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Abstract:-Stress is a prevalent issue in modern society, leading to various adverse effects on individuals' mental 

and physical well-being. Accurate classification and prediction of stress levels are crucial for effective intervention 

and support. However, existing stress classification and prediction techniques suffer from several disadvantages, 

including imbalanced datasets, missing values, categorical data, lack of feature selection, and limited model 

diversity. To address these challenges, this paper proposes an Optimized Ensemble Fusion Algorithm (OEFA) for 

stress classification and prediction. The OEFA algorithm combines multiple techniques to overcome the 

limitations of existing approaches. It employs the Cluster-Based Adaptive Synthetic Sampling (CBADAS) algorithm 

to balance imbalanced datasets, generating synthetic instances for the minority class. Missing values are handled 

by removing instances with missing data, ensuring only complete data is used for training and testing. Categorical 

data is transformed into numerical format using label encoding, enabling the use of traditional machine learning 

algorithms. Attribute selection is performed using the ReliefFAttributeEval algorithm with Ranker Search, 

reducing dimensionality and improving computational efficiency. Furthermore, OEFA leverages ensemble 

learning with the AdaBoostM1 algorithm, incorporating optimized versions of Logistic Regression, HoeffdingTree, 

LMT, REPTree, JRip, OneR, PART, and MultilayerPerceptron as base classifiers. Experimental results demonstrate 

the superiority of the OEFA algorithm, exhibiting the highest accuracy, precision, recall, and F1-score compared to 

existing techniques. The advantages of OEFA include improved accuracy through addressing imbalanced datasets, 

missing values, and categorical data. The algorithm enhances generalization capability, mitigates overfitting, and 

demonstrates robustness by combining multiple base classifiers. Efficient feature selection is achieved using 

ReliefFAttributeEval with Ranker Search, contributing to reduced dimensionality and computational 

requirements. 
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1. Introduction 

Stress is a prevalent issue affecting individuals 

across various domains, including healthcare, 

psychology, and human resources [1]. The ability to 

accurately classify and predict stress levels is crucial 

for early detection, intervention, and personalized 

treatment [2]. In recent years, machine learning 

techniques have shown promise in this area, 

enabling the development of automated systems to 

assist in stress assessment [3]. However, existing 

stress classification and prediction algorithms have 

certain limitations that hinder their effectiveness. 

Existing stress classification and prediction 

techniques often face challenges such as 

imbalanced datasets, missing values, categorical 

data, lack of feature selection, and limited model 

diversity [4], [5]. Imbalanced datasets, where one 

class significantly outnumbers the other, can lead to 

biased models that perform poorly on the minority 

class. Additionally, stress datasets frequently 

contain missing values, creating challenges during 

data preprocessing and model training. Traditional 

machine learning algorithms require numerical 

inputs, necessitating the transformation of 

categorical data. Some algorithms lack a feature 

selection step, resulting in suboptimal performance 

and increased computational requirements. 

Furthermore, single models may not capture the full 

complexity of stress data, leading to lower 

predictive accuracy. 

To address these challenges, this paper proposes an 

Optimized Ensemble Fusion Algorithm (OEFA) for 

stress classification and prediction. The primary 

objective of OEFA is to improve upon existing 

algorithms by leveraging ensemble learning 

techniques and addressing their inherent 

disadvantages. OEFA integrates multiple strategies 
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to overcome the limitations of imbalanced datasets, 

missing values, categorical data, lack of feature 

selection, and limited model diversity. 

The key contributions of this paper are as follows: 

 Balanced dataset conversion: OEFA employs the 

Cluster-Based Adaptive Synthetic Sampling 

(CBADAS) algorithm to generate synthetic 

instances and balance imbalanced datasets, 

ensuring improved representation of all classes. 

 Missing value handling: OEFA includes a step to 

remove instances with missing values, allowing 

for the use of complete data during training and 

testing. 

 Categorical data transformation: OEFA performs 

label encoding to convert categorical values into 

numerical representations, facilitating the 

utilization of traditional machine learning 

algorithms. 

 Attribute selection: OEFA applies the 

ReliefFAttributeEval algorithm with Ranker Search 

to select the most informative features, reducing 

dimensionality and enhancing model efficiency. 

 Ensemble learning: OEFA utilizes ensemble 

learning through the AdaBoostM1 algorithm, 

combining multiple optimized base classifiers to 

create a stronger and more robust stress 

classification model. 

 Experimental evaluation: Extensive experiments 

are conducted to evaluate the performance of 

the proposed OEFA algorithm, comparing it with 

state-of-the-art methods on various stress 

classification and prediction datasets. 

   The aim of this study is to address the limitations 

of existing stress classification and prediction 

techniques and propose an optimized algorithm 

to improve classification accuracy, robustness, 

and generalization capability. The OEFA algorithm 

aims to enhance stress classification models' 

accuracy by addressing the challenges of 

imbalanced datasets, missing values, and 

categorical data. Additionally, the use of 

ensemble learning and attribute selection 

techniques reduces overfitting, improves 

generalization to unseen data, and enhances 

computational efficiency. 

The remainder of this paper is organized as follows. 

Section 2 provides a comprehensive review of 

related works in stress classification and prediction. 

Section 3 presents the proposed Optimized 

Ensemble Fusion Algorithm (OEFA) in detail. Section 

4 describes the experimental setup, including 

datasets, evaluation metrics, experimental results 

and performance comparison with existing 

methods. Finally, Section 5 concludes the paper and 

outlines potential future research directions in the 

field of stress classification and prediction. 

 

2. Related Works 

This section provides a comprehensive review of 

existing works in the field of stress classification and 

prediction. Stress assessment and prediction have 

garnered significant attention in recent years due to 

their potential impact on individuals' well-being and 

the effectiveness of interventions. Various machine 

learning and data mining techniques have been 

employed to develop models for stress classification 

and prediction. 

Majid et al. [6] proposed a multimodal perceived 

stress classification framework using wearable 

physiological sensors. The approach leverages 

physiological data from wearable sensors to classify 

stress levels. The advantage of this approach lies in 

its ability to capture real-time physiological 

responses. However, a limitation of this method is 

the reliance on specialized sensors, which may not 

be easily accessible or feasible for widespread 

implementation. 

Kumar et al. [7] presented an assessment of anxiety, 

depression, and stress using machine learning 

models. The study utilizes machine learning 

algorithms to classify stress levels based on self-

reported data. The advantage of this approach is its 

simplicity and ease of data collection. However, 

self-report data may be subject to biases and 

inaccuracies, leading to potential limitations in 

accuracy and reliability. 

Shafiee et al. [8] focused on predicting mental 

health problems among higher education students 

using machine learning. The approach utilizes 

various machine learning techniques to predict 

mental health problems based on academic and 

personal information. The advantage of this 

approach is its potential for early identification and 

intervention. However, the reliance on self-

reported data and the limited scope of features may 

affect the generalizability of the model. 

Chiong et al. [9] proposed a textual-based approach 

for depression detection using machine learning 
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classifiers and social media texts. The study 

leverages natural language processing techniques to 

analyze social media texts and classify individuals 

based on their depressive tendencies. The 

advantage of this approach is its potential for large-

scale data analysis. However, the challenge lies in 

effectively extracting meaningful features from 

unstructured text data, and the reliance on social 

media data may introduce biases. 

