

1742

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

Design and Verification of AMBA Advanced Extensible Interface

Memory Using Assertion Based Formal Checks

Dr Sujatha Hiremath, Dept. of Electronics and Communication Engineering, RV College of Engineering,

Bengaluru, India

Arjumanth Farraj, Dept. of Electronics and Communication Engineering, RV College of Engineering,

Bengaluru, India

Abstract—One of the hardest aspects of chip design is frequently functional verification. A given model's

correct adherence to the specification is checked through functional verification. Additionally, it ensures

that the implementation follows the specification. Functional verification has emerged as one of the major

design process bottlenecks as a result of the quick increase in design size and complexity. The Advanced

eXtensible Interface is designed as a collection of interdependent systems, each of which has a limited

number of configurations or states. Finite State Machines (FSMs) consist of states and their transitions.

The primary goal of the FSM is to check the flow of transactions in Network on Chip (NoC)s, where each

transaction entering and exiting a subsystem must be secure, reliable, and pass through all of the state

machine's different stages. The assertion-based formal checks for the design were supported by state

machines for read and write situations. Assertions are used to verify design principles or requirements

and produce errors or warnings when they fail. The AMBA AXI protocol is designed using SystemVerilog,

and formal checks in the form of System Verilog assertions are used to examine the internal signals that

provide read-write transactions of the memory that serves as the slave for the network on chip. The

ability of the memory to react to different signals provided by the master is examined using the various

burst transactions in terms of Fixed, Increment (INCR), and Wrap transactions. In this work, an AXI

memory module is designed and verified using UVM and simulated using both vaivado and questasim.

Keywords—Finite State Machine, Advanced Extensible Interferface, Universal Verification Methodology,

Network on Chip.

I. INTRODUCTION

These days, designs are becoming more intricate

and employ several Intellectual Property (IP)

cores. Advanced Extensible Interface (AXI)

interconnection IP is one of these IPs and is one of

the most used interconnect IPs. Reusable

components are needed when systems grow

bigger and faster in order to reduce the

complexity and length of the design verification

process. Specialized verification approaches, like

the Universal Verification Methodology (UVM), are

used to speed up the verification process. These

approaches employ a certain coding style that

allows the code to be used in any test environment

based on the same methodology. The verification

includes the write-address channel, write-data

channel, write-response channel, read-address,

and read-data—includes the verification of the

memory transactions of advanced extensible

interface. The test bench is designed to validate

how an advanced extensible interface protocol's

memory transactions work, including how data is

moved between locations when reading and

writing at the same site and at other locations.

II. ADVANCED MICRONCONTROLLER BUS

ARCHITECTURE

The Arm-developed AMBA open standard for SoC

design enables high-performance, modular, and

reusable designs that function correctly the first

time while consuming the least amount of silicon

and power possible. The AXI protocol was

developed to address the interface needs for a

wide range of components while providing for

flexibility in how those components are coupled. It

was first built for high-frequency systems. AHB

and APB are still backwards compatible with AXI,

making it suitable for high-frequency, low-latency

designs. AMBA is heavily utilized by a wide range

of ASIC and SoC components. Networking SoCs,

smartphones, and Internet of Things (IoT)

subsystems are some of the devices that utilize

these parts. Advanced verification approaches,

such as UVM (Universal Verification

1743

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

Methodology), is employed to increase

the verification speed.These approaches employ

certain methods of coding that enable the reuse of

the source code in any verification environment

that is based on the exact same approach.

Five legally distinct transfer streams are available

on the AXI. The read address, the read data

transaction (R), the write-address, the write-data

transaction (W), and response (B) are all utilized

in data transactions.

Figure 1 AXI BUS

III. THE DESIGN SPECIFICATIONS

Figure 2: Design Specifications.

The Design specs consists of the supported

bandwidth of 32bits, slave memory capacity of

2KB, supported read are Write Read and Reset

Read, Supported Write are Read Write and Reset

write, supported burst modes are Fixed, INCR and

WRAP. Supported burst data width are 32, 64,

128, 256 bits. System Verilog is used as the

preferred HDL and the EDA tools used are Xilinx

Vivado and VCS Verdi.

