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Abstract: Due to related uncertainties brought by changes in energy consumption and the 
integration of rooftop photovoltaic systems, the accuracy and availability of load profiling data are 
difficult to achieve. However, project managers and planners use a precise load profile as a crucial 
tool when determining whether the feeder must be updated or de-loaded. The paper aims to 
apply a non-intrusive machine learning (ML) technique that predicts the synthetic load profile 
behavior of an Electric Power Distribution System using a Light Gradient Boosted and Support 
Vector Machine (SVM) algorithm. The most effective ML algorithm is chosen, and it has the 
potential to be assessed and verified using validation curves, residuals model generation, and 
prediction error metrics based on the following key statistical indicators: Mean Absolute Error, 
Mean Square Error, Root Mean Square Error, R-Square, Root Mean Squared Logarithmic Error, and 
Mean Absolute Percentage Error. The most effective ML has the potential to be assessed and 
verified using validation curves, residual model generation, and prediction error metrics based on 
the following key statistical indicators. The result shows that the estimation of the Irms avg -based 
on LightGBM is more accurate than the SVM because of its quick, economical, and difficult to 
overfit, particularly with high-dimensional data, speed, and efficiency of the MAE (3.0698), MSE 
(15.2757), RMSE (3.9020), RMSLE (0.1433), and MAPE (0.0049) respectively. Additionally, the 
machine learning model shows that, when compared to the SVM, the LightGBM model had the 
highest accurate prediction, with R-Square values of 89.8%, 90.3%, and 88.5% for Irms_A_avg, 
Irms_B_avg, and Irms_C_avg, respectively for Brakfontein Substation supply region, and best 
represents a diverse customer base. 
*Keywords: Light Gradient Boosted; Machine learning; Non-Intrusive Approach; electric load 
forecasting; Support Vector Machine; Synthetic Load Profile. 
 

1. Introduction 
The complexity of power system 

construction, planning, and operation is 
increasing as the energy transition progresses. 
There are significant limitations with 
traditional manual analysis methods for 
quickly and accurately assessing the dynamic 
security region of power systems, such as rule 
roughness and low calculation efficiency, 
whereas data mining approaches could 
provide a novel way to overcome such issues 
[1]. The predictive ability to accurately 
calculate load profiles is critical for building 
reliable and cost-effective power systems. It 
can cut operating expenses, optimize 
dispatching, and make unit maintenance and 
overhaul easier to schedule, achieving 
dispatching's economic logic [2]. It is 
challenging to predict daily load since it mostly 
depends on previous days' loads as well as 
other variables like temperature and calendar 

influence [3]. The industrial, commercial, and 
residential power consumption on the 
electrical grid demonstrates quick growth 
characteristics with a significant increase in 
economic and social levels. However, there are 
apparent differences in the load characteristics 
of diverse consumers because production 
processes vary and because different 
industries use energy at different times of the 
day [4, 5]. Specific loads experience significant 
swings in their peak and trough during brief 
periods [6]. Consequently, a crucial and 
challenging topic of research is how 
completely to evaluate the power load 
parameters for accurate load forecasting [7]. 
Demand predictions are the most important 
component of the demand-side idea of 
intelligent grids because they allow those in 
charge of the smart grid to make decisions.  

Deep learning systems have recently 
shown promising results in predicting energy 



     

 

 

2325 

 

Journal of Harbin Engineering University 

ISSN: 1006-7043 
Vol 44 No. 8 

August 2023 

use. In terms of machine learning methods, 
some commonly used algorithms are artificial 
neural networks, support vector machines 
(SVM), and Gaussian processes (GP). The two 
most frequent methods are back propagation 
(BP) neural network and SVM [8]. Gradient 
boosting models have been successful in 
estimating building energy usage in recent 
years. The authors of [9] integrated deep 
learning models like the temporal 
convolutional network (TCN) into the 
tree-based model LightGBM [10], which 
outperformed other artificial intelligence 
methods like the support vector regressor 
(SVR) and long short-term memory (LSTM). 
Aside from improved performance, the 
significance of features in tree-based 
ensemble models can be readily conveyed by a 
score representing the value of each feature as 
a splitting node in each tree. XGBoost [11] is 
another effective tree-based model for 
forecasting multi-step heat loads; it 
outperformed SVR and deep neural networks 
(DNNs) [12]. A similar day selection technique 
based on the XGBoost algorithm output 
feature importance score was proposed by 
[13]. The task of predicting load involves many 
different dimensions and aspects of ML 
algorithms are good at detecting patterns that 
appear to be random, numerical approaches 
like curve fitting are inaccurate. However, the 
preceding approaches do not consider time 
series correlation, therefore they cannot 
successfully converge when there are a large 
number of training samples.  