Shin et al. [10] presented a machine learning-based 

predictive modeling of postpartum depression. The 

approach utilizes machine learning algorithms to 

predict the risk of postpartum depression based on 

various factors. The advantage of this approach is its 

potential for early identification and targeted 

intervention for at-risk individuals. However, the 

limitation lies in the need for comprehensive and 

accurate data collection related to postpartum 

factors. 

Choudhury et al. [11] focused on predicting 

depression in Bangladeshi undergraduates using 

machine learning. The study employed machine 

learning techniques to predict depression levels 

based on demographic and behavioral factors. The 

advantage lies in its potential for early identification 

and intervention in the university setting. However, 

the reliance on self-reported data and the limited 

demographic scope may affect the generalizability 

of the model. 

Andersson et al. [12] proposed predictive models 

for women with depressive symptoms postpartum 

using machine learning methods. The study utilizes 

machine learning algorithms to predict depressive 

symptoms in women after childbirth based on 

various factors. The advantage lies in its potential 

for personalized intervention and support. 

However, the limitation lies in the need for accurate 

and comprehensive data collection related to 

postpartum factors. 

Baek et al. [13] proposed a context deep neural 

network model for predicting depression risk using 

multiple regression. The study leverages deep 

learning techniques to predict depression risk based 

on contextual information. The advantage of this 

approach is its ability to capture complex contextual 

relationships. However, the limitation lies in the 

interpretability and potential bias of deep learning 

models. 

Zakaria et al. [14] presented StressMon, a scalable 

detection system for perceived stress and 

depression using passive sensing of changes in work 

routines and group interactions. The approach 

utilizes passive sensing techniques to detect stress 

and depression based on changes in work routines 

and group interactions. The advantage lies in its 

unobtrusive nature and real-time monitoring. 

However, the limitation lies in the need for access 

to sensitive data and potential privacy concerns. 

Mumu et al. [15] proposed a depressed people 

detection approach from Bangla social media status 

using LSTM and CNN. The study utilizes deep 

learning techniques to detect individuals with 

depressive tendencies based on their social media 

status. The advantage of this approach is its 

potential for analyzing large amounts of textual 

data. However, the limitation lies in the language 

specificity and potential bias of social media data. 

While these approaches offer valuable insights into 

stress classification and prediction, they also have 

certain limitations. Challenges include imbalanced 

datasets, missing values, categorical data, lack of 

feature selection, and limited model diversity. 

Imbalanced datasets can lead to biased models with 

poor performance on minority classes, while 

missing values pose challenges during data 

preprocessing and model training. The 

transformation of categorical data into numerical 

inputs may be required for certain algorithms, and 

the lack of feature selection can result in suboptimal 

performance and increased computational 

requirements. Additionally, single models may 

struggle to capture the full complexity of stress 

data, leading to lower predictive accuracy. 

To address these challenges, our proposed 

Optimized Ensemble Fusion Algorithm (OEFA) aims 

to overcome the limitations of existing approaches. 

OEFA leverages an ensemble of diverse models to 

capture a wider range of stress patterns and 

incorporates feature selection techniques to 

enhance model performance. By optimizing the 

fusion of multiple models, OEFA aims to improve 

the accuracy and robustness of stress classification 

and prediction. Furthermore, OEFA is designed to 

handle imbalanced datasets, missing values, and 

categorical data effectively, ensuring reliable and 

accurate stress assessment. 
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Through the integration of these advancements, 

OEFA aims to offer a promising solution to the 

challenges faced by existing stress classification and 

prediction techniques, ultimately contributing to 

improved mental health assessment and 

intervention. 

 

3. An Optimized Ensemble Fusion Algorithm 

This section designed an Optimized Ensemble 

Fusion Algorithm (OEFA) for stress classification and 

prediction tasks. It aims to improve upon the 

existing algorithms used for stress classification by 

addressing their disadvantages and leveraging 

ensemble learning techniques. The disadvantages 

commonly associated with existing stress 

classification and prediction algorithms: 

 Imbalanced datasets: Many real-world 

stress datasets suffer from class imbalance, where 

the number of instances in one class is significantly 

higher than the other. This can lead to biased 

models that perform poorly on the minority class. 

 Missing values: Stress datasets often 

contain missing values, which can create challenges 

during data preprocessing and model training. 

 Categorical data: Traditional machine 

learning algorithms typically require numerical 

inputs, so categorical data needs to be transformed 

into a numerical format before training. 

 Lack of feature selection: Some algorithms 

do not include a feature selection step, which can 

lead to suboptimal performance and increased 

computational requirements. 

 Limited model diversity: Single models 

may not capture the full complexity of stress data, 

leading to lower predictive accuracy. 

The reasons for developing the OEFA algorithm to 

address these disadvantages are: 

 Balanced dataset conversion: OEFA 

employs the Cluster-Based Adaptive Synthetic 

Sampling (CBADAS) algorithm to address the issue 

of imbalanced datasets. CBADAS generates 

synthetic instances for the minority class to balance 

the data, improving the model's ability to capture 

patterns from both classes. 

 Missing value handling: OEFA includes a 

step to remove instances with missing values, 

ensuring that only complete data is used for training 

and testing. 

 Categorical data transformation: OEFA 

performs label encoding to convert categorical 

values into numerical representations, enabling the 

use of traditional machine learning algorithms. 

 Attribute selection: OEFA applies the 

ReliefFAttributeEval algorithm with Ranker Search 

to select the most informative features, reducing 

dimensionality and enhancing model efficiency. 

 Ensemble learning: OEFA employs 

ensemble learning using the AdaBoostM1 

algorithm, combining multiple base classifiers to 

create a stronger and more robust model. The base 

classifiers used in OEFA include optimized version of 

Logistic Regression, HoeffdingTree, LMT, REPTree, 

JRip, OneR, PART, and MultilayerPerceptron. 

 Randomization and splitting: OEFA 

randomizes the data to ensure the randomness of 

the split, and it divides the randomized data into 

training (70%) and testing (30%) datasets. 

The key novelty of OEFA lies in its combination of 

techniques to address the specific challenges of 

stress classification and prediction. By integrating 

data balancing, missing value handling, categorical 

data transformation, feature selection, and 

ensemble learning, OEFA aims to improve 

classification accuracy, robustness, and 

generalization capability. Some of the advantages of 

the OEFA algorithm are: 

 Improved accuracy: By addressing the 

challenges of imbalanced datasets, missing values, 

and categorical data, OEFA aims to enhance the 

accuracy of stress classification and prediction 

models. 

 Enhanced generalization: The use of 

ensemble learning and attribute selection helps to 

reduce overfitting and improve the model's ability 

to generalize to unseen data. 

 Efficient feature selection: The 

ReliefFAttributeEval algorithm with Ranker Search 

efficiently selects relevant features, reducing 

dimensionality and computational requirements. 

 Robustness: By combining multiple base 

classifiers, OEFA increases the robustness of the 

model, making it less sensitive to variations in the 

data. 

 Applicability: OEFA can be applied to 

various stress classification and prediction tasks, 

allowing for broader utilization across different 

domains and datasets. 
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Algorithm 1 discussed proposed OEFA algorithm. 

 

Algorithm 1: Optimized Ensemble Fusion 

Algorithm (OEFA) for stress classification and 

prediction 

Input : Stress data (dataset with features and 

target variable) 

Output : Predicted stress levels for the testing 

dataset 

Step 1 : Load the stress data. 