A. Verification Plan

Figure 3 UVM Tree

The plan aids the verification engineer in

comprehending how the verification should be

performed. Introduction, presumptions,The plan

includes an approach, tasks, resources, risks and

timeframes, a list of test cases, a list of features to

be tested, a list of entrance and exit criteria, as

well as entry and exit criteria. Plan could be a

document, a spreadsheet, or a plain text file.

Additionally, it includes an explanation of the

Testbench's architecture as well as a breakdown

of each component's features.

IV. THE UVM TESTBENCH ARHCITECTURE

The testbench was made utilizing the analysis and

verification components that were taken from the

UVM libraries. The test bench operates the DUV

and produces random vectors. To check for DUV

functionality, both the applied stimulus and the

DUV reaction are tracked. The testbench

additionally reports functional coverage using the

coverage method as an indication for how far

along the verification process is.

A. UVM Package

The libraries that are part of the UVM bundle can

be used to build the layered UVM testbench

framework and other verification components.

There are three different classes:

1. object: It serves as the root class for all UVM

data and hierarchical classes, defining

methods for operations like create, copy,

compare, and print that are performed often

on all objects.

2. Component: All of UVM's significant

verification components use it as their root

1744

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

class. It offers interface to hierarchy, phasing,

reporting, and the UVM factory and inherits

every feature of a UVM object.

3. Transaction: All transactions used by UVM to

generate and analyze stimuli use it as their

base class. It offers a timing and recording

interface and takes on all the characteristics

of the UVM object.

B. Hierarchy

Numerous verification and analysis components

make up the testbench's framework [5]. The

functions of these items are described below

1. Sequence Item: It is the random stimulus that

will be applied to the DUV's control layer,

content, structure, and analysis data aspects.

Motivated random testing makes use of the

characteristics of the source data, which are

classified as random factors.

2. Sequence: The process develops the sequence

elements and randomizes them before

transmitting them to the driver.

3. Sequencer: The sequence is executed by the

sequencer, who also sends the order of items

to the driver from the sequence where they

are formed.

4. Driver: The driver transforms circuit state

events from raw data fields of sequence items

to control the design using interface.

5. Monitor: It collects data on DUT action at the

individual pin level, transforms it into

transfer level events using the TLM analysis

ports, and sends those transactions through

the scoreboard.

6. Agent: The agent is made up of the sequencer,

driver, and monitor, whether they spawn all

the components and excite the DUT to record

the DUT responses, agents may be classified

as passive or active.

7. Scoreboard: The transactions are compared

to see if the DUT response matches the

expected behavior. It determines whether a

test scenario is successful or unsuccessful.

8. Environment: Each UVM verification

component is housed in a single container

called environment. The verification

components can be altered in any way by

defining an environment. On a UVM test

bench, there may be several comparable

situations.

9. Test: It establishes the circumstances and the

sequence required to validate the different

DUT identifying traits. Running an

appropriate number of test cases causes the

proper convergence of coverage and the full

functional verification.

C. The Verification Plan

As it outlines the functional requirements of the

design and identifies the many elements to be

evaluated, the verification strategy is crucial to

any verification effort. Furthermore, it specifies

the test cases that must be run in order to fulfill

the full design verification, as well as the coverage

objectives.

Note: Write and read will be performed in the same

transaction.

1. UVM Sequence item

All the signals required will be declared here.

Write address, write response, read address and

read response is declared as per the design. The

design constraints are also added here and are

applied to the id field for both read and write

where the length is maintained same where a

unique value will be randomized. Another

constraint is added to the burst modes, here we

have three types of burst modes i.e. Fixed, INCR

and WRAP modes where awburst and airburst

must be inside {0,1,2} where 0 indicates the fixed,

1 indicates increment mode and 2 indicates the

WRAP mode. Similarly for valid signals, the read

and write valid should not be equal for a

transaction to be successful.

2. Rst_dut

The reset sequence is defined inside

uvm_sequence which works on the transaction

data. Inside the body task the reset of the dut

takes place.

3. valid_wrrd_fixed

The write read transactions in fixed mode is also

extended in uvm_sequence. Inside the body an

object is created where the length of the burst

transaction, type of burst and the size is

mentioned. Burst mode has to be 0 for the design

to work in fixed mode and followed by awsize is 2

1745

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

which depicts that a maximum of 4 bytes is

allowed for the transaction.

