

 2201

2201

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

OEFA: An Optimized Ensemble Fusion Algorithm for Stress Classification and

Prediction

Suryavanshi Prashant Maharudra and Dr. Pradnya Ashish Vikhar

Department of Computer Science and Engineering

Dr. A. P. J. Abdul Kalam University, Indore (M. P.) – 452010

Abstract:-Stress is a prevalent issue in modern society, leading to various adverse effects on individuals' mental

and physical well-being. Accurate classification and prediction of stress levels are crucial for effective intervention

and support. However, existing stress classification and prediction techniques suffer from several disadvantages,

including imbalanced datasets, missing values, categorical data, lack of feature selection, and limited model

diversity. To address these challenges, this paper proposes an Optimized Ensemble Fusion Algorithm (OEFA) for

stress classification and prediction. The OEFA algorithm combines multiple techniques to overcome the

limitations of existing approaches. It employs the Cluster-Based Adaptive Synthetic Sampling (CBADAS) algorithm

to balance imbalanced datasets, generating synthetic instances for the minority class. Missing values are handled

by removing instances with missing data, ensuring only complete data is used for training and testing. Categorical

data is transformed into numerical format using label encoding, enabling the use of traditional machine learning

algorithms. Attribute selection is performed using the ReliefFAttributeEval algorithm with Ranker Search,

reducing dimensionality and improving computational efficiency. Furthermore, OEFA leverages ensemble

learning with the AdaBoostM1 algorithm, incorporating optimized versions of Logistic Regression, HoeffdingTree,

LMT, REPTree, JRip, OneR, PART, and MultilayerPerceptron as base classifiers. Experimental results demonstrate

the superiority of the OEFA algorithm, exhibiting the highest accuracy, precision, recall, and F1-score compared to

existing techniques. The advantages of OEFA include improved accuracy through addressing imbalanced datasets,

missing values, and categorical data. The algorithm enhances generalization capability, mitigates overfitting, and

demonstrates robustness by combining multiple base classifiers. Efficient feature selection is achieved using

ReliefFAttributeEval with Ranker Search, contributing to reduced dimensionality and computational

requirements.

Keywords: Clustering, Classification, Prediction, Oversampling, Label encoding

1. Introduction

Stress is a prevalent issue affecting individuals

across various domains, including healthcare,

psychology, and human resources [1]. The ability to

accurately classify and predict stress levels is crucial

for early detection, intervention, and personalized

treatment [2]. In recent years, machine learning

techniques have shown promise in this area,

enabling the development of automated systems to

assist in stress assessment [3]. However, existing

stress classification and prediction algorithms have

certain limitations that hinder their effectiveness.

Existing stress classification and prediction

techniques often face challenges such as

imbalanced datasets, missing values, categorical

data, lack of feature selection, and limited model

diversity [4], [5]. Imbalanced datasets, where one

class significantly outnumbers the other, can lead to

biased models that perform poorly on the minority

class. Additionally, stress datasets frequently

contain missing values, creating challenges during

data preprocessing and model training. Traditional

machine learning algorithms require numerical

inputs, necessitating the transformation of

categorical data. Some algorithms lack a feature

selection step, resulting in suboptimal performance

and increased computational requirements.

Furthermore, single models may not capture the full

complexity of stress data, leading to lower

predictive accuracy.

To address these challenges, this paper proposes an

Optimized Ensemble Fusion Algorithm (OEFA) for

stress classification and prediction. The primary

objective of OEFA is to improve upon existing

algorithms by leveraging ensemble learning

techniques and addressing their inherent

disadvantages. OEFA integrates multiple strategies

 2202

2202

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

to overcome the limitations of imbalanced datasets,

missing values, categorical data, lack of feature

selection, and limited model diversity.

The key contributions of this paper are as follows:

 Balanced dataset conversion: OEFA employs the

Cluster-Based Adaptive Synthetic Sampling

(CBADAS) algorithm to generate synthetic

instances and balance imbalanced datasets,

ensuring improved representation of all classes.

 Missing value handling: OEFA includes a step to

remove instances with missing values, allowing

for the use of complete data during training and

testing.

 Categorical data transformation: OEFA performs

label encoding to convert categorical values into

numerical representations, facilitating the

utilization of traditional machine learning

algorithms.

 Attribute selection: OEFA applies the

ReliefFAttributeEval algorithm with Ranker Search

to select the most informative features, reducing

dimensionality and enhancing model efficiency.

 Ensemble learning: OEFA utilizes ensemble

learning through the AdaBoostM1 algorithm,

combining multiple optimized base classifiers to

create a stronger and more robust stress

classification model.

 Experimental evaluation: Extensive experiments

are conducted to evaluate the performance of

the proposed OEFA algorithm, comparing it with

state-of-the-art methods on various stress

classification and prediction datasets.

 The aim of this study is to address the limitations

of existing stress classification and prediction

techniques and propose an optimized algorithm

to improve classification accuracy, robustness,

and generalization capability. The OEFA algorithm

aims to enhance stress classification models'

accuracy by addressing the challenges of

imbalanced datasets, missing values, and

categorical data. Additionally, the use of

ensemble learning and attribute selection

techniques reduces overfitting, improves

generalization to unseen data, and enhances

computational efficiency.

The remainder of this paper is organized as follows.

Section 2 provides a comprehensive review of

related works in stress classification and prediction.

Section 3 presents the proposed Optimized

Ensemble Fusion Algorithm (OEFA) in detail. Section

4 describes the experimental setup, including

datasets, evaluation metrics, experimental results

and performance comparison with existing

methods. Finally, Section 5 concludes the paper and

outlines potential future research directions in the

field of stress classification and prediction.

2. Related Works

This section provides a comprehensive review of

existing works in the field of stress classification and

prediction. Stress assessment and prediction have

garnered significant attention in recent years due to

their potential impact on individuals' well-being and

the effectiveness of interventions. Various machine

learning and data mining techniques have been

employed to develop models for stress classification

and prediction.

Majid et al. [6] proposed a multimodal perceived

stress classification framework using wearable

physiological sensors. The approach leverages

physiological data from wearable sensors to classify

stress levels. The advantage of this approach lies in

its ability to capture real-time physiological

responses. However, a limitation of this method is

the reliance on specialized sensors, which may not

be easily accessible or feasible for widespread

implementation.

Kumar et al. [7] presented an assessment of anxiety,

depression, and stress using machine learning

models. The study utilizes machine learning

algorithms to classify stress levels based on self-

reported data. The advantage of this approach is its

simplicity and ease of data collection. However,

self-report data may be subject to biases and

inaccuracies, leading to potential limitations in

accuracy and reliability.

Shafiee et al. [8] focused on predicting mental

health problems among higher education students

using machine learning. The approach utilizes

various machine learning techniques to predict

mental health problems based on academic and

personal information. The advantage of this

approach is its potential for early identification and

intervention. However, the reliance on self-

reported data and the limited scope of features may

affect the generalizability of the model.

Chiong et al. [9] proposed a textual-based approach

for depression detection using machine learning

 2203

2203

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

classifiers and social media texts. The study

leverages natural language processing techniques to

analyze social media texts and classify individuals

based on their depressive tendencies. The

advantage of this approach is its potential for large-

scale data analysis. However, the challenge lies in

effectively extracting meaningful features from

unstructured text data, and the reliance on social

media data may introduce biases.

Shin et al. [10] presented a machine learning-based

predictive modeling of postpartum depression. The

approach utilizes machine learning algorithms to

predict the risk of postpartum depression based on

various factors. The advantage of this approach is its

potential for early identification and targeted

intervention for at-risk individuals. However, the

limitation lies in the need for comprehensive and

accurate data collection related to postpartum

factors.