Step 2 : Remove instances with missing 

values. 

Step 3 : Convert categorical values to 

numerical using label encoding. 

Step 4 : Perform imbalanced to balanced 

dataset conversion using the Cluster-

Based Adaptive Synthetic Sampling 

(CBADAS) algorithm.// Algorithm 2 

Step 5 : Normalize the data using Min-Max 

normalization. 

Step 6 : Perform attribute selection using the 

ReliefFAttributeEval algorithm with 

Ranker Search. 

Step 7 : Randomize the data to ensure 

randomness of the split. 

Step 8 : Split the randomized data into 

training (70%) and testing (30%) 

datasets. 

Step 9 : Create an AdaBoostM1 boosting 

classifier with 8 optimized classifiers 

as base classifiers (Logistic, 

HoeffdingTree, LMT, REPTree, JRip, 

OneR, PART, MultilayerPerceptron). 

Step 10 : Train the AdaBoostM1 classifier using 

the training dataset. 

Step 11 : Use the trained AdaBoostM1 classifier 

to predict stress levels in the testing 

dataset. 

 

The Optimized Ensemble Fusion Algorithm (OEFA) 

for stress classification and prediction is outlined as 

follows. Firstly, the stress data, consisting of 

features and the target variable, is loaded (Step 1). 

Instances with missing values are then removed 

from the dataset (Step 2). Categorical values are 

converted into numerical format using label 

encoding (Step 3). To address imbalanced datasets, 

the Cluster-Based Adaptive Synthetic Sampling 

(CBADAS) algorithm is employed for imbalanced to 

balanced dataset conversion (Step 4). Next, the data 

is normalized using Min-Max normalization (Step 5). 

Attribute selection is performed using the 

ReliefFAttributeEval algorithm with Ranker Search 

to identify the most informative features (Step 6). 

To ensure randomness, the data is randomized 

(Step 7), followed by splitting the randomized data 

into training (70%) and testing (30%) datasets (Step 

8). An AdaBoostM1 boosting classifier is created 

with eight optimized classifiers as base classifiers, 

including Logistic Regression, HoeffdingTree, LMT, 

REPTree, JRip, OneR, PART, and 

MultilayerPerceptron (Step 9). The AdaBoostM1 

classifier is trained using the training dataset (Step 

10). Finally, the trained AdaBoostM1 classifier is 

utilized to predict stress levels in the testing dataset 

(Step 11). This algorithm aims to optimize stress 

classification and prediction by addressing data 

preprocessing, feature selection, imbalanced 

dataset handling, and leveraging ensemble learning 

techniques. 

3.1 Cluster-Based Adaptive Synthetic Sampling 

(CBADAS) algorithm: 

The Cluster-Based Adaptive Synthetic Sampling 

(CBADAS) algorithm is an approach used for 

converting imbalanced datasets into balanced 

datasets. It aims to address the issue of class 

imbalance, where one class has significantly fewer 

instances compared to the other class (es). 

Imbalanced datasets can pose challenges in various 

machine learning tasks, such as classification, as 

models tend to be biased towards the majority class 

and perform poorly on the minority class. 

The CBADAS algorithm is designed to overcome the 

limitations of existing imbalanced data conversion 

techniques by leveraging cluster-based sampling 

and adaptive synthetic instance generation. It 

combines the concepts of clustering and synthetic 

sampling to create additional instances for the 

minority class, thus balancing the dataset. 

Algorithm 2 discusses the working process of 

CBADAS algorithm. 

  

Algorithm 2: Cluster-Based Adaptive Synthetic 

Sampling (CBADAS) algorithm for imbalanced to 

balanced dataset conversion 

Input : Preprocessed Stress dataset file 

Output : Oversampled data 

Step 1 : Read the Preprocessed Stress dataset 
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file and store the data in a List of 

String arrays. 

Step 2 : Remove outlier instances based on 

the interquartile range: 

a. For each attribute column in the 

data: 

i. Sort the attribute values in 

ascending order. 

ii. Calculate the first quartile 

(Q1) and third quartile (Q3) values. 

iii. Calculate the interquartile 

range (IQR) as Q3 - Q1. 

iv. Define the lower threshold 

as Q1 - k * IQR and the upper 

threshold as Q3 + k * IQR, where k is a 

user-defined parameter (typically set 

to 1.5 or 3). 

v. Iterate through the 

instances: 

 If the value of the attribute 

in the current instance is outside the 

lower and upper thresholds, remove 

the instance from the data. 

Step 3 : Count the number of instances 

belonging to the majority class. 

Step 4 : Initialize an empty list to store unique 

labels of the minority class. 

Step 5 : Initialize an empty list to store 

instances corresponding to the 

unique labels of the minority class. 

Step 6 : Iterate through the data and for each 

instance: 

a. If the instance's label is not the 

majority label, and the label is not 

already present in the list: 

i. Add the label to the list of 

unique labels. 

ii. ii. Add the instance to the list 

of instances corresponding to the 

unique labels. 

Step 7 : Create a new list and copy all 

instances from the remaining data 

into it. 

Step 8 : For each unique label in the list of 

unique labels, perform the following 

steps: 

a. Retrieve the corresponding 

instance. 

b. Count the number of instances 

belonging to the current minority 

class. 

c. If the current label is not the 

majority label and the minority count 

is less than the majority count: 

i. Calculate the difference 

between the majority count and the 

minority count. 

ii. Repeat the following steps 

countDifference times: 

- Create an empty list, 

cluster1, to store the results of k-

nearest neighbors. 

- Create an empty list, 

cluster2, to store the results of similar 

instances. 

- Find the k-nearest neighbors 

for the current instance and add them 

to cluster1. 

- Find the similar instances for 

the current instance and add them to 

cluster2. 

- Combine cluster1 and 

cluster2 into a new list, 

combinedCluster. 

- Generate a synthetic 

instance as follows: 

- Initialize variables sum = 0 

and numericCount = 0. 

- For each neighbor in 

combinedCluster: 

- Retrieve the value of the 

attribute at index i from the neighbor. 

- If the value is numeric: 

- Parse the value as a double 

and add it to sum. 

- Increment numericCount. 

- Calculate the average by 

dividing sum by numericCount. 

- Calculate the difference 

between the average and the value of 

the current instance at index i. 

- Generate a random gap 

value using random.nextDouble(). 

- Compute the synthetic value 

using the formula: syntheticValue = 

currentValue + gap * difference. 

- Convert the syntheticValue 

to a string and assign it to 
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syntheticInstance[i]. 

- Add the synthetic instance to 

the new list. 

Step 9 : Return the new list as the 

Oversampled data. 

 

The CBADAS algorithm follows a series of steps to 

convert an imbalanced dataset into a balanced one. 

Initially, the preprocessed stress dataset is read and 

stored in a list of string arrays. The algorithm then 

proceeds to remove outlier instances based on the 

interquartile range. For each attribute column, 

lower and upper thresholds are defined, and 

instances falling outside these thresholds are 

eliminated. The number of instances belonging to 

the majority class is counted, while an empty list is 

initialized to store the unique labels of the minority 

class. Another empty list is created to hold instances 

corresponding to these unique labels. 