4. valid_wrrd_incr:

The write read transactions in fixed mode is also

extended in uvm_sequence. Inside the body an

object is created where the length of the burst

transaction, type of burst and the size is

mentioned. Burst mode has to be 1 for the design

to work in fixed mode and followed by awsize is 2

which depicts that a maximum of 4 bytes is

allowed for the transaction. With uvm_info, the

message is displayed to make sure that the

transaction is completed.

5. valid_wrrd_wrap:

The write read transactions in fixed mode is also

extended in uvm_sequence. Inside the body an

object is created where the length of the burst

transaction, type of burst and the size is

mentioned. Burst mode has to be 2 for the design

to work in fixed mode and followed by awsize is 2

which depicts that a maximum of 4 bytes is

allowed for the transaction. With uvm_info, the

message is displayed to make sure that the

transaction is completed.

6. err_wrrd_fix:

The error transactions in terms out of address

transactions are sent and extends the

uvm_sequence and similarly the three different

burst mode transactions are verified for the error

response.

UVM Classes

A. Class Driver:

wrrd_fixed_wr:The important signals for the read

and write transactions are applied here with

awvalid and wvalid to be high. The wait will be

granted for the required number of wready and

awready bits for the transactions to take place for

the positive edges of the clock pulse.The interface

is also declared here to get the access of the

interface and the data container will be declared

here to receive the transactions. Independent

tasks will be created for rese for the positive edge

of the clock pulse. During the write read write in

fixed mode the reset will be removed by making it

1 followed by awvalid high and followed by

declaring all the signals, awlen will be coming

from sequencer and should be same, starting

address is also mentioned for the fixed mode

transactions to take place and the awburst to be 0

for fixed mode transactions. The wdata will be

randomized with the rangefrom 0 to 10. The

strobe signals are also declared to access all the

bits. During the write stage the read valid has to be

disabled and the read ready has to be disabled to

deactivate read channel. last signal will be used to

end the transaction. When bready and wlast is

high and after the bvalid is high, the response of

the transaction is received to indicate the status of

the transaction. The negative edge of bready is

always noted for the transaction to be successful

and as soon as the positive edge of bready is

depicted then the next transaction will be

executed where this will be done as long as the

burst length is reached. Post the write

transactions, all the valid signals will be

deactivated to end the transaction and wait for the

response by enabling the bready and wlast signals.

wrrd_wrap_wr and wrrd_incr_wr: The only

configuration change that is needed is to change

the awburst to 1 for increment and 2 for wrap

mode. The configuration begins by resetting the

design, making the valid high and configuring all

the mandatory signals for the write transactions to

take place by turning off the read signals. Wait for

the positive edge to complete burst transactions.

wrrd_fixed_rd, wrrd_incr_rd and

wrrd_wrap_rd:During the read mode, arvalid and

rvalid is made active. Till the positive edge of the

rvalid is received depending on the number of

transactions is available for the design to perform.

During the positive edge of arready and at the end

of the next clock tic, the next transaction is

received. Both rvalid and arready as both are

working on the same instance. Once all the

transactions are read, the rlast signal is made

active to receive the response of the transaction

and finally the read is removed.

run_phase: All the specified tasks will be executed

in the run phase. Using the

seq_item_port.get_next_item, the transactions are

received from the sequencer. The reset_dut task

will perform the reset, all the various wr_rd_wr

transactions with various burst modes are

performed by calling the write task and read task

1746

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

separately with the memory slave. Finally the

error write and read behaviors are also checked.

B. Class Monitor:

The monitor is used to store the data in an array

during the write operation and during the read

operation the comparison will be done where the

size of the array is 32bits. Registering the class to a

factory is done, in the build phase the access of the

interface is granted. In the main phase of the

monitor, works at the positive edge of the clock.

Wready indicates the completion of write

transaction where the data will be stored in the

memory where we wait for awvalid and the array

will be updated with the address of the next write

with the data available on the wdata bus for a

successful transfer the responseis 0 else there is

an error transaction which is detected. The same

address will used to access the array during the

comparison of data written into the memory. The

response is also collected at every instance of the

transactions.