Choudhury et al. [11] focused on predicting

depression in Bangladeshi undergraduates using

machine learning. The study employed machine

learning techniques to predict depression levels

based on demographic and behavioral factors. The

advantage lies in its potential for early identification

and intervention in the university setting. However,

the reliance on self-reported data and the limited

demographic scope may affect the generalizability

of the model.

Andersson et al. [12] proposed predictive models

for women with depressive symptoms postpartum

using machine learning methods. The study utilizes

machine learning algorithms to predict depressive

symptoms in women after childbirth based on

various factors. The advantage lies in its potential

for personalized intervention and support.

However, the limitation lies in the need for accurate

and comprehensive data collection related to

postpartum factors.

Baek et al. [13] proposed a context deep neural

network model for predicting depression risk using

multiple regression. The study leverages deep

learning techniques to predict depression risk based

on contextual information. The advantage of this

approach is its ability to capture complex contextual

relationships. However, the limitation lies in the

interpretability and potential bias of deep learning

models.

Zakaria et al. [14] presented StressMon, a scalable

detection system for perceived stress and

depression using passive sensing of changes in work

routines and group interactions. The approach

utilizes passive sensing techniques to detect stress

and depression based on changes in work routines

and group interactions. The advantage lies in its

unobtrusive nature and real-time monitoring.

However, the limitation lies in the need for access

to sensitive data and potential privacy concerns.

Mumu et al. [15] proposed a depressed people

detection approach from Bangla social media status

using LSTM and CNN. The study utilizes deep

learning techniques to detect individuals with

depressive tendencies based on their social media

status. The advantage of this approach is its

potential for analyzing large amounts of textual

data. However, the limitation lies in the language

specificity and potential bias of social media data.

While these approaches offer valuable insights into

stress classification and prediction, they also have

certain limitations. Challenges include imbalanced

datasets, missing values, categorical data, lack of

feature selection, and limited model diversity.

Imbalanced datasets can lead to biased models with

poor performance on minority classes, while

missing values pose challenges during data

preprocessing and model training. The

transformation of categorical data into numerical

inputs may be required for certain algorithms, and

the lack of feature selection can result in suboptimal

performance and increased computational

requirements. Additionally, single models may

struggle to capture the full complexity of stress

data, leading to lower predictive accuracy.

To address these challenges, our proposed

Optimized Ensemble Fusion Algorithm (OEFA) aims

to overcome the limitations of existing approaches.

OEFA leverages an ensemble of diverse models to

capture a wider range of stress patterns and

incorporates feature selection techniques to

enhance model performance. By optimizing the

fusion of multiple models, OEFA aims to improve

the accuracy and robustness of stress classification

and prediction. Furthermore, OEFA is designed to

handle imbalanced datasets, missing values, and

categorical data effectively, ensuring reliable and

accurate stress assessment.

 2204

2204

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

Through the integration of these advancements,

OEFA aims to offer a promising solution to the

challenges faced by existing stress classification and

prediction techniques, ultimately contributing to

improved mental health assessment and

intervention.

3. An Optimized Ensemble Fusion Algorithm

This section designed an Optimized Ensemble

Fusion Algorithm (OEFA) for stress classification and

prediction tasks. It aims to improve upon the

existing algorithms used for stress classification by

addressing their disadvantages and leveraging

ensemble learning techniques. The disadvantages

commonly associated with existing stress

classification and prediction algorithms:

 Imbalanced datasets: Many real-world

stress datasets suffer from class imbalance, where

the number of instances in one class is significantly

higher than the other. This can lead to biased

models that perform poorly on the minority class.

 Missing values: Stress datasets often

contain missing values, which can create challenges

during data preprocessing and model training.

 Categorical data: Traditional machine

learning algorithms typically require numerical

inputs, so categorical data needs to be transformed

into a numerical format before training.

 Lack of feature selection: Some algorithms

do not include a feature selection step, which can

lead to suboptimal performance and increased

computational requirements.

 Limited model diversity: Single models

may not capture the full complexity of stress data,

leading to lower predictive accuracy.

The reasons for developing the OEFA algorithm to

address these disadvantages are:

 Balanced dataset conversion: OEFA

employs the Cluster-Based Adaptive Synthetic

Sampling (CBADAS) algorithm to address the issue

of imbalanced datasets. CBADAS generates

synthetic instances for the minority class to balance

the data, improving the model's ability to capture

patterns from both classes.

 Missing value handling: OEFA includes a

step to remove instances with missing values,

ensuring that only complete data is used for training

and testing.

 Categorical data transformation: OEFA

performs label encoding to convert categorical

values into numerical representations, enabling the

use of traditional machine learning algorithms.

 Attribute selection: OEFA applies the

ReliefFAttributeEval algorithm with Ranker Search

to select the most informative features, reducing

dimensionality and enhancing model efficiency.

 Ensemble learning: OEFA employs

ensemble learning using the AdaBoostM1

algorithm, combining multiple base classifiers to

create a stronger and more robust model. The base

classifiers used in OEFA include optimized version of

Logistic Regression, HoeffdingTree, LMT, REPTree,

JRip, OneR, PART, and MultilayerPerceptron.

 Randomization and splitting: OEFA

randomizes the data to ensure the randomness of

the split, and it divides the randomized data into

training (70%) and testing (30%) datasets.

The key novelty of OEFA lies in its combination of

techniques to address the specific challenges of

stress classification and prediction. By integrating

data balancing, missing value handling, categorical

data transformation, feature selection, and

ensemble learning, OEFA aims to improve

classification accuracy, robustness, and

generalization capability. Some of the advantages of

the OEFA algorithm are:

 Improved accuracy: By addressing the

challenges of imbalanced datasets, missing values,

and categorical data, OEFA aims to enhance the

accuracy of stress classification and prediction

models.

 Enhanced generalization: The use of

ensemble learning and attribute selection helps to

reduce overfitting and improve the model's ability

to generalize to unseen data.

 Efficient feature selection: The

ReliefFAttributeEval algorithm with Ranker Search

efficiently selects relevant features, reducing

dimensionality and computational requirements.

 Robustness: By combining multiple base

classifiers, OEFA increases the robustness of the

model, making it less sensitive to variations in the

data.

 Applicability: OEFA can be applied to

various stress classification and prediction tasks,

allowing for broader utilization across different

domains and datasets.

 2205

2205

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

Algorithm 1 discussed proposed OEFA algorithm.

Algorithm 1: Optimized Ensemble Fusion

Algorithm (OEFA) for stress classification and

prediction

Input : Stress data (dataset with features and

target variable)

Output : Predicted stress levels for the testing

dataset

Step 1 : Load the stress data.

Step 2 : Remove instances with missing

values.

Step 3 : Convert categorical values to

numerical using label encoding.

Step 4 : Perform imbalanced to balanced

dataset conversion using the Cluster-

Based Adaptive Synthetic Sampling

(CBADAS) algorithm.// Algorithm 2

Step 5 : Normalize the data using Min-Max

normalization.

Step 6 : Perform attribute selection using the

ReliefFAttributeEval algorithm with

Ranker Search.

Step 7 : Randomize the data to ensure

randomness of the split.

Step 8 : Split the randomized data into

training (70%) and testing (30%)

datasets.

Step 9 : Create an AdaBoostM1 boosting

classifier with 8 optimized classifiers

as base classifiers (Logistic,

HoeffdingTree, LMT, REPTree, JRip,

OneR, PART, MultilayerPerceptron).

Step 10 : Train the AdaBoostM1 classifier using

the training dataset.

Step 11 : Use the trained AdaBoostM1 classifier

to predict stress levels in the testing

dataset.