Subsequently, the algorithm iterates through the 

data, examining each instance. If an instance's label 

is neither the majority label nor already present in 

the list of unique labels, it is added to the respective 

lists. All remaining instances from the data are 

copied into a new list. The algorithm then focuses 

on each unique label in the list and performs the 

following steps: the corresponding instance is 

retrieved, the count of instances belonging to the 

current minority class is determined, and if the 

current label is not the majority label and the 

minority count is lower than the majority count, the 

difference between the two counts is calculated. 

Within this context, the subsequent steps are 

repeated countDifference times. For each 

repetition, two empty lists, cluster1 and cluster2, 

are created to store the results of k-nearest 

neighbors and similar instances, respectively. The k-

nearest neighbors for the current instance are 

identified and added to cluster1, while similar 

instances are added to cluster2. Cluster1 and 

cluster2 are then combined into a new list called 

combinedCluster. To generate synthetic instances, 

the algorithm calculates the average difference 

between the attribute values of the current 

instance and its neighbors in combinedCluster. 

These differences are used to create synthetic 

instances, which are added to the new list. Finally, 

the algorithm returns the new list, which contains 

the oversampled data, as the output. 

The CBADAS algorithm can be used in scenarios 

where imbalanced datasets are encountered, and 

the goal is to improve the performance of machine 

learning models by balancing the class distribution. 

It can be applied in various domains, such as fraud 

detection, medical diagnosis, and text classification, 

where imbalanced data is prevalent. 

One of the main advantages of the CBADAS 

algorithm is outlier removal. By incorporating the 

step of removing outlier instances based on the 

interquartile range, the CBADAS algorithm helps in 

improving the quality of the dataset before 

oversampling. Removing outliers can be beneficial 

as they can disproportionately influence the training 

process and the performance of machine learning 

models, especially in imbalanced datasets. 

By eliminating outliers, the CBADAS algorithm 

enhances the overall data quality and mitigates the 

potential negative impact of outliers on the model's 

learning process. This step contributes to reducing 

the influence of noisy or erroneous data points, 

leading to more reliable and robust oversampling 

results. 

Therefore, the advantage of outlier removal in the 

CBADAS algorithm is that it promotes data integrity 

and prepares a cleaner dataset for subsequent 

oversampling, ensuring the synthetic instances 

generated are based on a more accurate 

representation of the underlying data distribution. 

Other advantages of the CBADAS algorithm include: 

 Ability to handle class imbalance 

effectively by generating synthetic instances for the 

minority class. 

 Utilization of cluster-based sampling to 

capture the underlying structure of the data, 

resulting in more representative synthetic 

instances. 

 Adaptive synthetic instance generation 

that takes into account the specific characteristics 

of each minority class, leading to improved 

performance. 

Overall, the CBADAS algorithm is a valuable 

technique for converting imbalanced datasets into 

balanced datasets. It addresses the limitations of 

existing approaches by leveraging clustering and 

adaptive synthetic instance generation. The 

algorithm is versatile and can be applied in various 

domains to enhance the performance of machine 

learning models when faced with imbalanced data. 
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The CBADAS algorithm combines outlier removal, 

label identification, and adaptive synthetic instance 

generation to convert imbalanced datasets into 

balanced ones. By following these steps, the 

algorithm can effectively address the class 

imbalance issue, produce representative synthetic 

instances, and enhance the performance of 

machine learning models in scenarios where 

imbalanced data is encountered. Its advantages lie 

in its ability to effectively handle class imbalance, 

capture data structure through cluster-based 

sampling, and generate representative synthetic 

instances. 

3.2 Optimized Logistic Regression: 

Logistic Regression is a popular algorithm used for 

binary classification problems. It models the 

relationship between a set of input features and the 

probability of a binary outcome using a logistic 

function. The algorithm estimates coefficients for 

each feature, which represent the influence of the 

corresponding feature on the target variable. 

During training, the algorithm adjusts these 

coefficients using an optimization algorithm such as 

gradient descent to minimize the logistic loss 

function. 

Optimized Logistic Regression proposed to improve 

the performance and efficiency of the standard 

Logistic Regression algorithm. Here's an explanation 

of two parameters commonly used for optimizing 

Logistic Regression: 

 Batch Size: The batch size parameter 

refers to the number of instances processed at each 

iteration during the training phase. By setting an 

appropriate batch size, the algorithm can process a 

subset of instances at a time, rather than the entire 

dataset. This approach can improve the efficiency 

and memory usage of the algorithm. Instead of 

updating the model after processing each instance 

individually, batching allows for more efficient 

computations by updating the model's parameters 

based on accumulated gradients over a batch of 

instances. It can also enable parallel processing, 

which is especially beneficial when dealing with 

large datasets. 

 Number of Decimal Places: The number of 

decimal places parameter controls the precision of 

the coefficients or weights in the logistic regression 

model. It determines the level of detail in the 

representation of the coefficients and affects the 

computational complexity of the algorithm. By 

controlling the number of decimal places, 

unnecessary precision can be eliminated, reducing 

computational requirements and memory usage. It 

helps strike a balance between computational 

efficiency and maintaining an acceptable level of 

accuracy in the model's coefficients. 

Both of these parameters are used as optimization 

techniques to improve the efficiency and 

performance of logistic regression. The choice of an 

appropriate batch size allows for efficient 

processing and utilization of computational 

resources. Controlling the number of decimal places 

helps manage computational complexity and 

memory requirements without sacrificing the 

essential accuracy of the model. These 

optimizations contribute to faster training times 

and more efficient utilization of resources, making 

logistic regression more practical and scalable for 

real-world applications. 

3.3 Optimized Hoeffding Tree: 

The Hoeffding Tree is a decision tree algorithm that 

is designed to handle large streams of data in an 

incremental manner. It uses the Hoeffding bound to 

determine when a split is statistically significant and 

should be performed. This allows the tree to adapt 

and make decisions quickly without requiring a full 

pass over the data. The Hoeffding Tree is 

particularly useful for handling streaming data or 

situations where memory is limited. 

Optimized Hoeffding Tree refers to the improved 

version of the Hoeffding Tree algorithm achieved 

through the use of specific parameters. Here's an 

explanation of the parameters commonly used for 

optimizing Hoeffding Tree: 

 Grace Period: The grace period parameter 

specifies the minimum number of instances 

required before allowing the tree to split. It 

provides a mechanism for accumulating enough 

data to make a reliable decision on splitting. During 

the grace period, the algorithm observes the 

instances and collects statistics to evaluate whether 

a split is necessary. By setting an appropriate grace 

period, the algorithm can avoid premature splitting, 

which can lead to overfitting on small subsets of 

data. This parameter helps ensure that the tree only 

splits when there is sufficient evidence to support a 

reliable decision. 
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 Split Confidence: The split confidence 

parameter sets the threshold for controlling the 

growth of the tree. It determines when to create 

new branches based on the statistical significance of 

attribute splits. When the confidence in the 

statistical significance exceeds the specified 

threshold, a split is made. This parameter allows the 

algorithm to balance between creating more 

complex trees to capture finer details in the data 

and maintaining simplicity to avoid overfitting. By 

adjusting the split confidence, the algorithm can 

control the trade-off between model complexity 

and generalization performance. 

