On the K-Metro Domination Number of Triangular Ladder Graph

Rajeshwari Shibaraya $^{1,a)}$, Basavaraju G $\mathsf{C}^{2,b)}$, Ananth Kulkarni $^{3,c)}$, Lakshminarayana $\mathsf{S}^{4,d)}$

Vishukumar M^{5,e)}

¹Department of Mathematics

Srinivas Institute of engineering and technology, Mukka, Karnataka, India

²Department of Mathematics

Brindavan College of engineering, Bengaluru, Karnataka, India

³Department of Mathematics

Srinivas institute of technology, Karnataka, India

⁴Department of Mathematics

Reva university, Bengaluru, Karnataka, India

⁴Department of Mathematics

Reva university, Bengaluru, Karnataka, India

Abstract: A dominating set D of a graph G = G(V, E) is called Metro dominating set of G. If for every pair of verities u, v there exists a vertex w in D such that $d(u, w) \neq d(v, w)$. The K-metro domination number of triangular ladder graph $(\gamma_{\beta_k}[TL_n])$, is the order of smallest K-dominating set of $[TL_n]$ which serves as a metric set. In this paper we calculate K-metro domination number of triangular ladder graph $(\gamma_{\beta_k}[TL_n])$.

Keywords: Dominating set, K- Dominating set, Domination number, Locating dominating set, Metric dimension, Metro domination set.

1 Introduction

Every graph considered here are simple, finite, undirected and connected. A graph G=(V,E) and $u,v\in V,d_G(u,v)$ is denoted as distance between u and v in G. We refer [5,6,7,8,9,11,13] for the works on metro domination.

2 Known results

Definition 2.1: A set D of vertices in a graph G is called a dominating se G. If every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G[1],[2].

Definition 2.2: A set $S \subseteq V$ is called resolving set if for every $u, v \in V$ there exist $w \in S$, such that the distance between vertices $u, v \in V$ is represented as $d(u, w) \neq d(v, w)$. A set of vertices $S \subseteq V(G)$ resolves G, then S is a resolving set of G and its minimum cardinality is a metric basis of G, and its cardinality is the metric dimension and it is represented by B(G).

Definition 2.3: Metro domination number introduced by B.Sooryanarayan and Raghunath.P[4]. A dominating set D of V(G) which is both dominating set as well as resolving set is called the metro dominating set of G. The minimum cardinality of metro dominating set of G is called metro domination

Journal of Harbin Engineering University ISSN: 1006-7043

number of G, and denoted by $\gamma_{\beta}(G)$.

Definition 2.4: A ladder graph L_n is defined by $L_n = P_n x K_2$ where P_n is a path with n vertices and x denotes the K_2 is a complete graph with two vertices

Definition 2.5: A triangular ladder TL_n , $n \geq 2$ is a graph obtained from L_n by adding the edges $u_iv_{i+1,1} \leq i \leq n-1$. The vertices of L_n are u_i and v_i . u_i and v_i are the two paths in the graph L_n where $i=1,2,3,\dots n$.

Corollary 2.6: For any integer n, $\beta[TL_n] = 2$

Corollary 2.7: For any integer $n \ge 3$, the distance irregularity strength from the triangular ladder

graph
$$L_n$$
 is $dis(L_n) = n$

3 Main Results

Theorem 3.1: For any integer n, $\gamma_{\beta}[TL_n] = \left[\frac{2n+3}{5}\right]$, $n \ge 4$

Proof: Let $G = T(L_n)$ be a triangular ladder graph on 2n vertices with

$$V(TL_n) = \{u_1v_1 | 1 \le i \le n\}$$

and
$$E[TL_n] = \{u_1u_{i+1} \mid i < n\} \cup \{v_1v_{i+1} \mid i < n\} \cup \{u_iu_{i+1} \mid i < n\}$$

By using the corollary 2.6, and [12], since a metro dominating set D also a dominating set.

Thus
$$\gamma_{\beta}[TL_n] \ge \left\lceil \frac{2n+3}{5} \right\rceil$$
 (1)

To prove the reverse inequality, we find a metro dominating set of cardinality $\left\lceil \frac{2n+3}{5} \right\rceil$

We define a set D as follows

$$D_1 = \{u_{5l-1} : l \ge 1\}, n \equiv 4 \pmod{5}$$

$$D_2 = \{v_{5l-4}: l \ge 1\}, n \equiv 1 \pmod{5}$$

We note that D is also dominating set for $T(L_n)$ and also D will serves as metric set of $T(L_n)$ as in

corollary 2.6.

Thus
$$\gamma_{\beta}[TL_n] \leq \left[\frac{2n+3}{5}\right]$$

(2)

From (1) and (2),

$$\gamma_{\beta}[TL_n] = \left\lceil \frac{2n+3}{5} \right\rceil$$

035 124 213 312 421 530 641 752 863

Figure 3.1: $\gamma_{\beta}[TL_8] = 4$

Theorem 3.2: For any integer n, $\gamma_{\beta_2}[TL_n] = \left[\frac{2n+5}{9}\right]$, $n \ge 7$

Proof: Let $G = T(L_n)$ be a triangular ladder graph on 2n vertices with

$$V(TL_n) = \{u_1v_1 | 1 \le i \le n\}$$
 and

$$\begin{split} E[TL_n] &= \{u_1u_{i+1} \mid i < n\} \cup \{v_1v_{i+1} \mid i < n\} \cup \{u_iu_{i+1} \mid i < n\} \end{split}$$

With for each i, u_i, v_i the only edges between two paths. W = V - D, now each $v_i \in W$ is either adjacent to any of the vertex D (or) at least at distance of 2 form at least one of the vertex D. Any vertex $v_k \in D$, will dominate at least 5 vertices including itself. Since a metric dimension of triangular ladder graph is 2, D itself serves as metric set.

