimal machine learning regressor for predicting 

outcomes for a variety of themes. The weak 

learner is typically used by ensemble machine 

learning approaches, though, since they create 

sub-models that may be trained on data and 

employ optimisation to get the highest possible R
2
 

value. Figure 3 displays the results of the 20 sub-

models of the bagging and GB regressor along with 

their correlation coefficient (R
2
) values. As a result, 

when compared to individual machine learning 

techniques, ensemble models perform better, 

according to the research. Previous research has 

demonstrated that ensemble ML techniques like 

bagging, boosting, and AdaBoost perform better in 

outcome prediction. 



    
 
 

1382 
  

Vol 44 No. 8 

August 2023 

 

Journal of Harbin Engineering University 

 ISSN: 1006-7043 

 Additionally, it's critical to understand how well 

each metric performs in terms of prognostication. 

The sensitivity analysis gives details on how each 

parameter affects the ability to anticipate results. 

The outcome of the sensitivity analysis for this 

study. In addition, statistical checks, the validation 

procedure, and sensitivity analysis were used in 

this work to confirm the degree of execution of the 

assessed ML approaches. When it comes to cutting 

expenses and shortening the time needed to 

achieve the necessary strength of concrete using 

the hit-and-trial approach, this research may be 

helpful. The study's findings can also be used to 

other branches of engineering to forecast desired 

results.   

5. Conclusions and Future Recommendations 

 This study offers details on supervised machine 

learning algorithms used individually and 

collectively to estimate the compressive strength 

of concrete at high temperatures. When compared 

to the actual outcome, the use of ML approaches 

for concrete performance prediction demonstrates 

a high degree of accuracy, making it a very useful 

strategy. The average period required to assess the 

strength of concrete is 28 days. In consequence, 

ML algorithms contribute significantly to 

shortening this period of time and also significantly 

reduce the expenses and labour necessary to carry 

out experimental work. The decision tree (DT) and 

artificial neural network (ANN) algorithms were 

chosen from among the individual approaches in 

this study, whilst the bagging and gradient 

boosting (GB) regressors were applied as ensemble 

algorithms to predict the strength of concrete at 

high temperatures. The most efficient method and 

one with the highest correlation coefficient value 

was bagging. Indicators of its superior 

performance over ANN, DT, and GB included lower 

values of the errors (MAE of 5.65 MPa, MSE of 

61.08 MPa, and RMSE of 7.81) from the statistical 

tests for bagging. It is practically difficult to 

determine the impact of temperature on the 

mechanical characteristics of concrete made with 

different types of mixtures. To run the models and 

get the desired output, the temperature and other 

associated factors, such humidity, can also be 

provided as input parameters. From this research, 

the following findings may be made: Both at 

normal and high temperatures, the ensemble 

methods (bagging and GB) did well at estimating 

the compressive strength of concrete. 

 Input parameters may have an impact on a 

model's performance. We discovered that the 

ensemble models exhibited less disparity between 

actual and anticipated results when the thermal 

aspect—the paper's primary consideration—was 

taken into account. 

 The k-fold cross validation procedure was also 

used to check the accuracy level of the bagging 

and GB regressors. 

 Sensitivity analysis was used to see how each 

parameter contributed to forecasting the outcome 

 This paper outlines the beneficial effects of 

supervised machine learning techniques in the 

discipline of civil engineering. Without spending 

much effort on laboratory experiments, these 

strategies may be effectively used to forecast the 

mechanical characteristics of concrete. 

Additionally, it was shown that, when compared to 

individual algorithms, the ensemble machine 

learning algorithms show a good correlation 

between actual and predicted results. 

 Increasing the amount of data points can also 

help models attain high accuracy, as the 

quantity of data points has a significant impact 

on the model's output. 

 In order to understand the amount of variation 

between the actual and predicted results, the 

performance of the models may also be 

assessed using practical work done in a 

laboratory. 

 In the ensemble approaches, breaking the 

model into more than 20 sub-models for data-

driven training and optimisation would result in 

the highest R
2
 value. 

It should be noted that while various 

approaches (such the AdaBoost Regressor) can be 

used to anticipate results so that comparisons can 

be made, it is impossible to recommend or state 

about any methodology directly on a few trails that 

would produce the best accurate result. 
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