By optimizing the Hoeffding Tree algorithm using 

these parameters, the algorithm can make more 

informed decisions on when and how to split the 

tree. This leads to improved performance and 

efficiency by avoiding unnecessary splits and 

reducing overfitting. Optimizing the grace period 

and split confidence allows the algorithm to adapt 

to the characteristics of the data and strike a 

balance between capturing useful patterns and 

avoiding excessive complexity. These optimizations 

contribute to more accurate and reliable decision 

trees, especially in scenarios with streaming data or 

limited computational resources. 

3.4 Optimized Logistic Model Trees: 

Logistic Model Trees (LMT) is an algorithm that 

combines decision trees and logistic regression. It 

constructs a decision tree where each leaf node 

represents a logistic regression model. It uses 

information gain to determine the best splits and 

builds a logistic regression model at each leaf. LMT 

is capable of handling both numeric and categorical 

features and provides interpretable models with the 

benefits of decision trees and logistic regression. 

Optimized Logistic Model Trees (LMT) refers to an 

improved version of the algorithm achieved through 

parameter optimization. Here's an explanation of 

the parameters commonly used to optimize Logistic 

Model Trees: 

 Min Num Instances: This parameter sets 

the minimum number of instances required for a 

split in the tree. By specifying a minimum threshold, 

the algorithm avoids overfitting by preventing the 

creation of splits in regions with insufficient data. 

This helps ensure that each split is based on a 

reasonable amount of information, improving the 

generalization ability of the tree. 

 Batch Size: Similar to Logistic Regression, 

using a batch size during training helps manage 

computational resources and improves efficiency. 

The batch size determines the number of instances 

processed together during the training phase. By 

processing instances in smaller batches, the 

algorithm can reduce memory requirements and 

enhance the efficiency of the training process. 

 Fast Regression: Enabling fast regression in 

LMT can speed up the training process. Fast 

regression simplifies the regression algorithm used 

in LMT, making it computationally more efficient. 

This optimization is particularly useful when dealing 

with large datasets or complex models where 

training time is a concern. 

 Number of Decimal Places: Controlling the 

number of decimal places in the output of LMT 

helps manage precision. By specifying the desired 

level of precision, the algorithm can reduce 

computational complexity and memory 

requirements. This optimization ensures that the 

model's coefficients and predictions are 

represented with the appropriate level of accuracy 

while maintaining efficiency. 

By optimizing Logistic Model Trees using these 

parameters, the algorithm can achieve better 

performance and efficiency. Setting a minimum 

number of instances for splitting helps prevent 

overfitting, ensuring that splits are based on 

sufficient data. Utilizing a batch size during training 

and enabling fast regression improves 

computational efficiency, allowing the algorithm to 

handle large datasets more effectively. Controlling 

the number of decimal places helps manage 

precision without sacrificing computational 

resources. These optimizations contribute to more 

accurate and efficient Logistic Model Trees for 

classification and prediction tasks. 

3.5 Optimized Reduced Error Pruning Tree: 

Reduced Error Pruning Tree (REP Tree) is a decision 

tree algorithm that focuses on reducing the 

classification error. It builds a decision tree by 

recursively partitioning the data based on attribute 

tests. During the construction process, REP Tree 

uses reduced-error pruning to improve the 

generalization ability of the tree. Pruning involves 

removing branches that do not contribute 

significantly to the accuracy of the tree. 
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Optimized Reduced Error Pruning Tree (REP Tree) 

refers to an improved version of the algorithm 

achieved through parameter optimization. Here's 

an explanation of the parameters commonly used 

to optimize REP Tree: 

 Min Num: This parameter specifies the 

minimum number of instances required in a leaf 

node of the tree. By setting a minimum threshold, 

the algorithm prevents the tree from growing too 

deep and overfitting the training data. It ensures 

that a leaf node is created only if it contains a 

sufficient number of instances, which helps control 

the complexity of the tree and promotes better 

generalization to unseen data. 

 Max Depth: Setting the maximum depth 

limits the depth or height of the tree. It determines 

the maximum number of levels that the tree can 

grow. By restricting the tree's complexity, the 

algorithm avoids overfitting and reduces the risk of 

memorizing noise or irrelevant patterns in the 

training data. Controlling the depth of the tree 

helps achieve a balance between model complexity 

and generalization performance. 

By optimizing the REP Tree using these parameters, 

the algorithm can improve its performance and 

generalization ability. Specifying a minimum 

number of instances in a leaf prevents the tree from 

growing excessively deep, ensuring that each leaf 

contains sufficient data for accurate predictions. 

Limiting the maximum depth of the tree helps 

control its complexity and prevents overfitting, 

leading to better generalization to unseen data. 

These optimizations contribute to more reliable and 

interpretable decision trees with improved 

predictive accuracy. 

3.6 Optimized JRip: 

JRip is a rule-based classifier that constructs a set of 

rules from the training data. It uses a combination 

of RIPPER (Repeated Incremental Pruning to 

Produce Error Reduction) and FOIL (First-Order 

Inductive Learner) algorithms. JRip builds a series of 

rules that cover the positive instances while 

minimizing the number of rules and errors. It 

employs techniques like rule pruning and rule 

optimization to enhance its performance. 

Optimized JRip refers to an improved version of the 

JRip algorithm achieved through parameter 

optimization. Here's an explanation of the 

parameters commonly used to optimize JRip: 

 Seed: Setting the seed value for 

randomization ensures reproducibility of the 

algorithm's results. By using the same seed, the 

algorithm will generate the same random numbers, 

leading to consistent model outcomes. This is useful 

for replicating experiments or comparing different 

models. 

 Batch Size: Similar to other classifiers, 

using a batch size during training helps manage 

computational resources and improves efficiency. 

By processing data in smaller batches, the algorithm 

can handle large datasets more effectively, reducing 

memory requirements and computational time. 

 Folds: Specifying the number of folds for 

cross-validation helps assess the algorithm's 

performance and tune its parameters. Cross-

validation is a technique that involves dividing the 

data into multiple subsets or folds for training and 

evaluation. By testing the algorithm on different 

subsets of the data, it provides a more robust 

estimate of its performance and helps prevent 

overfitting. 

 Min No: Setting the minimum number of 

instances in a rule helps control the complexity of 

the generated rules. By specifying a minimum 

threshold, the algorithm avoids creating rules based 

on a small number of instances, which could lead to 

overfitting. This parameter helps strike a balance 

between rule complexity and model generalization. 

 Number of Decimal Places: Controlling the 

number of decimal places in the output helps 

manage precision. By limiting the decimal places, 

the algorithm reduces the complexity of the output 

and makes it more interpretable. It also helps 

manage computational resources by avoiding 

excessive precision that may not be necessary for 

the specific problem. 

 Optimizations: Specifying the level of 

optimizations allows adjusting the trade-off 

between computational complexity and 

classification accuracy. Different optimization 

techniques can be employed to improve the 

algorithm's performance, but they may come at the 

cost of increased computational resources. This 

parameter allows fine-tuning the optimization level 

based on the specific requirements of the problem. 

 Use Pruning: Enabling pruning helps 

reduce the complexity of rules and prevent 

overfitting. Pruning involves removing or simplifying 
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rules that do not contribute significantly to the 

model's performance. By pruning irrelevant or 

redundant rules, the algorithm improves its 

generalization ability and reduces the risk of 

memorizing noise or outliers in the training data. 

By optimizing JRip using these parameters, the 

algorithm can improve its performance, 

computational efficiency, and generalization ability. 