Task compare:

Here the signals err, rdresp and wrresp will be

checked if err==0, rdresp==0 &wrresp==0 then

the comparison will be success else the uvm_error

will be displayed.

C. Class Agent:

Agent class will have the instance of driver,

sequencer and monitor. In the build phase the

object of all three will be created and using the

connect phase the sequence_item_port of the

driver will be connected with the

sequence_item_export of the sequencer.

D. Class env:

Inside the env, the instance of the agent will be

created and the main phase or run_phase the

objection will be raised and dropped where the

sequence will be called one by one.

Figure 4 Increment mode burst type

SIMULATION AND RESULTS:

Figure 5: Valid Transactions of Fixed Mode

A. Valid transactions for fixed mode

• The fixed mode transactions under the reset

mode are first checked where the time resolution

at 1 ps, the reset is done with WR as 0, RD as 1,

WRADDR as 5 and RDADDR as 5, WLEN as 3, RLEN

as 7 and burst mode as Fixed mode, the data read

will be 0 from the memory.

• After reset, with WR signal as 1 and start

address as 5, the randomized data for 8 iterations

will be written into the specified address location.

The data written are 3c, 27, 22, 54, 63, 3e, 1a at the

specified address location which is 5. After the

transaction is complete, read process will begin by

reading the data from the last specified address

location as it is fixed burst mode.

B. Increment Mode

• During the increment mode the data is getting

written into various address locations in an

increment fashion with the starting address

location as 5 and gets incremented with a write

1747

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

length as 4 with burst type as 1 for INCR mode, WR

as 1 & RD as 0and the address locations are as

follows: 5, 9, d, 11, 15, 19, 1d. The data written into

these locations are 3c, 27, 22, 54, 63, 3e, 1a and

here the transaction is completed for write. During

the INCR read mode the data written in these

locations will be read with starting location as 5

with transactions are done with RD as 1. The

comparisons of the data read and written will done

by the scoreboard and this will continue till the

transaction is completed.

Figure 6 WRAP Mode transactions

C. WRAP Mode

• During the wrap mode, the transactions are

very similar to the INCR mode. The only difference

is that the address locations will be wrapped here

by completing the transactions by writing to the 1st

available address location. Similar to INCR and

FIXED modes, the reset of the DUT will be

done.The signals used in this mode are WR:1, RD:0,

WRBUR:2, RDBUR:2, RADDR:5, WRADDR:5,

WLEN:7, RLEN:7. During the write mode the

address locations specified are 5, 9, d, 11, 15, 19,

1d, 1 for completing the wrap. The data written are

3c, 27, 22, 54, 63, 3e, 1a, f. Similarly, during the

read mode, the data is read from the locations in

the wrap mode and the data is retrieved from all

the locations till the transactions are done. Finally,

the scoreboard will compare the data written and

read and throws the UVM_info about the data

comparisons.

D. ASSERTIONS INSERTED IN THE DESIGN

Assertions are an important in terms of

verification point of view, where the internal

signals of the design are checked under various

scenarios for which the DUT has to be stable. The

various scenarios the properties are written for

which the design is checked are: 1. during the

positive edge of the clock the state of the design

signal is checked at various timestamps to check

whether the signals are toggling as expected or

not, 2. During the positive edge of the clock, design

signals are sampled at the rising edge of the

sampled data, 3. Design handshake signals ack and

req are checked wherein during the rising edge of

request, the acknowledge should be active at the

rising edge in non-overlapping mode., 4. During

the rising edge of the en signal, data signal of the

current iteration should be more than the

previous value. During the level conditions as well

as the behavior is checked. 5. By fixing the data

signal to a fixed value and checking the behavior at

various timestamps. 6. Disabling the signals at a

particular data pattern is matched.

Figure 7: Assertion is checked at the level condition

of the enable.

Figure 8: Assertions during the case 1

In case1, it is noted that the assertion gets failed for

data signal a at 10ns and passes at 50ns during the

positive edge of the clock. The assertion will pass

whenever the signal is high only at the positive

edge of the master clock.

Figure 9 Assertion for data signal b under the

sampling condition.

The assertion is checked for the sampled data of b

signal at every rising edge of the same signal. Here

a 4-bit data behavior is checked at various

timestamps and the assertion passes for every

1748

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

iteration when the data signal goes from low to

high.