The Optimized Ensemble Fusion Algorithm (OEFA)

for stress classification and prediction is outlined as

follows. Firstly, the stress data, consisting of

features and the target variable, is loaded (Step 1).

Instances with missing values are then removed

from the dataset (Step 2). Categorical values are

converted into numerical format using label

encoding (Step 3). To address imbalanced datasets,

the Cluster-Based Adaptive Synthetic Sampling

(CBADAS) algorithm is employed for imbalanced to

balanced dataset conversion (Step 4). Next, the data

is normalized using Min-Max normalization (Step 5).

Attribute selection is performed using the

ReliefFAttributeEval algorithm with Ranker Search

to identify the most informative features (Step 6).

To ensure randomness, the data is randomized

(Step 7), followed by splitting the randomized data

into training (70%) and testing (30%) datasets (Step

8). An AdaBoostM1 boosting classifier is created

with eight optimized classifiers as base classifiers,

including Logistic Regression, HoeffdingTree, LMT,

REPTree, JRip, OneR, PART, and

MultilayerPerceptron (Step 9). The AdaBoostM1

classifier is trained using the training dataset (Step

10). Finally, the trained AdaBoostM1 classifier is

utilized to predict stress levels in the testing dataset

(Step 11). This algorithm aims to optimize stress

classification and prediction by addressing data

preprocessing, feature selection, imbalanced

dataset handling, and leveraging ensemble learning

techniques.

3.1 Cluster-Based Adaptive Synthetic Sampling

(CBADAS) algorithm:

The Cluster-Based Adaptive Synthetic Sampling

(CBADAS) algorithm is an approach used for

converting imbalanced datasets into balanced

datasets. It aims to address the issue of class

imbalance, where one class has significantly fewer

instances compared to the other class (es).

Imbalanced datasets can pose challenges in various

machine learning tasks, such as classification, as

models tend to be biased towards the majority class

and perform poorly on the minority class.

The CBADAS algorithm is designed to overcome the

limitations of existing imbalanced data conversion

techniques by leveraging cluster-based sampling

and adaptive synthetic instance generation. It

combines the concepts of clustering and synthetic

sampling to create additional instances for the

minority class, thus balancing the dataset.

Algorithm 2 discusses the working process of

CBADAS algorithm.

Algorithm 2: Cluster-Based Adaptive Synthetic

Sampling (CBADAS) algorithm for imbalanced to

balanced dataset conversion

Input : Preprocessed Stress dataset file

Output : Oversampled data

Step 1 : Read the Preprocessed Stress dataset

 2206

2206

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

file and store the data in a List of

String arrays.

Step 2 : Remove outlier instances based on

the interquartile range:

a. For each attribute column in the

data:

i. Sort the attribute values in

ascending order.

ii. Calculate the first quartile

(Q1) and third quartile (Q3) values.

iii. Calculate the interquartile

range (IQR) as Q3 - Q1.

iv. Define the lower threshold

as Q1 - k * IQR and the upper

threshold as Q3 + k * IQR, where k is a

user-defined parameter (typically set

to 1.5 or 3).

v. Iterate through the

instances:

 If the value of the attribute

in the current instance is outside the

lower and upper thresholds, remove

the instance from the data.

Step 3 : Count the number of instances

belonging to the majority class.

Step 4 : Initialize an empty list to store unique

labels of the minority class.

Step 5 : Initialize an empty list to store

instances corresponding to the

unique labels of the minority class.

Step 6 : Iterate through the data and for each

instance:

a. If the instance's label is not the

majority label, and the label is not

already present in the list:

i. Add the label to the list of

unique labels.

ii. ii. Add the instance to the list

of instances corresponding to the

unique labels.

Step 7 : Create a new list and copy all

instances from the remaining data

into it.

Step 8 : For each unique label in the list of

unique labels, perform the following

steps:

a. Retrieve the corresponding

instance.

b. Count the number of instances

belonging to the current minority

class.

c. If the current label is not the

majority label and the minority count

is less than the majority count:

i. Calculate the difference

between the majority count and the

minority count.

ii. Repeat the following steps

countDifference times:

- Create an empty list,

cluster1, to store the results of k-

nearest neighbors.

- Create an empty list,

cluster2, to store the results of similar

instances.

- Find the k-nearest neighbors

for the current instance and add them

to cluster1.

- Find the similar instances for

the current instance and add them to

cluster2.

- Combine cluster1 and

cluster2 into a new list,

combinedCluster.

- Generate a synthetic

instance as follows:

- Initialize variables sum = 0

and numericCount = 0.

- For each neighbor in

combinedCluster:

- Retrieve the value of the

attribute at index i from the neighbor.

- If the value is numeric:

- Parse the value as a double

and add it to sum.

- Increment numericCount.

- Calculate the average by

dividing sum by numericCount.

- Calculate the difference

between the average and the value of

the current instance at index i.

- Generate a random gap

value using random.nextDouble().

- Compute the synthetic value

using the formula: syntheticValue =

currentValue + gap * difference.

- Convert the syntheticValue

to a string and assign it to

 2207

2207

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

syntheticInstance[i].

- Add the synthetic instance to

the new list.

Step 9 : Return the new list as the

Oversampled data.

The CBADAS algorithm follows a series of steps to

convert an imbalanced dataset into a balanced one.

Initially, the preprocessed stress dataset is read and

stored in a list of string arrays. The algorithm then

proceeds to remove outlier instances based on the

interquartile range. For each attribute column,

lower and upper thresholds are defined, and

instances falling outside these thresholds are

eliminated. The number of instances belonging to

the majority class is counted, while an empty list is

initialized to store the unique labels of the minority

class. Another empty list is created to hold instances

corresponding to these unique labels.

Subsequently, the algorithm iterates through the

data, examining each instance. If an instance's label

is neither the majority label nor already present in

the list of unique labels, it is added to the respective

lists. All remaining instances from the data are

copied into a new list. The algorithm then focuses

on each unique label in the list and performs the

following steps: the corresponding instance is

retrieved, the count of instances belonging to the

current minority class is determined, and if the

current label is not the majority label and the

minority count is lower than the majority count, the

difference between the two counts is calculated.

Within this context, the subsequent steps are

repeated countDifference times. For each

repetition, two empty lists, cluster1 and cluster2,

are created to store the results of k-nearest

neighbors and similar instances, respectively. The k-

nearest neighbors for the current instance are

identified and added to cluster1, while similar

instances are added to cluster2. Cluster1 and

cluster2 are then combined into a new list called

combinedCluster. To generate synthetic instances,

the algorithm calculates the average difference

between the attribute values of the current

instance and its neighbors in combinedCluster.

These differences are used to create synthetic

instances, which are added to the new list. Finally,

the algorithm returns the new list, which contains

the oversampled data, as the output.

The CBADAS algorithm can be used in scenarios

where imbalanced datasets are encountered, and

the goal is to improve the performance of machine

learning models by balancing the class distribution.

It can be applied in various domains, such as fraud

detection, medical diagnosis, and text classification,

where imbalanced data is prevalent.

One of the main advantages of the CBADAS

algorithm is outlier removal. By incorporating the

step of removing outlier instances based on the

interquartile range, the CBADAS algorithm helps in

improving the quality of the dataset before

oversampling. Removing outliers can be beneficial

as they can disproportionately influence the training

process and the performance of machine learning

models, especially in imbalanced datasets.

By eliminating outliers, the CBADAS algorithm

enhances the overall data quality and mitigates the

potential negative impact of outliers on the model's

learning process. This step contributes to reducing

the influence of noisy or erroneous data points,

leading to more reliable and robust oversampling

results.