The optimized version of JRip provides reproducible 

results, handles large datasets more efficiently, 

incorporates cross-validation for performance 

assessment, controls rule complexity, manages 

precision, optimizes computational resources, and 

employs pruning to enhance the model's 

interpretability and generalization. 

3.7 Optimized OneR: 

OneR is a simple and interpretable rule-based 

algorithm for classification. It selects a single feature 

(hence the name OneR) and creates a decision rule 

based on the values of that feature. OneR evaluates 

each feature by examining its predictive power and 

chooses the feature with the lowest error rate. It is 

particularly useful for quick and interpretable 

insights into the data but may not capture complex 

relationships. 

Optimized OneR refers to an improved version of 

the OneR algorithm achieved through parameter 

optimization. Here's an explanation of the 

parameters commonly used to optimize OneR: 

 Batch Size: Similar to other classifiers, 

using a batch size during training helps manage 

computational resources and improves efficiency. 

By processing data in smaller batches, the algorithm 

can handle large datasets more effectively, reducing 

memory requirements and computational time. 

 Debug: Enabling debug mode provides 

detailed output for better understanding and 

analysis. When debug mode is activated, the 

algorithm may provide additional information 

during the training process, such as intermediate 

results, decision rules, or performance metrics. This 

can be helpful for diagnosing any issues, 

understanding the rule generation process, or 

gaining insights into the algorithm's behavior. 

 Min Bucket Size: Setting the minimum 

number of instances required in a bucket helps 

control the granularity of the generated rules. OneR 

algorithm operates by identifying the single most 

informative attribute for classification and creating 

a rule based on its values. By specifying the 

minimum bucket size, the algorithm avoids creating 

rules based on a small number of instances, which 

could lead to overfitting. This parameter helps strike 

a balance between rule complexity and model 

generalization. 

 Number of Decimal Places: Controlling the 

number of decimal places in the output helps 

manage precision. By limiting the decimal places, 

the algorithm reduces the complexity of the output 

and makes it more interpretable. It also helps 

manage computational resources by avoiding 

excessive precision that may not be necessary for 

the specific problem. 

By optimizing OneR using these parameters, the 

algorithm can improve its performance, 

computational efficiency, interpretability, and 

generalization ability. The optimized version of 

OneR leverages batch processing for efficient 

training, enables debug mode for better analysis, 

controls rule granularity, and manages precision in 

the generated output. These optimizations enhance 

the algorithm's capability to generate accurate and 

interpretable decision rules for classification tasks. 

3.8 Optimized Partial Decision Trees: 

Partial Decision Trees (PART) is a rule-based 

decision tree algorithm that creates partial decision 

trees by selecting a subset of attributes to split on. 

Unlike traditional decision trees, which explore all 

possible attribute splits, PART focuses on finding the 

most informative attributes. It constructs rules from 

the resulting partial decision trees and uses 

reduced-error pruning to improve the model's 

generalization ability. 

Optimized Partial Decision Trees refer to an 

improved version of the Partial Decision Tree 

algorithm achieved through parameter 

optimization. Here's an explanation of the 

parameters commonly used to optimize Partial 

Decision Trees: 

 Batch Size: Similar to other classifiers, 

using a batch size during training helps manage 

computational resources and improves efficiency. 

By processing data in smaller batches, the algorithm 

can handle large datasets more effectively, reducing 

memory requirements and computational time. 

 Binary Splits: Enabling binary splits for 

attribute selection helps improve the efficiency and 

quality of attribute selection. Binary splits consider 
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two-way splits at each node, allowing the algorithm 

to explore multiple attribute combinations 

efficiently. This can lead to better attribute selection 

and more accurate decision trees. 

 Confidence Factor: Setting the confidence 

factor determines the pruning strength and 

prevents overfitting. The confidence factor is used 

to determine when to prune branches from the 

decision tree. A higher confidence factor results in 

more aggressive pruning, simplifying the tree and 

improving its generalization ability. 

 Debug: Enabling debug mode provides 

detailed output for better understanding and 

analysis. Debug mode may provide additional 

information during the training process, such as 

intermediate results, tree structures, or 

performance metrics. This can be helpful for 

diagnosing issues, understanding the tree 

construction process, or gaining insights into the 

algorithm's behavior. 

 Min NumObj: Specifying the minimum 

number of instances required in a leaf helps control 

overfitting and improves generalization. By setting a 

minimum number of instances, the algorithm 

avoids creating leaf nodes with very few instances, 

which could lead to overfitting. This parameter 

helps balance the complexity of the tree with its 

ability to generalize well to unseen data. 

 Number of Decimal Places: Controlling the 

number of decimal places in the output helps 

manage precision. By limiting the decimal places, 

the algorithm reduces the complexity of the output 

and makes it more interpretable. It also helps 

manage computational resources by avoiding 

excessive precision that may not be necessary for 

the specific problem. 

 Num Folds: Specifying the number of folds 

for reduced-error pruning helps assess the 

algorithm's performance and tune its parameters. 

Reduced-error pruning is a technique used to 

simplify the decision tree by iteratively removing 

branches based on their performance on a 

validation set. The number of folds determines how 

the data is divided for pruning and helps ensure the 

reliability of the pruning process. 

 Reduced Error Pruning: Enabling reduced-

error pruning helps simplify the tree and improve 

generalization. Reduced-error pruning is a 

technique used to trim unnecessary branches from 

the decision tree based on their performance on a 

validation set. By removing branches that do not 

contribute significantly to reducing errors, the 

algorithm creates a simpler and more generalized 

tree. 

 Seed: Setting the seed value for 

randomization ensures reproducibility. The seed 

value is used to initialize the random number 

generator, which introduces randomness into the 

algorithm's operations. By setting a specific seed 

value, the algorithm's randomization becomes 

deterministic, leading to reproducible results. 

 Unpruned: Setting whether to create an 

unpruned tree provides flexibility in tree 

construction. When the unpruned option is 

enabled, the algorithm constructs a decision tree 

without applying any pruning techniques. This can 

be useful for scenarios where a more complex and 

detailed tree structure is desired, even at the risk of 

overfitting the training data. 

 Use MDL Correction: Enabling the use of 

minimum description length (MDL) correction helps 

improve the quality of attribute selection. MDL 

correction is a statistical approach that aims to find 

the attribute that provides the best compression of 

the data. By considering both the attribute's 

predictive power and its complexity, MDL 

correction helps select attributes that are 

informative and parsimonious. 

By optimizing Partial Decision Trees using these 

parameters, the algorithm can improve its 

performance, computational efficiency, 

interpretability, and generalization ability. The 

optimized version of Partial Decision Trees 

leverages batch processing for efficient training, 

enables binary splits for better attribute selection, 

controls pruning strength, provides debug 

information for analysis, manages precision, 

assesses performance with cross-validation, applies 

reduced-error pruning, ensures reproducibility, 

offers flexibility in tree construction, and improves 

attribute selection through MDL correction. These 

optimizations enhance the algorithm's capability to 

generate accurate and interpretable decision trees 

for classification tasks. 

3.9 Optimized Multilayer Perceptron: 

Multilayer Perceptron (MLP) is a type of artificial 

neural network with one or more hidden layers. It is 

used for various machine learning tasks, including 
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classification. MLP consists of interconnected 

nodes, known as neurons, organized in layers. Each 

neuron applies a nonlinear activation function to 

the weighted sum of its inputs. MLPs can learn 

complex patterns and relationships in the data and 

are trained using backpropagation, an iterative 

optimization algorithm. 