Figure 10: Assertion for rising edge of req, the

acknowledge is checked.

Figure 11: The behavior of data signals is checked

for every clock edge.

The assertion for every rising edge of request, the

behavior from the slave signal is checked.

Assertion passes for every rising edge of req if the

ack is high at the next rising edge of the clock.

Assertion is checked for every rising edge of the en

(Enable) signal, the behavior of data is checked

where in the value of the data at current iteration

should be more than the previous clock edge. This

is to check whether the incremental data

insertions are happening in the design.

During the level condition the design signal, the

assertion gets passed at the timestamps 25ns,

35ns, 45ns, 55ns, 65ns and 75ns and is depicted in

the waveform shown in figure 10.

Figure 12: Integration of the memory slave with the

design using Questasim

Figure 12 depicts about the usage of questasim for

simulating the design along with the memory

slave with all the interface signals showing the

intended behavior.

Figure 13 Memory by taking 128 bits memory space

as an example for simulation

Memory is one of the most important part of a

complete system for using which the intended

tasks are performed for the end user. Here

memory is used as the slave for performing

various read, writes using the protocol which is

one of the highly recommended interfaces in the

SoC for high speed data transfer. The memory

works as expected with the interface and the

assertions have also passed with various scenarios

making it very capable of performing important

tasks. The burst transactions have also been

exercised using the memory and the writes as well

as the read happened using the axi interface with

the design signals.

Figure 14: Figure showing the Design integrated

along with the assertions with burst transactions of

wrap mode

Figure 14 shows a snippet of burst mode

transaction with wrap writing into the memory

starting at the address 32’h00000009,

32’h0000000d, 32’h000000011, 32’h000000015,

32’h00000019, 32’h0000001d, 32’h00000001,

which ends by wrapping the address as a

completed envelope by writing the 1st address

space available in the memory.

1749

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 44 No. 8

August 2023

Figure 15 Burst transactions wrap read

The read transaction using the wrap mode is

shown above starting from 350ns to 650ns.

CONCLUSION

In this paper, for the purpose of functionally

verifying the AXI protocol, a UVM testbench is

proposed.Through the methodical execution of

pertinent test cases, the testbench completely

functionally verified AXI and obtained 100%

functional coverage. The simulation waveform

shows how data can be successfully transferred

between memory slave and AXI master modules

using the Advanced Extensible Interface bus

signals for various read and writes. The assertions

were inserted in the testbench making it very

reliable for the data behavior at various scenarios

write – read, reset- read, read – write and reset –

write at both edge and level conditions. The

request, acknowledge, data signals at overlapping

and non overlapping modes were also

checked.Assertions also make sure that the signals

are toggling as expected and hence helps in

covering the signals during the coverage for both

line and toggle. The entire design was done using

the system verilog and the testbench environment

was done UVM using Xilinx vivado 2020.02 and

Questasim 10.4 e for simulating the design.

REFERENCES

1. Anil Deshpande, “Verification of IP-core

based SoCs,” 9th International

Symposium on Quality Electronic Design,

pp. 433–436, 2008.

2. Chris Spear, SystemVerilog for

Verification (2nd Edition): A Guide to

Learning the Testbench Language

Features, Springer, 2008.

3. Verisity Design Inc., e Reuse Methodology

(eRM) Developer Manual Version 4.3.5,

pp. 1–5, 2004.

4. N Dohare, S Agrawal, “APB based AHB

interconnect testbench archictecture

using uvm config db,” International

Journal of Control Theory and

Applications, vol. 9, pp. 4377-4392, 2016.

5. Accellera, Universal Verification

Methodology (UVM) 1.2 User’s Guide,

October, 2015.

6. Zhili Zhou, Zheng Xie, Xinan Wang and

Teng Wang, “Development of verification

environment for SPI master interface

using system verilog,” IEEE 11th

International Conference on Signal

Processing (ICSP), pp. 2188–2192,

October, 2012.

7. Motorola Inc., SPI Block Guide V03.06,

March, 2003. [8] Pavithran T M, Ramesh

Bhakthavatchalu, “UVM based testbench

architecture for logic sub-system

verification,”

