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Abstract: A dominating set 𝑫 of a graph  𝑮 = 𝑮(𝑽, 𝑬) is called Metro dominating set of 𝑮. If for every pair 

of verities 𝒖, 𝒗 there exists a vertex 𝒘 in 𝑫 such that 𝒅(𝒖, 𝒘) ≠ 𝒅(𝒗, 𝒘). The K-metro domination number 

of triangular ladder graph (𝜸𝜷𝒌
[𝑻𝑳𝒏]), is the order of smallest K-dominating set of [𝑻𝑳𝒏] which serves as 

a metric set. In this paper we calculate K-metro domination number of triangular ladder graph 

(𝜸𝜷𝒌
[𝑻𝑳𝒏]). 
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1 Introduction 

Every graph considered here are simple, finite, 

undirected and connected. A graph 𝐺 = (𝑉, 𝐸) 

and 𝑢, 𝑣 𝜖 𝑉, 𝑑𝐺(𝑢, 𝑣) is denoted as distance 

between 𝑢 and 𝑣 in 𝐺. We refer 

[5,6,7,8,9,11,13] for the works on metro 

domination. 

2 Known results 

Definition 2.1:   A set 𝐷 of vertices in a graph 𝐺 

is called a dominating se 𝐺. If every vertex in 

𝑉 − 𝐷 is adjacent to some vertex in D. The 

domination number 𝛾(𝐺) of a graph 𝐺 is the 

minimum cardinality of a dominating set in 

𝐺[1],[2]. 

Definition 2.2:   A set 𝑆 ⊆ 𝑉 is called resolving 

set if for every 𝑢, 𝑣 𝜖 𝑉 there exist 𝑤 𝜖 𝑆, such 

that the distance between vertices 𝑢, 𝑣 ∈ 𝑉 is 

represented as 𝑑(𝑢, 𝑤) ≠ 𝑑(𝑣, 𝑤). A set of 

vertices 𝑆 ⊆ 𝑉(𝐺) resolves 𝐺, then 𝑆 is a 

resolving set of 𝐺 and its minimum cardinality 

is a metric basis of 𝐺,and its cardinality is the 

metric dimension and it is represented by 𝛽(𝐺). 

Definition 2.3:   Metro domination number 

introduced by B.Sooryanarayan and 

Raghunath.P[4]. A dominating set 𝐷 of 𝑉(𝐺) 

which is both dominating set as well as 

resolving set is called the metro dominating set 

of 𝐺. The minimum cardinality of metro 

dominating set of 𝐺is called metro domination 
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number of  𝐺, and denoted by  𝛾𝛽(𝐺).  

Definition 2.4:   A ladder graph 𝐿𝑛 is defined 

by 𝐿𝑛 = 𝑃𝑛 𝑥 𝐾2 where 𝑃𝑛 is a path with n 

vertices and 𝑥 denotes the  𝐾2 is a complete 

graph with two vertices  

Definition 2.5:  A triangular ladder 𝑇𝐿𝑛 , 𝑛 ≥ 2 

is a graph obtained from 𝐿𝑛 by adding the 

edges 𝑢𝑖𝑣𝑖+1,1 ≤ 𝑖 ≤ 𝑛 − 1. The vertices of 𝐿𝑛 

are 𝑢𝑖  and  𝑣𝑖 . 𝑢𝑖  and  𝑣𝑖  are the two paths in 

the graph 𝐿𝑛 where 𝑖 = 1,2,3, … 𝑛. 

Corollary 2.6: For any integer n, 𝛽[𝑇𝐿𝑛] = 2 

Corollary 2.7: For any integer 𝑛 ≥ 3, the 
distance irregularity strength from the 
triangular ladder    

                         graph 𝐿𝑛 is 𝑑𝑖𝑠(𝐿𝑛) = 𝑛 

3 Main Results 

Theorem 3.1: For any integer n, 𝛾𝛽[𝑇𝐿𝑛] =

⌈
2𝑛+3

5
⌉ , 𝑛 ≥ 4 

Proof: Let 𝐺 = 𝑇(𝐿𝑛) be a triangular ladder 
graph on 2𝑛 vertices with  

           𝑉(𝑇𝐿𝑛) = {𝑢1𝑣1|1 ≤ 𝑖 ≤ 𝑛}   

and     𝐸[𝑇𝐿𝑛] = {𝑢1𝑢𝑖+1 | 𝑖 < 𝑛} ⋃{𝑣1𝑣𝑖+1 | 𝑖 <
𝑛} ⋃{𝑢𝑖𝑢𝑖+1 | 𝑖 < 𝑛 } 

By using the corollary 2.6, and [12], since a 
metro dominating set D also a dominating set. 

Thus 𝛾𝛽[𝑇𝐿𝑛] ≥ ⌈
2𝑛+3

5
⌉                                                                                                                     

(1) 

To prove the reverse inequality, we find a 

metro dominating set of cardinality ⌈
2𝑛+3

5
⌉ 

We define a set D as follows 

           𝐷1 = {𝑢5𝑙−1: 𝑙 ≥ 1}, 𝑛 ≡ 4(𝑚𝑜𝑑 5) 

           𝐷2 = {𝑣5𝑙−4: 𝑙 ≥ 1}, 𝑛 ≡ 1(𝑚𝑜𝑑 5) 

We note that D is also dominating set for 𝑇(𝐿𝑛) 
and also D will serves as metric set of 𝑇(𝐿𝑛) as 
in  

corollary 2.6. 