The optimization parameters for each classifier are 

designed to fine-tune their performance and 

improve the overall stress classification and 

prediction accuracy. Here's a detailed explanation 

of why each optimization parameter is needed: 

 Optimized Multilayer Perceptron (MLP) 

refers to an improved version of the MLP algorithm 

achieved through parameter optimization. Here's 

an explanation of the parameters commonly used 

to optimize MLP: 

 Batch Size: Similar to other classifiers, 

using a batch size during training helps manage 

computational resources and improves efficiency. 

By processing the training data in smaller batches 

instead of individual instances, the algorithm can 

leverage parallel processing and optimize memory 

usage. This can lead to faster convergence and 

more efficient training. 

 Debug: Enabling debug mode provides 

detailed output for better understanding and 

analysis. Debug mode may provide additional 

information during the training process, such as 

intermediate results, weight updates, and 

performance metrics. This can be helpful for 

diagnosing issues, understanding the learning 

process, and gaining insights into the behavior of 

the network. 

 Number of Decimal Places: Controlling the 

number of decimal places in the output helps 

manage precision. By limiting the decimal places in 

the output, the algorithm reduces the complexity of 

the results and makes them more interpretable. 

Additionally, it helps manage computational 

resources by avoiding excessive precision that may 

not be necessary for the specific problem. 

By optimizing these parameters and techniques, the 

performance, convergence speed, and 

generalization ability of the Multilayer Perceptron 

can be improved, resulting in a more effective and 

accurate neural network model. 

3.10 AdaBoostM1: 

The AdaBoostM1 algorithm is a boosting ensemble 

method that combines multiple optimized 

classifiers to improve the performance of stress 

classification and prediction. Here's a detailed 

explanation of how AdaBoostM1 works: 

 Creating an Ensemble: The AdaBoostM1 

algorithm starts by selecting a set of optimized 

classifiers, such as Logistic Regression, Hoeffding 

Tree, LMT, REP Tree, JRip, OneR, PART, and 

Multilayer Perceptron. These classifiers have been 

individually optimized to enhance their 

performance on the given task. 

 Setting Parameters: The AdaBoostM1 

algorithm sets certain parameters to control the 

ensemble construction process. In this case, it 

specifies the number of iterations to 100. This 

means that the algorithm will iteratively create 100 

weak classifiers and combine them into the final 

ensemble. Additionally, the seed value is set to 1 to 

ensure reproducibility, meaning that the same 

sequence of random numbers will be generated 

each time the algorithm is run. 

 Building the Ensemble: The AdaBoostM1 

classifier is then built using the training data. During 

the training phase, each weak classifier is trained on 

a modified version of the training set. The 

modification involves assigning higher weights to 

the instances that were misclassified by the 

previous weak classifiers, allowing subsequent weak 

classifiers to focus on the harder-to-classify 

instances. 

 Combining Classifiers: As the training 

progresses, the AdaBoostM1 algorithm assigns 

weights to each weak classifier based on its 

performance. More accurate classifiers are given 

higher weights, indicating their importance in the 

final ensemble. This way, the ensemble leverages 

the strengths of each individual classifier, with more 

emphasis on the classifiers that demonstrate better 

performance. 

 Testing Phase: Once the ensemble is built, 

it is evaluated using the testing dataset. The trained 

AdaBoostM1 classifier is used to classify the 

instances in the testing dataset. The actual class 

labels of the instances are compared with the 

predicted class labels obtained from the ensemble. 

The results, including instance details, actual class, 

and predicted class, are printed to assess the 

accuracy and performance of the ensemble. 
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By incorporating multiple optimized classifiers 

within the AdaBoostM1 ensemble, this algorithm 

aims to overcome the limitations of individual 

classifiers and improve the overall stress 

classification and prediction performance. The 

ensemble's ability to combine the strengths of 

different classifiers can lead to better 

generalization, robustness, and accuracy in stress 

prediction tasks. 

 

4. Experimental Results and Discussions 

In this section, the experimental results and 

discussions of an Optimized Ensemble Fusion 

Algorithm (OEFA) specifically designed for stress 

data analysis are presented. The algorithm was 

implemented using Java and utilized two datasets: 

Swell-EDA and WESAD-EDA. The Swell-EDA dataset 

consists of 9,849 rows and 57 features, while the 

WESAD-EDA dataset contains 3,395 rows and 49 

features. To assess the algorithm's performance, 

the accuracy, precision, recall, and F1-score of the 

existing classifiers were compared. By conducting a 

thorough analysis of the experimental results, 

meaningful conclusions can be drawn and the 

implications can be understood. The findings 

highlight the effectiveness of the OEFA algorithm in 

accurately classifying and predicting stress data. 

In the context of a classifier, accuracy, precision, 

recall, and F1-score serve as standard performance 

metrics for evaluating the performance of machine 

learning classifiers.  Accuracy measures the 

classifier's ability to correctly predict the total 

number of instances. It is calculated by dividing the 

number of correctly predicted instances by the total 

number of predictions made, as shown in formula 

(1): 

Accuracy = (Number of Correct Predictions) / 

(Total Number of Predictions) 
(1) 

Precision quantifies the classifier's accuracy in 

predicting positive instances among the instances it 

identifies as positive. It is determined by dividing 

the number of true positive predictions by the sum 

of true positive and false positive predictions, as 

represented in formula (2): 

Precision = (Number of True Positives) / 

(Number of True Positives + Number of False 

Positives) 

(2) 

Recall, also referred to as sensitivity or true positive 

rate, gauges the classifier's ability to correctly 

identify all positive instances in the dataset. It is 

computed by dividing the number of true positive 

predictions by the sum of true positive and false 

negative predictions, as shown in formula (3): 

Recall = (Number of True Positives) / 

(Number of True Positives + Number of False 

Negatives) 

(3) 

The F1-score is a measure that strikes a balance 

between precision and recall. It is the harmonic 

mean of precision and recall, providing a balanced 

evaluation of the classifier's performance, as 

illustrated in formula (4): 

F1-score = 2 * (Precision * Recall) / (Precision 

+ Recall) 
(4) 

These performance metrics, including accuracy, 

precision, recall, and F1-score, are widely employed 

for assessing the effectiveness of classifiers. They 

offer valuable insights into how well the OEFA 

algorithm performs in terms of stress data 

classification and prediction. 

Table 1 compares the performance of the proposed 

OEFA algorithmwith existing classifiers namely 

Optimized Logistic Regression (O-LR), Optimized 

HoeffdingTree (O-HT), Optimized LMT (O-LMT), 

Optimized REPTree (O-RT), Optimized JRip (O-JRip), 

Optimized OneR (O-OneR), Optimized PART (O-

PART), and Optimized MultilayerPerceptron (O-

MLP)classifiers for the Swell-EDA dataset. 
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Figure 1 visually represents the performance 

comparison of the Swell-EDA dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Performance comparison of the Swell-

EDA dataset 

BothTable 1 and Figure 1 provide a comparison of 

performance metrics for different algorithms using 

Swell-EDA dataset: O-LR, O-HT, O-LMT, O-RT, O-

JRip, O-OneR, O-PART, O-MLP, and OEFA.Among 

the algorithms, OEFA consistently demonstrates 

superior performance across all metrics. It achieves 

an Accuracy of 98.23%, the highest among all the 

algorithms. Accuracy represents the overall 

correctness of the predictions and indicates the 

algorithm's ability to classify stress accurately. 