Therefore, the advantage of outlier removal in the

CBADAS algorithm is that it promotes data integrity

and prepares a cleaner dataset for subsequent

oversampling, ensuring the synthetic instances

generated are based on a more accurate

representation of the underlying data distribution.

Other advantages of the CBADAS algorithm include:

 Ability to handle class imbalance

effectively by generating synthetic instances for the

minority class.

 Utilization of cluster-based sampling to

capture the underlying structure of the data,

resulting in more representative synthetic

instances.

 Adaptive synthetic instance generation

that takes into account the specific characteristics

of each minority class, leading to improved

performance.

Overall, the CBADAS algorithm is a valuable

technique for converting imbalanced datasets into

balanced datasets. It addresses the limitations of

existing approaches by leveraging clustering and

adaptive synthetic instance generation. The

algorithm is versatile and can be applied in various

domains to enhance the performance of machine

learning models when faced with imbalanced data.

 2208

2208

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

The CBADAS algorithm combines outlier removal,

label identification, and adaptive synthetic instance

generation to convert imbalanced datasets into

balanced ones. By following these steps, the

algorithm can effectively address the class

imbalance issue, produce representative synthetic

instances, and enhance the performance of

machine learning models in scenarios where

imbalanced data is encountered. Its advantages lie

in its ability to effectively handle class imbalance,

capture data structure through cluster-based

sampling, and generate representative synthetic

instances.

3.2 Optimized Logistic Regression:

Logistic Regression is a popular algorithm used for

binary classification problems. It models the

relationship between a set of input features and the

probability of a binary outcome using a logistic

function. The algorithm estimates coefficients for

each feature, which represent the influence of the

corresponding feature on the target variable.

During training, the algorithm adjusts these

coefficients using an optimization algorithm such as

gradient descent to minimize the logistic loss

function.

Optimized Logistic Regression proposed to improve

the performance and efficiency of the standard

Logistic Regression algorithm. Here's an explanation

of two parameters commonly used for optimizing

Logistic Regression:

 Batch Size: The batch size parameter

refers to the number of instances processed at each

iteration during the training phase. By setting an

appropriate batch size, the algorithm can process a

subset of instances at a time, rather than the entire

dataset. This approach can improve the efficiency

and memory usage of the algorithm. Instead of

updating the model after processing each instance

individually, batching allows for more efficient

computations by updating the model's parameters

based on accumulated gradients over a batch of

instances. It can also enable parallel processing,

which is especially beneficial when dealing with

large datasets.

 Number of Decimal Places: The number of

decimal places parameter controls the precision of

the coefficients or weights in the logistic regression

model. It determines the level of detail in the

representation of the coefficients and affects the

computational complexity of the algorithm. By

controlling the number of decimal places,

unnecessary precision can be eliminated, reducing

computational requirements and memory usage. It

helps strike a balance between computational

efficiency and maintaining an acceptable level of

accuracy in the model's coefficients.

Both of these parameters are used as optimization

techniques to improve the efficiency and

performance of logistic regression. The choice of an

appropriate batch size allows for efficient

processing and utilization of computational

resources. Controlling the number of decimal places

helps manage computational complexity and

memory requirements without sacrificing the

essential accuracy of the model. These

optimizations contribute to faster training times

and more efficient utilization of resources, making

logistic regression more practical and scalable for

real-world applications.

3.3 Optimized Hoeffding Tree:

The Hoeffding Tree is a decision tree algorithm that

is designed to handle large streams of data in an

incremental manner. It uses the Hoeffding bound to

determine when a split is statistically significant and

should be performed. This allows the tree to adapt

and make decisions quickly without requiring a full

pass over the data. The Hoeffding Tree is

particularly useful for handling streaming data or

situations where memory is limited.

Optimized Hoeffding Tree refers to the improved

version of the Hoeffding Tree algorithm achieved

through the use of specific parameters. Here's an

explanation of the parameters commonly used for

optimizing Hoeffding Tree:

 Grace Period: The grace period parameter

specifies the minimum number of instances

required before allowing the tree to split. It

provides a mechanism for accumulating enough

data to make a reliable decision on splitting. During

the grace period, the algorithm observes the

instances and collects statistics to evaluate whether

a split is necessary. By setting an appropriate grace

period, the algorithm can avoid premature splitting,

which can lead to overfitting on small subsets of

data. This parameter helps ensure that the tree only

splits when there is sufficient evidence to support a

reliable decision.

 2209

2209

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

 Split Confidence: The split confidence

parameter sets the threshold for controlling the

growth of the tree. It determines when to create

new branches based on the statistical significance of

attribute splits. When the confidence in the

statistical significance exceeds the specified

threshold, a split is made. This parameter allows the

algorithm to balance between creating more

complex trees to capture finer details in the data

and maintaining simplicity to avoid overfitting. By

adjusting the split confidence, the algorithm can

control the trade-off between model complexity

and generalization performance.

By optimizing the Hoeffding Tree algorithm using

these parameters, the algorithm can make more

informed decisions on when and how to split the

tree. This leads to improved performance and

efficiency by avoiding unnecessary splits and

reducing overfitting. Optimizing the grace period

and split confidence allows the algorithm to adapt

to the characteristics of the data and strike a

balance between capturing useful patterns and

avoiding excessive complexity. These optimizations

contribute to more accurate and reliable decision

trees, especially in scenarios with streaming data or

limited computational resources.

3.4 Optimized Logistic Model Trees:

Logistic Model Trees (LMT) is an algorithm that

combines decision trees and logistic regression. It

constructs a decision tree where each leaf node

represents a logistic regression model. It uses

information gain to determine the best splits and

builds a logistic regression model at each leaf. LMT

is capable of handling both numeric and categorical

features and provides interpretable models with the

benefits of decision trees and logistic regression.

Optimized Logistic Model Trees (LMT) refers to an

improved version of the algorithm achieved through

parameter optimization. Here's an explanation of

the parameters commonly used to optimize Logistic

Model Trees:

 Min Num Instances: This parameter sets

the minimum number of instances required for a

split in the tree. By specifying a minimum threshold,

the algorithm avoids overfitting by preventing the

creation of splits in regions with insufficient data.

This helps ensure that each split is based on a

reasonable amount of information, improving the

generalization ability of the tree.

 Batch Size: Similar to Logistic Regression,

using a batch size during training helps manage

computational resources and improves efficiency.

The batch size determines the number of instances

processed together during the training phase. By

processing instances in smaller batches, the

algorithm can reduce memory requirements and

enhance the efficiency of the training process.

 Fast Regression: Enabling fast regression in

LMT can speed up the training process. Fast

regression simplifies the regression algorithm used

in LMT, making it computationally more efficient.

This optimization is particularly useful when dealing

with large datasets or complex models where

training time is a concern.

 Number of Decimal Places: Controlling the

number of decimal places in the output of LMT

helps manage precision. By specifying the desired

level of precision, the algorithm can reduce

computational complexity and memory

requirements. This optimization ensures that the

model's coefficients and predictions are

represented with the appropriate level of accuracy

while maintaining efficiency.

By optimizing Logistic Model Trees using these

parameters, the algorithm can achieve better

performance and efficiency. Setting a minimum

number of instances for splitting helps prevent

overfitting, ensuring that splits are based on

sufficient data. Utilizing a batch size during training

and enabling fast regression improves

computational efficiency, allowing the algorithm to

handle large datasets more effectively. Controlling

the number of decimal places helps manage

precision without sacrificing computational

resources. These optimizations contribute to more

accurate and efficient Logistic Model Trees for

classification and prediction tasks.

3.5 Optimized Reduced Error Pruning Tree:

Reduced Error Pruning Tree (REP Tree) is a decision

tree algorithm that focuses on reducing the

classification error. It builds a decision tree by

recursively partitioning the data based on attribute

tests. During the construction process, REP Tree

uses reduced-error pruning to improve the

generalization ability of the tree. Pruning involves

removing branches that do not contribute

significantly to the accuracy of the tree.