Thus    𝛾𝛽[𝑇𝐿𝑛] ≤ ⌈
2𝑛+3

5
⌉                                                                                                                  

(2) 

From (1) and (2), 

            𝛾𝛽[𝑇𝐿𝑛] = ⌈
2𝑛+3

5
⌉ 

                                                      

Figure 3.1: 𝛾𝛽[𝑇𝐿8] = 4 

Theorem 3.2: For any integer n, 𝛾𝛽2
[𝑇𝐿𝑛] =

⌈
2𝑛+5

9
⌉ , 𝑛 ≥ 7 

Proof: Let 𝐺 = 𝑇(𝐿𝑛) be a triangular ladder 
graph on 2𝑛 vertices with  

           𝑉(𝑇𝐿𝑛) = {𝑢1𝑣1|1 ≤ 𝑖 ≤ 𝑛} and      

           𝐸[𝑇𝐿𝑛] = {𝑢1𝑢𝑖+1 | 𝑖 < 𝑛} ⋃{𝑣1𝑣𝑖+1 | 𝑖 <
𝑛} ⋃{𝑢𝑖𝑢𝑖+1 | 𝑖 < 𝑛 } 

With for each 𝑖, 𝑢𝑖, 𝑣𝑖  the only edges between 

two paths. 𝑊 = 𝑉 − 𝐷, now each 𝑣𝑖𝜖 𝑊 is 

either adjacent to any of the vertex 𝐷 (or) at 

least at distance of 2 form at least one of the 

vertex D. Any vertex 𝑣𝑘𝜖𝐷, will dominate at 

least 5 vertices including itself. Since a metric 

dimension of triangular ladder graph is 2, 𝐷 

itself serves as metric set.   

Thus  𝛾𝛽2
[𝑇𝐿𝑛] ≥ ⌈

2𝑛+5

9
⌉                                                                                                                   

(1) 

We define a set D as follows 

           𝐷1 = {𝑢9𝑙−3: 𝑙 ≥ 1}, 𝑛 ≡ 6(𝑚𝑜𝑑 9) 

           𝐷2 = {𝑣9𝑙−8: 𝑙 ≥ 1}, 𝑛 ≡ 1(𝑚𝑜𝑑 9) 

We note that D is also dominating set for 𝑇(𝐿𝑛) 
and also D will serves as metric set of 𝑇(𝐿𝑛) as 
in  

corollary 2.6.  

Thus    𝛾𝛽2
[𝑇𝐿𝑛] ≤ ⌈

2𝑛+5

9
⌉                                                                                                               

(2) 
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From (1) and (2)                     

            𝛾𝛽2
[𝑇𝐿𝑛] = ⌈

2𝑛+5

9
⌉ 

 

Figure 3.2: 𝛾𝛽2
[𝑇𝐿11] = 3 

Theorem 3.3: For any integer n, 𝛾𝛽𝑘
[𝑇𝐿𝑛] ≤

⌈
2(𝑛+𝑘)+1

4𝑘+1
⌉ , 𝑛 ≥ 3𝑘 + 1 

Proof: Let 𝐺 = 𝑇(𝐿𝑛) be a triangular 
ladder graph on 2𝑛 vertices with  

           𝑉(𝑇𝐿𝑛) = {𝑢1𝑣1|1 ≤ 𝑖 ≤ 𝑛} and      

           𝐸[𝑇𝐿𝑛] = {𝑢1𝑢𝑖+1 | 𝑖 < 𝑛} ⋃{𝑣1𝑣𝑖+1 | 𝑖 <

𝑛} ⋃{𝑢𝑖𝑢𝑖+1 | 𝑖 < 𝑛 } 

With for each 𝑖, 𝑢𝑖, 𝑣𝑖  the only edges between 

two paths. 𝑊 = 𝑉 − 𝐷, now each 𝑣𝑖𝜖 𝑊 is 

either adjacent to any of the vertex 𝐷 (or) at 

least at distance of 2 from at least one of the 

vertex D. Any vertex 𝑣𝑘𝜖𝐷, will dominate at 

least 3𝑘 + 1 vertices including itself. The lower 

bound of  𝑇(𝐿𝑛) of order 𝑛 = (3𝑘 + 1)𝑙 for 

some 𝑙 ≥ 1.  

We define a set D as follows  

             𝐷1 = {𝑢(4𝑘+1)𝑙−2𝑘+1 : 𝑙 ≥ 1},    𝑛 ≡ 2(𝑘 +

1)(𝑚𝑜𝑑 (4𝑘 + 1)) 

             𝐷2 = {𝑣(4𝑘+1)𝑙−4𝑘       : 𝑙 ≥ 1},    𝑛 ≡

1(𝑚𝑜𝑑 (4𝑘 + 1)) 

We note that D is also dominating set for 𝑇(𝐿𝑛) 
and also D will serves as metric set of 𝑇(𝐿𝑛) as 
in  

corollary 2.6.  

Thus     𝛾𝛽𝑘
[𝑇𝐿𝑛] ≤ ⌈

2(𝑛+𝑘)+1

4𝑘+1
⌉  , 𝑛 ≥ 3𝑘 + 1                                                                                      
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