Thus
$$\gamma_{\beta_2}[TL_n] \ge \left\lceil \frac{2n+5}{9} \right\rceil$$
 (1)

We define a set D as follows

$$D_1 = \{u_{9l-3} : l \ge 1\}, n \equiv 6 \pmod{9}$$

$$D_2 = \{v_{9l-8}: l \ge 1\}, n \equiv 1 \pmod{9}$$

We note that D is also dominating set for $T(L_n)$ and also D will serves as metric set of $T(L_n)$ as in

corollary 2.6.

Thus
$$\gamma_{\beta_2}[TL_n] \le \left\lceil \frac{2n+5}{9} \right\rceil$$
 (2)

From (1) and (2)

$$\gamma_{\beta_2}[TL_n] = \left\lceil \frac{2n+5}{9} \right\rceil$$

059 148 237 326 415 514 623 732 841 950 10(6)1 11(7)2

Figure 3.2: $\gamma_{\beta_2}[TL_{11}] = 3$

Theorem 3.3: For any integer n, $\gamma_{\beta_k}[TL_n] \le \left[\frac{2(n+k)+1}{4k+1}\right]$, $n \ge 3k+1$

Proof: Let $G = T(L_n)$ be a triangular ladder graph on 2n vertices with

$$V(TL_n) = \{u_1v_1 | 1 \le i \le n\}$$
 and
$$E[TL_n] = \{u_1u_{i+1} | i < n\} \cup \{v_1v_{i+1} | i < n\}$$

 $n\} \cup \{u_i u_{i+1} \mid i < n\}$

With for each i, u_i , v_i the only edges between two paths. W = V - D, now each $v_i \in W$ is either adjacent to any of the vertex D (or) at least at distance of 2 from at least one of the vertex D. Any vertex $v_k \in D$, will dominate at least 3k + 1 vertices including itself. The lower bound of $T(L_n)$ of order n = (3k + 1)l for some $l \ge 1$.

We define a set D as follows

$$D_1 = \{u_{(4k+1)l-2k+1} : l \ge 1\}, \quad n \equiv 2(k+1) \pmod{(4k+1)}$$

$$D_2=\left\{v_{(4k+1)l-4k}\quad : l\geq 1\right\},\quad n\equiv 1(mod\;(4k+1))$$

We note that D is also dominating set for $T(L_n)$ and also D will serves as metric set of $T(L_n)$ as in

corollary 2.6.

Thus
$$\gamma_{\beta_k}[TL_n] \leq \left\lceil \frac{2(n+k)+1}{4k+1} \right\rceil$$
 , $n \geq 3k+1$

4 REFERENCES

1. C. Berge, Graphs and hypergraphs, North-

- Holland, Amsterdam, 1973
- 2. B. Zmazek and J. Zerovnik, "On domination number of graph bundles", Institute of mathematics, physics and mechanics, 43(2005),pp.1-10.
- 3. A. Sugumaran and E. Jayachandran, "Domination number of some graphs", International Journalof Scientific Development and Research, 3(2018), no.11, pp.386-391.
- Raghunath P and Sooryanarayana B, "Metro domination number of a graph", Twentieth annual conference of Ramanujan Mathematics Society, July 25-30(2005) university of Calicut, Calicut.
- 5. G C Basavaraju, M Vishukumar and Raghunath, "On the metro domination number of Cartesian product of $P_2X P_n$ and $C_mX C_n$ ", Journal of Engineering and applied sciences, 14(2019), no.1, pp.114-119
- 6. G C Basavaraju, M Vishukumar and Raghunath, "Metro domination of powers of path", International Journal of Emerging Technology and Advance Engineering, 8 (2018), no.1.
- 7. G C Basavaraju, M Vishukumar and Raghunath, "On the metro domination number of Cartesian product of $P_2X P_n$ ", International Journal of mathematical archieve, 9(2018), no.3, pp.1-2
- 8. G C Basavaraju, M Vishukumar, "Metro domination number of powers of cycle", published in Scopus journals "AIP conference proceedings" 2112, 020071(2019).
- 9. G C Basavaraju and Yogalakshmi S, "Metro domination number of some graphs", published in AIP Conference preeceedings, 2649, 030022(2023).
- 10. F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201–213
- 11. G C Basavaraju, M Vishukumar and Raghunath, "Metro Domination of Square Cycle",International Journal of Mathematics and its applications, 5(2017), no.1-E, pp.641-645.
- 12. Sumathi P and Rathi A (2018), Quotient Labeling of Some Ladder Graph. American J of Engneering Reserch(AJER), 7(12), 38-42
- 13. Rajeshwari shibaraya, Basavaraju G C, Anant kumar kulkarni and Vishu kumar M, "Metro domination number of diamond snake graph", International journal for research trends and innovation, Vol.7,Issue 3
- 14. C. Poission and P. Zhang, The metric

Journal of Harbin Engineering University ISSN: 1006-7043

- dimension of unicyclicgraphs, J.Comb.Math Comb. Compu.40(2002)17-32
- 15. Theory of Graphs and its Applications, Methuen, London. (1962) by C. Berge T.W.
- 16. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics. Marcel Dekker, New York, 1998.
- 17. A. Hansberg and L. Volkmann, Multiple Domination, in: Topics in Domination in Graphs. Developments in Mathematics, vol 64. Springer, Cham, 2020, pp. 151–203.