 2210

2210

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

Optimized Reduced Error Pruning Tree (REP Tree)

refers to an improved version of the algorithm

achieved through parameter optimization. Here's

an explanation of the parameters commonly used

to optimize REP Tree:

 Min Num: This parameter specifies the

minimum number of instances required in a leaf

node of the tree. By setting a minimum threshold,

the algorithm prevents the tree from growing too

deep and overfitting the training data. It ensures

that a leaf node is created only if it contains a

sufficient number of instances, which helps control

the complexity of the tree and promotes better

generalization to unseen data.

 Max Depth: Setting the maximum depth

limits the depth or height of the tree. It determines

the maximum number of levels that the tree can

grow. By restricting the tree's complexity, the

algorithm avoids overfitting and reduces the risk of

memorizing noise or irrelevant patterns in the

training data. Controlling the depth of the tree

helps achieve a balance between model complexity

and generalization performance.

By optimizing the REP Tree using these parameters,

the algorithm can improve its performance and

generalization ability. Specifying a minimum

number of instances in a leaf prevents the tree from

growing excessively deep, ensuring that each leaf

contains sufficient data for accurate predictions.

Limiting the maximum depth of the tree helps

control its complexity and prevents overfitting,

leading to better generalization to unseen data.

These optimizations contribute to more reliable and

interpretable decision trees with improved

predictive accuracy.

3.6 Optimized JRip:

JRip is a rule-based classifier that constructs a set of

rules from the training data. It uses a combination

of RIPPER (Repeated Incremental Pruning to

Produce Error Reduction) and FOIL (First-Order

Inductive Learner) algorithms. JRip builds a series of

rules that cover the positive instances while

minimizing the number of rules and errors. It

employs techniques like rule pruning and rule

optimization to enhance its performance.

Optimized JRip refers to an improved version of the

JRip algorithm achieved through parameter

optimization. Here's an explanation of the

parameters commonly used to optimize JRip:

 Seed: Setting the seed value for

randomization ensures reproducibility of the

algorithm's results. By using the same seed, the

algorithm will generate the same random numbers,

leading to consistent model outcomes. This is useful

for replicating experiments or comparing different

models.

 Batch Size: Similar to other classifiers,

using a batch size during training helps manage

computational resources and improves efficiency.

By processing data in smaller batches, the algorithm

can handle large datasets more effectively, reducing

memory requirements and computational time.

 Folds: Specifying the number of folds for

cross-validation helps assess the algorithm's

performance and tune its parameters. Cross-

validation is a technique that involves dividing the

data into multiple subsets or folds for training and

evaluation. By testing the algorithm on different

subsets of the data, it provides a more robust

estimate of its performance and helps prevent

overfitting.

 Min No: Setting the minimum number of

instances in a rule helps control the complexity of

the generated rules. By specifying a minimum

threshold, the algorithm avoids creating rules based

on a small number of instances, which could lead to

overfitting. This parameter helps strike a balance

between rule complexity and model generalization.

 Number of Decimal Places: Controlling the

number of decimal places in the output helps

manage precision. By limiting the decimal places,

the algorithm reduces the complexity of the output

and makes it more interpretable. It also helps

manage computational resources by avoiding

excessive precision that may not be necessary for

the specific problem.

 Optimizations: Specifying the level of

optimizations allows adjusting the trade-off

between computational complexity and

classification accuracy. Different optimization

techniques can be employed to improve the

algorithm's performance, but they may come at the

cost of increased computational resources. This

parameter allows fine-tuning the optimization level

based on the specific requirements of the problem.

 Use Pruning: Enabling pruning helps

reduce the complexity of rules and prevent

overfitting. Pruning involves removing or simplifying

 2211

2211

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

rules that do not contribute significantly to the

model's performance. By pruning irrelevant or

redundant rules, the algorithm improves its

generalization ability and reduces the risk of

memorizing noise or outliers in the training data.

By optimizing JRip using these parameters, the

algorithm can improve its performance,

computational efficiency, and generalization ability.

The optimized version of JRip provides reproducible

results, handles large datasets more efficiently,

incorporates cross-validation for performance

assessment, controls rule complexity, manages

precision, optimizes computational resources, and

employs pruning to enhance the model's

interpretability and generalization.

3.7 Optimized OneR:

OneR is a simple and interpretable rule-based

algorithm for classification. It selects a single feature

(hence the name OneR) and creates a decision rule

based on the values of that feature. OneR evaluates

each feature by examining its predictive power and

chooses the feature with the lowest error rate. It is

particularly useful for quick and interpretable

insights into the data but may not capture complex

relationships.

Optimized OneR refers to an improved version of

the OneR algorithm achieved through parameter

optimization. Here's an explanation of the

parameters commonly used to optimize OneR:

 Batch Size: Similar to other classifiers,

using a batch size during training helps manage

computational resources and improves efficiency.

By processing data in smaller batches, the algorithm

can handle large datasets more effectively, reducing

memory requirements and computational time.

 Debug: Enabling debug mode provides

detailed output for better understanding and

analysis. When debug mode is activated, the

algorithm may provide additional information

during the training process, such as intermediate

results, decision rules, or performance metrics. This

can be helpful for diagnosing any issues,

understanding the rule generation process, or

gaining insights into the algorithm's behavior.

 Min Bucket Size: Setting the minimum

number of instances required in a bucket helps

control the granularity of the generated rules. OneR

algorithm operates by identifying the single most

informative attribute for classification and creating

a rule based on its values. By specifying the

minimum bucket size, the algorithm avoids creating

rules based on a small number of instances, which

could lead to overfitting. This parameter helps strike

a balance between rule complexity and model

generalization.

 Number of Decimal Places: Controlling the

number of decimal places in the output helps

manage precision. By limiting the decimal places,

the algorithm reduces the complexity of the output

and makes it more interpretable. It also helps

manage computational resources by avoiding

excessive precision that may not be necessary for

the specific problem.

By optimizing OneR using these parameters, the

algorithm can improve its performance,

computational efficiency, interpretability, and

generalization ability. The optimized version of

OneR leverages batch processing for efficient

training, enables debug mode for better analysis,

controls rule granularity, and manages precision in

the generated output. These optimizations enhance

the algorithm's capability to generate accurate and

interpretable decision rules for classification tasks.

3.8 Optimized Partial Decision Trees:

Partial Decision Trees (PART) is a rule-based

decision tree algorithm that creates partial decision

trees by selecting a subset of attributes to split on.

Unlike traditional decision trees, which explore all

possible attribute splits, PART focuses on finding the

most informative attributes. It constructs rules from

the resulting partial decision trees and uses

reduced-error pruning to improve the model's

generalization ability.

Optimized Partial Decision Trees refer to an

improved version of the Partial Decision Tree

algorithm achieved through parameter

optimization. Here's an explanation of the

parameters commonly used to optimize Partial

Decision Trees:

 Batch Size: Similar to other classifiers,

using a batch size during training helps manage

computational resources and improves efficiency.

By processing data in smaller batches, the algorithm

can handle large datasets more effectively, reducing

memory requirements and computational time.

 Binary Splits: Enabling binary splits for

attribute selection helps improve the efficiency and

quality of attribute selection. Binary splits consider

 2212

2212

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

two-way splits at each node, allowing the algorithm

to explore multiple attribute combinations

efficiently. This can lead to better attribute selection

and more accurate decision trees.

 Confidence Factor: Setting the confidence

factor determines the pruning strength and

prevents overfitting. The confidence factor is used

to determine when to prune branches from the

decision tree. A higher confidence factor results in

more aggressive pruning, simplifying the tree and

improving its generalization ability.