OEFA also achieves high Precision (98.35%), which 

measures the proportion of true positive 

predictions among all positive predictions. A high 

Precision indicates that the algorithm minimizes 

false positive predictions, ensuring that the 

identified cases of stress are indeed accurate. 

The Recall score for OEFA is 97.49%, which 

represents the proportion of true positive 

predictions among all actual positive instances. A 

high Recall indicates that the algorithm effectively 

identifies the majority of stress cases without 

missing many. 

The F1-score for OEFA is 97.92%, which combines 

Precision and Recall into a single metric. It provides 

a balanced evaluation of the algorithm's 

performance, considering both false positives and 

false negatives. The high F1-score of OEFA 

demonstrates its effectiveness in achieving both 

high Precision and Recall simultaneously. 

Overall, OEFA outperforms the other algorithms in 

terms of Accuracy, Precision, Recall, and F1-score. 

This suggests that OEFA has the ability to accurately 

classify stress cases, minimize false positives, and 

capture a significant proportion of stress instances. 

The optimized ensemble fusion approach of OEFA, 

which combines multiple models and incorporates 

feature selection techniques, likely contributes to its 

superior performance. 

By integrating the strengths of multiple models and 

optimizing their fusion, OEFA can capture a wider 

range of stress patterns and enhance the overall 

predictive accuracy. CBADAS creates synthetic cases 

to balance the data for minority classes, improving 

the model's ability to capture patterns from both 

classes.Additionally, the use of feature selection 

techniques helps in identifying the most relevant 

and informative features, leading to improved 

model performance. These factors collectively make 

OEFA the best-performing algorithm among the 

evaluated approaches in stress classification and 

prediction.  

Furthermore, Table 2 compares the performance of 

the proposed OEFA algorithm with existing 

classifiers namely O-LR, O-HT, O-LMT, O-RT, O-JRip, 

O-OneR, O-PART, O-MLPclassifiers for the WESAD-

EDA dataset. 
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Figure 2 visually represents the performance 

comparison of the WESAD-EDA dataset. 
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Figure 2: Performance comparison of the WESAD-

EDA dataset 

The performance metrics for different algorithms 

using the WESAD-EDA dataset, specifically O-LR, O-

HT, O-LMT, O-RT, O-JRip, O-OneR, O-PART, O-MLP, 

and OEFA, are presented in Table 2 and Figure 2. 

Among these algorithms, OEFA consistently 

demonstrates superior performance across all 

metrics. 

OEFA achieves the highest Accuracy of 98.05%, 

indicating its superior ability to accurately classify 

stress instances. Accuracy represents the overall 

correctness of predictions and reflects OEFA's 

excellent performance in stress 

classification.Furthermore, OEFA achieves a high 

Precision of 97.91%, which measures the proportion 

of true positive predictions among all positive 

predictions. This indicates that OEFA minimizes false 

positive predictions effectively, ensuring accurate 

identification of stress cases. 

OEFA also exhibits a Recall score of 97.63%, 

representing the proportion of true positive 

predictions among all actual positive instances. A 

high Recall indicates that OEFA effectively identifies 

the majority of stress cases without missing 

many.The F1-score for OEFA is 97.77%, which 

combines Precision and Recall into a single metric. 

This score provides a balanced evaluation of OEFA's 

performance, considering both false positives and 

false negatives. The high F1-score demonstrates 

OEFA's effectiveness in achieving both high 

Precision and Recall simultaneously. 

Overall, OEFA outperforms the other algorithms in 

terms of Accuracy, Precision, Recall, and F1-score. 

This suggests that OEFA accurately classifies stress 

cases, minimizes false positives, and captures a 

significant proportion of stress instances. The 

superior performance of OEFA can be attributed to 

its optimized ensemble fusion approach, which 

combines multiple models and incorporates feature 

selection techniques. 

By leveraging the strengths of multiple models and 

optimizing their fusion, OEFA can capture a wider 

range of stress patterns and enhance overall 

predictive accuracy. CBADAS generates synthetic 

instances for the minority class to balance the data, 

improving the model's ability to capture patterns 

from both classes.Additionally, the use of feature 

selection techniques helps in identifying the most 

relevant and informative features, leading to 

improved model performance.Collectively, these 

factors make OEFA the best-performing algorithm 

among the evaluated approaches for stress 

classification and prediction. 

 

5. Conclusion 

In conclusion, this paper addresses the significant 

issue of stress classification and prediction in 

modern society. Existing techniques for stress 

assessment suffer from various limitations, such as 

imbalanced datasets, missing values, categorical 

data, lack of feature selection, and limited model 

diversity. To overcome these challenges, the paper 

proposes an Optimized Ensemble Fusion Algorithm 

(OEFA) that combines multiple techniques to 

enhance accuracy and improve generalization 

capability.The OEFA algorithm incorporates several 

innovative approaches to tackle the limitations of 

existing methods. First, it employs the Cluster-Based 

Adaptive Synthetic Sampling (CBADAS) algorithm to 

balance imbalanced datasets by generating 

synthetic instances for the minority class. By 

addressing the issue of class imbalance, the 

algorithm ensures that stress levels are accurately 

classified across different groups.Additionally, 

missing values are handled by removing instances 

with missing data, ensuring that only complete data 

is used for training and testing. This approach 

guarantees the reliability and validity of the stress 

classification and prediction process.Furthermore, 

the OEFA algorithm transforms categorical data into 

a numerical format using label encoding, enabling 

the utilization of traditional machine learning 

algorithms. This conversion expands the range of 

applicable models and enhances the algorithm's 
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effectiveness in stress assessment.To improve 

computational efficiency and reduce 

dimensionality, attribute selection is performed 

using the ReliefFAttributeEval algorithm with 

Ranker Search. This process selects the most 

informative features, contributing to enhanced 

accuracy and reduced computational 

requirements.Importantly, the OEFA algorithm 

leverages ensemble learning with the AdaBoostM1 

algorithm, combining optimized versions of various 

base classifiers, including Logistic Regression, 

HoeffdingTree, LMT, REPTree, JRip, OneR, PART, 

and MultilayerPerceptron. By incorporating a 

diverse set of base classifiers, the algorithm 

demonstrates robustness and mitigates overfitting, 

leading to more reliable stress classification and 

prediction results.Experimental results validate the 

superiority of the OEFA algorithm, showcasing its 

highest accuracy, precision, recall, and F1-score 

compared to existing techniques. The advantages of 

OEFA include improved accuracy through 

addressing imbalanced datasets, missing values, 

and categorical data. Furthermore, the algorithm 

enhances generalization capability, mitigates 

overfitting, and demonstrates robustness by 

combining multiple base classifiers. Finally, efficient 

feature selection is achieved using 

ReliefFAttributeEval with Ranker Search, resulting in 

reduced dimensionality and computational 

requirements. 

The OEFA algorithm holds promise for application in 

various domains, including Healthcare, Financial 

Risk Assessment, Customer Behavior Analysis, 

Environmental Monitoring, Human Activity 

Recognition, and Sentiment Analysis, in the future. 
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