 Debug: Enabling debug mode provides

detailed output for better understanding and

analysis. Debug mode may provide additional

information during the training process, such as

intermediate results, tree structures, or

performance metrics. This can be helpful for

diagnosing issues, understanding the tree

construction process, or gaining insights into the

algorithm's behavior.

 Min NumObj: Specifying the minimum

number of instances required in a leaf helps control

overfitting and improves generalization. By setting a

minimum number of instances, the algorithm

avoids creating leaf nodes with very few instances,

which could lead to overfitting. This parameter

helps balance the complexity of the tree with its

ability to generalize well to unseen data.

 Number of Decimal Places: Controlling the

number of decimal places in the output helps

manage precision. By limiting the decimal places,

the algorithm reduces the complexity of the output

and makes it more interpretable. It also helps

manage computational resources by avoiding

excessive precision that may not be necessary for

the specific problem.

 Num Folds: Specifying the number of folds

for reduced-error pruning helps assess the

algorithm's performance and tune its parameters.

Reduced-error pruning is a technique used to

simplify the decision tree by iteratively removing

branches based on their performance on a

validation set. The number of folds determines how

the data is divided for pruning and helps ensure the

reliability of the pruning process.

 Reduced Error Pruning: Enabling reduced-

error pruning helps simplify the tree and improve

generalization. Reduced-error pruning is a

technique used to trim unnecessary branches from

the decision tree based on their performance on a

validation set. By removing branches that do not

contribute significantly to reducing errors, the

algorithm creates a simpler and more generalized

tree.

 Seed: Setting the seed value for

randomization ensures reproducibility. The seed

value is used to initialize the random number

generator, which introduces randomness into the

algorithm's operations. By setting a specific seed

value, the algorithm's randomization becomes

deterministic, leading to reproducible results.

 Unpruned: Setting whether to create an

unpruned tree provides flexibility in tree

construction. When the unpruned option is

enabled, the algorithm constructs a decision tree

without applying any pruning techniques. This can

be useful for scenarios where a more complex and

detailed tree structure is desired, even at the risk of

overfitting the training data.

 Use MDL Correction: Enabling the use of

minimum description length (MDL) correction helps

improve the quality of attribute selection. MDL

correction is a statistical approach that aims to find

the attribute that provides the best compression of

the data. By considering both the attribute's

predictive power and its complexity, MDL

correction helps select attributes that are

informative and parsimonious.

By optimizing Partial Decision Trees using these

parameters, the algorithm can improve its

performance, computational efficiency,

interpretability, and generalization ability. The

optimized version of Partial Decision Trees

leverages batch processing for efficient training,

enables binary splits for better attribute selection,

controls pruning strength, provides debug

information for analysis, manages precision,

assesses performance with cross-validation, applies

reduced-error pruning, ensures reproducibility,

offers flexibility in tree construction, and improves

attribute selection through MDL correction. These

optimizations enhance the algorithm's capability to

generate accurate and interpretable decision trees

for classification tasks.

3.9 Optimized Multilayer Perceptron:

Multilayer Perceptron (MLP) is a type of artificial

neural network with one or more hidden layers. It is

used for various machine learning tasks, including

 2213

2213

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

classification. MLP consists of interconnected

nodes, known as neurons, organized in layers. Each

neuron applies a nonlinear activation function to

the weighted sum of its inputs. MLPs can learn

complex patterns and relationships in the data and

are trained using backpropagation, an iterative

optimization algorithm.

The optimization parameters for each classifier are

designed to fine-tune their performance and

improve the overall stress classification and

prediction accuracy. Here's a detailed explanation

of why each optimization parameter is needed:

 Optimized Multilayer Perceptron (MLP)

refers to an improved version of the MLP algorithm

achieved through parameter optimization. Here's

an explanation of the parameters commonly used

to optimize MLP:

 Batch Size: Similar to other classifiers,

using a batch size during training helps manage

computational resources and improves efficiency.

By processing the training data in smaller batches

instead of individual instances, the algorithm can

leverage parallel processing and optimize memory

usage. This can lead to faster convergence and

more efficient training.

 Debug: Enabling debug mode provides

detailed output for better understanding and

analysis. Debug mode may provide additional

information during the training process, such as

intermediate results, weight updates, and

performance metrics. This can be helpful for

diagnosing issues, understanding the learning

process, and gaining insights into the behavior of

the network.

 Number of Decimal Places: Controlling the

number of decimal places in the output helps

manage precision. By limiting the decimal places in

the output, the algorithm reduces the complexity of

the results and makes them more interpretable.

Additionally, it helps manage computational

resources by avoiding excessive precision that may

not be necessary for the specific problem.

By optimizing these parameters and techniques, the

performance, convergence speed, and

generalization ability of the Multilayer Perceptron

can be improved, resulting in a more effective and

accurate neural network model.

3.10 AdaBoostM1:

The AdaBoostM1 algorithm is a boosting ensemble

method that combines multiple optimized

classifiers to improve the performance of stress

classification and prediction. Here's a detailed

explanation of how AdaBoostM1 works:

 Creating an Ensemble: The AdaBoostM1

algorithm starts by selecting a set of optimized

classifiers, such as Logistic Regression, Hoeffding

Tree, LMT, REP Tree, JRip, OneR, PART, and

Multilayer Perceptron. These classifiers have been

individually optimized to enhance their

performance on the given task.

 Setting Parameters: The AdaBoostM1

algorithm sets certain parameters to control the

ensemble construction process. In this case, it

specifies the number of iterations to 100. This

means that the algorithm will iteratively create 100

weak classifiers and combine them into the final

ensemble. Additionally, the seed value is set to 1 to

ensure reproducibility, meaning that the same

sequence of random numbers will be generated

each time the algorithm is run.

 Building the Ensemble: The AdaBoostM1

classifier is then built using the training data. During

the training phase, each weak classifier is trained on

a modified version of the training set. The

modification involves assigning higher weights to

the instances that were misclassified by the

previous weak classifiers, allowing subsequent weak

classifiers to focus on the harder-to-classify

instances.

 Combining Classifiers: As the training

progresses, the AdaBoostM1 algorithm assigns

weights to each weak classifier based on its

performance. More accurate classifiers are given

higher weights, indicating their importance in the

final ensemble. This way, the ensemble leverages

the strengths of each individual classifier, with more

emphasis on the classifiers that demonstrate better

performance.

 Testing Phase: Once the ensemble is built,

it is evaluated using the testing dataset. The trained

AdaBoostM1 classifier is used to classify the

instances in the testing dataset. The actual class

labels of the instances are compared with the

predicted class labels obtained from the ensemble.

The results, including instance details, actual class,

and predicted class, are printed to assess the

accuracy and performance of the ensemble.

 2214

2214

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

By incorporating multiple optimized classifiers

within the AdaBoostM1 ensemble, this algorithm

aims to overcome the limitations of individual

classifiers and improve the overall stress

classification and prediction performance. The

ensemble's ability to combine the strengths of

different classifiers can lead to better

generalization, robustness, and accuracy in stress

prediction tasks.

4. Experimental Results and Discussions

In this section, the experimental results and

discussions of an Optimized Ensemble Fusion

Algorithm (OEFA) specifically designed for stress

data analysis are presented. The algorithm was

implemented using Java and utilized two datasets:

Swell-EDA and WESAD-EDA. The Swell-EDA dataset

consists of 9,849 rows and 57 features, while the

WESAD-EDA dataset contains 3,395 rows and 49

features. To assess the algorithm's performance,

the accuracy, precision, recall, and F1-score of the

existing classifiers were compared. By conducting a

thorough analysis of the experimental results,

meaningful conclusions can be drawn and the

implications can be understood. The findings

highlight the effectiveness of the OEFA algorithm in

accurately classifying and predicting stress data.

In the context of a classifier, accuracy, precision,

recall, and F1-score serve as standard performance

metrics for evaluating the performance of machine

learning classifiers. Accuracy measures the

classifier's ability to correctly predict the total

number of instances. It is calculated by dividing the

number of correctly predicted instances by the total

number of predictions made, as shown in formula

(1):

Accuracy = (Number of Correct Predictions) /

(Total Number of Predictions)
(1)

Precision quantifies the classifier's accuracy in

predicting positive instances among the instances it

identifies as positive. It is determined by dividing

the number of true positive predictions by the sum

of true positive and false positive predictions, as

represented in formula (2):

Precision = (Number of True Positives) /

(Number of True Positives + Number of False

Positives)

(2)

Recall, also referred to as sensitivity or true positive

rate, gauges the classifier's ability to correctly

identify all positive instances in the dataset. It is

computed by dividing the number of true positive

predictions by the sum of true positive and false

negative predictions, as shown in formula (3):

Recall = (Number of True Positives) /

(Number of True Positives + Number of False

Negatives)

(3)

The F1-score is a measure that strikes a balance

between precision and recall. It is the harmonic

mean of precision and recall, providing a balanced

evaluation of the classifier's performance, as

illustrated in formula (4):

F1-score = 2 * (Precision * Recall) / (Precision

+ Recall)
(4)

These performance metrics, including accuracy,

precision, recall, and F1-score, are widely employed

for assessing the effectiveness of classifiers. They

offer valuable insights into how well the OEFA

algorithm performs in terms of stress data

classification and prediction.

Table 1 compares the performance of the proposed

OEFA algorithmwith existing classifiers namely

Optimized Logistic Regression (O-LR), Optimized

HoeffdingTree (O-HT), Optimized LMT (O-LMT),

Optimized REPTree (O-RT), Optimized JRip (O-JRip),

Optimized OneR (O-OneR), Optimized PART (O-

PART), and Optimized MultilayerPerceptron (O-

MLP)classifiers for the Swell-EDA dataset.

Table 1: Performance comparison of the Swell-EDA

dataset

Me

tric

s

O-

LR

O-

H

T

O-

L

M

T

O-

RT

O-

JR

ip

O-

O

ne

R

O-

P

A

RT

O-

M

LP

O

EF

A

Acc

ura

cy

89

.4

7

84

.2

1

84

.2

1

63

.1

6

94

.7

4

92

.1

1

97

.3

7

92

.1

1

98

.2

3

Pre

cisi

on

92

.1

1

85

.0

4

87

.5

9

63

.0

7

95

.4

9

93

.0

6

97

.5

7

93

.6

8

98

.3

5

Rec

all

89

.4

7

84

.2

1

84

.2

1

63

.1

6

94

.7

4

92

.1

1

97

.3

7

92

.1

1

97

.4

9

F1-

scor

e

90

.7

7

84

.6

2

85

.8

7

63

.1

1

95

.1

1

92

.5

8

97

.4

7

92

.8

9

97

.9

2

 2215

2215

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

Figure 1 visually represents the performance

comparison of the Swell-EDA dataset.

Figure 1: Performance comparison of the Swell-

EDA dataset

BothTable 1 and Figure 1 provide a comparison of

performance metrics for different algorithms using

Swell-EDA dataset: O-LR, O-HT, O-LMT, O-RT, O-

JRip, O-OneR, O-PART, O-MLP, and OEFA.Among

the algorithms, OEFA consistently demonstrates

superior performance across all metrics. It achieves

an Accuracy of 98.23%, the highest among all the

algorithms. Accuracy represents the overall

correctness of the predictions and indicates the

algorithm's ability to classify stress accurately.

OEFA also achieves high Precision (98.35%), which

measures the proportion of true positive

predictions among all positive predictions. A high

Precision indicates that the algorithm minimizes

false positive predictions, ensuring that the

identified cases of stress are indeed accurate.

The Recall score for OEFA is 97.49%, which

represents the proportion of true positive

predictions among all actual positive instances. A

high Recall indicates that the algorithm effectively

identifies the majority of stress cases without

missing many.

The F1-score for OEFA is 97.92%, which combines

Precision and Recall into a single metric. It provides

a balanced evaluation of the algorithm's

performance, considering both false positives and

false negatives. The high F1-score of OEFA

demonstrates its effectiveness in achieving both

high Precision and Recall simultaneously.

Overall, OEFA outperforms the other algorithms in

terms of Accuracy, Precision, Recall, and F1-score.

This suggests that OEFA has the ability to accurately

classify stress cases, minimize false positives, and

capture a significant proportion of stress instances.

The optimized ensemble fusion approach of OEFA,

which combines multiple models and incorporates

feature selection techniques, likely contributes to its

superior performance.

By integrating the strengths of multiple models and

optimizing their fusion, OEFA can capture a wider

range of stress patterns and enhance the overall

predictive accuracy. CBADAS creates synthetic cases

to balance the data for minority classes, improving

the model's ability to capture patterns from both

classes.Additionally, the use of feature selection

techniques helps in identifying the most relevant

and informative features, leading to improved

model performance. These factors collectively make

OEFA the best-performing algorithm among the

evaluated approaches in stress classification and

prediction.

Furthermore, Table 2 compares the performance of

the proposed OEFA algorithm with existing

classifiers namely O-LR, O-HT, O-LMT, O-RT, O-JRip,

O-OneR, O-PART, O-MLPclassifiers for the WESAD-

EDA dataset.

Table 2: Performance comparison of the WESAD-

EDAdataset

Me

tric

s

O-

LR

O-

H

T

O-

L

M

T

O-

RT

O-

JR

ip

O-

O

ne

R

O-

P

A

RT

O-

M

LP

O

EF

A

Acc

ura

cy

92

.3

1

94

.8

7

92

.3

1

51

.2

8

76

.9

2

89

.7

4

89

.7

4

97

.4

4

98

.0

5

Pre

cisi

on

93

.8

5

94

.8

7

92

.4

5

56

.3

4

78

.0

6

89

.8

1

89

.6

4

97

.6

3

97

.9

1

Rec

all

92

.3

1

94

.8

7

92

.3

1

51

.2

8

76

.9

2

89

.7

4

89

.7

4

97

.4

4

97

.6

3

F1-

scor

e

93

.0

7

94

.8

7

92

.3

8

53

.6

9

77

.4

9

89

.7

8

89

.6

9

97

.5

3

97

.7

7

Figure 2 visually represents the performance

comparison of the WESAD-EDA dataset.

0

20

40

60

80

100
O

-L
R

O
-R

T

O
-P

A
R

TV
a
lu

es
 (

in
 %

)

Classifiers

Accuracy

Precision

Recall

F1-score

0

20

40

60

80

100

O
-L

R

O
-O

n
eR

V
a
lu

es
 (

in
 %

)

Classifiers

Accurac

y

Precisio

n

Recall

F1-

score

 2216

2216

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

Figure 2: Performance comparison of the WESAD-

EDA dataset

The performance metrics for different algorithms

using the WESAD-EDA dataset, specifically O-LR, O-

HT, O-LMT, O-RT, O-JRip, O-OneR, O-PART, O-MLP,

and OEFA, are presented in Table 2 and Figure 2.

Among these algorithms, OEFA consistently

demonstrates superior performance across all

metrics.

OEFA achieves the highest Accuracy of 98.05%,

indicating its superior ability to accurately classify

stress instances. Accuracy represents the overall

correctness of predictions and reflects OEFA's

excellent performance in stress

classification.Furthermore, OEFA achieves a high

Precision of 97.91%, which measures the proportion

of true positive predictions among all positive

predictions. This indicates that OEFA minimizes false

positive predictions effectively, ensuring accurate

identification of stress cases.

OEFA also exhibits a Recall score of 97.63%,

representing the proportion of true positive

predictions among all actual positive instances. A

high Recall indicates that OEFA effectively identifies

the majority of stress cases without missing

many.The F1-score for OEFA is 97.77%, which

combines Precision and Recall into a single metric.

This score provides a balanced evaluation of OEFA's

performance, considering both false positives and

false negatives. The high F1-score demonstrates

OEFA's effectiveness in achieving both high

Precision and Recall simultaneously.

Overall, OEFA outperforms the other algorithms in

terms of Accuracy, Precision, Recall, and F1-score.

This suggests that OEFA accurately classifies stress

cases, minimizes false positives, and captures a

significant proportion of stress instances. The

superior performance of OEFA can be attributed to

its optimized ensemble fusion approach, which

combines multiple models and incorporates feature

selection techniques.

By leveraging the strengths of multiple models and

optimizing their fusion, OEFA can capture a wider

range of stress patterns and enhance overall

predictive accuracy. CBADAS generates synthetic

instances for the minority class to balance the data,

improving the model's ability to capture patterns

from both classes.Additionally, the use of feature

selection techniques helps in identifying the most

relevant and informative features, leading to

improved model performance.Collectively, these

factors make OEFA the best-performing algorithm

among the evaluated approaches for stress

classification and prediction.

5. Conclusion

In conclusion, this paper addresses the significant

issue of stress classification and prediction in

modern society. Existing techniques for stress

assessment suffer from various limitations, such as

imbalanced datasets, missing values, categorical

data, lack of feature selection, and limited model

diversity. To overcome these challenges, the paper

proposes an Optimized Ensemble Fusion Algorithm

(OEFA) that combines multiple techniques to

enhance accuracy and improve generalization

capability.The OEFA algorithm incorporates several

innovative approaches to tackle the limitations of

existing methods. First, it employs the Cluster-Based

Adaptive Synthetic Sampling (CBADAS) algorithm to

balance imbalanced datasets by generating

synthetic instances for the minority class. By

addressing the issue of class imbalance, the

algorithm ensures that stress levels are accurately

classified across different groups.Additionally,

missing values are handled by removing instances

with missing data, ensuring that only complete data

is used for training and testing. This approach

guarantees the reliability and validity of the stress

classification and prediction process.Furthermore,

the OEFA algorithm transforms categorical data into

a numerical format using label encoding, enabling

the utilization of traditional machine learning

algorithms. This conversion expands the range of

applicable models and enhances the algorithm's

 2217

2217

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

effectiveness in stress assessment.To improve

computational efficiency and reduce

dimensionality, attribute selection is performed

using the ReliefFAttributeEval algorithm with

Ranker Search. This process selects the most

informative features, contributing to enhanced

accuracy and reduced computational

requirements.Importantly, the OEFA algorithm

leverages ensemble learning with the AdaBoostM1

algorithm, combining optimized versions of various

base classifiers, including Logistic Regression,

HoeffdingTree, LMT, REPTree, JRip, OneR, PART,

and MultilayerPerceptron. By incorporating a

diverse set of base classifiers, the algorithm

demonstrates robustness and mitigates overfitting,

leading to more reliable stress classification and

prediction results.Experimental results validate the

superiority of the OEFA algorithm, showcasing its

highest accuracy, precision, recall, and F1-score

compared to existing techniques. The advantages of

OEFA include improved accuracy through

addressing imbalanced datasets, missing values,

and categorical data. Furthermore, the algorithm

enhances generalization capability, mitigates

overfitting, and demonstrates robustness by

combining multiple base classifiers. Finally, efficient

feature selection is achieved using

ReliefFAttributeEval with Ranker Search, resulting in

reduced dimensionality and computational

requirements.

The OEFA algorithm holds promise for application in

various domains, including Healthcare, Financial

Risk Assessment, Customer Behavior Analysis,

Environmental Monitoring, Human Activity

Recognition, and Sentiment Analysis, in the future.

References

[1] Priya, A., Garg, S., &Tigga, N. P. (2020).

Predicting anxiety, depression and stress in

modern life using machine learning algorithms.

Procedia Computer Science, 167, 1258-1267.

[2] Flesia, L., Monaro, M., Mazza, C., Fietta, V.,

Colicino, E., Segatto, B., & Roma, P. (2020).

Predicting perceived stress related to the

Covid-19 outbreak through stable psychological

traits and machine learning models. Journal of

clinical medicine, 9(10), 3350.

[3] Ahuja, R., &Banga, A. (2019). Mental stress

detection in university students using machine

learning algorithms. Procedia Computer

Science, 152, 349-353.

[4] Gedam, S., & Paul, S. (2021). A review on

mental stress detection using wearable sensors

and machine learning techniques. IEEE Access,

9, 84045-84066.

[5] Katmah, R., Al-Shargie, F., Tariq, U., Babiloni, F.,

Al-Mughairbi, F., & Al-Nashash, H. (2021). A

review on mental stress assessment methods

using EEG signals. Sensors, 21(15), 5043.

[6] Majid, M., Arsalan, A., & Anwar, S. M. (2022). A

Multimodal Perceived Stress Classification

Framework using Wearable Physiological

Sensors. arXiv preprint arXiv:2206.10846.

[7] Kumar, P., Garg, S., & Garg, A. (2020).

Assessment of anxiety, depression and stress

using machine learning models. Procedia

Computer Science, 171, 1989-1998.

[8] Shafiee, N. S. M., &Mutalib, S. (2020).

Prediction of mental health problems among

higher education student using machine

learning. International Journal of Education and

Management Engineering (IJEME), 10(6), 1-9.

[9] Chiong, R., Budhi, G. S., Dhakal, S., &Chiong, F.

(2021). A textual-based featuring approach for

depression detection using machine learning

classifiers and social media texts. Computers in

Biology and Medicine, 135, 104499.

[10] Shin, D., Lee, K. J., Adeluwa, T., &Hur, J. (2020).

Machine learning-based predictive modeling of

postpartum depression. Journal of Clinical

Medicine, 9(9), 2899.

[11] Choudhury, A. A., Khan, M. R. H., Nahim, N. Z.,

Tulon, S. R., Islam, S., &Chakrabarty, A. (2019,

June). Predicting depression in Bangladeshi

undergraduates using machine learning. In

2019 IEEE Region 10 Symposium (TENSYMP)

(pp. 789-794). IEEE.

[12] Andersson, S., Bathula, D. R., Iliadis, S. I.,

Walter, M., &Skalkidou, A. (2021). Predicting

women with depressive symptoms postpartum

with machine learning methods. Scientific

reports, 11(1), 1-15.

[13] Baek, J. W., & Chung, K. (2020). Context deep

neural network model for predicting

depression risk using multiple regression. IEEE

Access, 8, 18171-18181.

[14] Zakaria, C., Balan, R., & Lee, Y. (2019).

StressMon: Scalable detection of perceived

 2218

2218

Vol 44 No. 8
August 2023

Journal of Harbin Engineering University
ISSN: 1006-7043

stress and depression using passive sensing of

changes in work routines and group

interactions. Proceedings of the ACM on

Human-Computer Interaction, 3(CSCW), 1-29.

[15] Mumu, T. F., Munni, I. J., & Das, A. K. (2021).

Depressed people detection from bangla social

media status using lstm and cnn approach.

Journal of Engineering Advancements, 2(01),

41-47.