A synthetic load that is generated from a 
profile can to some extent, resemble a real 
load. To synthesize load data, specific daily 
load profiles are created each year using 
hourly load data. By and analyzing the 
collected load data, it is feasible to determine 
the load profiles of the clients [14]. 
Metropolitan municipality’s primary goal is to 
improve its residents' quality of life by offering 
a range of services. The South African 
municipality can develop and carry out 
strategic initiatives to achieve its 
organizational goals, since it is one of the most 
important aspects of developing a reliable 
distribution network, an accurate load profile 
is essential. One way to provide services is to 
provide power to both formal and informal 
townships; this is accomplished through 

various programs and portfolios [15, 16, 17].  
Ensure the dependability of the system, this 
entails keeping an eye on population 
expansion and enhancing the medium voltage 
(MV) distribution network. However, due to 
the surge in illegal electrical connections and 
people residing in their backyards, the City of 
Tshwane's Energy and Electrical Division (COT) 
is having difficulties in implementing these 
programs and portfolios. It is required to use a 
more thorough approach to computing and 
data analysis to ensure that the city's reliability 
management systems for the medium voltage 
(MV) distribution network are optimized to the 
maximum extent possible. The MV distribution 
network can generate synthetic load profiles 
using a computer application with the fewest 
possible human errors [18, 19, 20]. Figure 1 
shows the integration of the medium voltage 
network into the system using a typical 
distribution network configuration for COT. 

Therefore, the paper proposes a 
non-intrusive monitoring system that analyzes 
the full house load demand curve using a Light 
Gradient Boosted and Support Vector Machine 
to evaluate the features of specific electric 
appliances. The main contributions of this 
paper are as follows. 
1. We propose LightGBM and SVM algorithms 
and demonstrate that LightGBM is more 
accurate than the SVM because of its quick, 
economical, and challenging to over fit, 
particularly with high-dimensional data, speed, 
and efficiency. 
2. We applied machine learning models to 
estimate the load profiles for the electric 
power distribution system using LightGBM and 
SVM kernels to determine the load profiles for 
the electricity distribution network in Tshwane 
municipality. 
3. We present a machine learning model that 
shows when compared to the SVM, the 
LightGBM model had the highest accurate 
prediction, with R-Square values of 89.8%, 
90.3%, and 88.5% for Irms_A_avg, Irms_B_avg, 
and Irms_C_avg, respectively for Brakfontein 
Substation supply region, and best represents 
a diverse customer base. 

The rest of this paper is structured as 
follows. Section 2 goes over studies on related 
works on the current state of load profiling 
and power demand modeling techniques. 
Section 3 addresses the methods, while 
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Section 4 discusses the results. Section 5 introduces the conclusion. 
 
 

 

Figure 1. Integration of the medium voltage network into the system using a typical distribution 
network configuration for COT. 

 

2. Related works on the Current State of Load 
Profiling and Power Demand Modeling 
Techniques 

The electrical load patterns of users were 
previously grouped using models based on 
clustering methodologies to help with tariff 
design, short-term forecasting, and demand 
response programs to support management 
decisions. In developing countries, accurate 
electric load forecasting (ELF) is essential for 
carrying out energy policy effectively. 
Furthermore, accurate forecasts of the electric 
power load are essential for the management 
and planning of several organizations. For 
instance, it might have an impact on load 
shedding, contract evaluation, and 
infrastructure development. However, 
because the cost of an error is so high, it will 
be worthwhile to conduct research into 
forecasting strategies that could lower this by 
just a few percentage points [21]. Long-term 
load estimates often cover more than one 
year, while short-term load projections 
typically cover a period between one hour and 
one week. As a result, short-term forecasting 
is essential for keeping an eye on and 

managing electricity systems [22]. Projecting 
daily load, however, is challenging because it 
mostly depends on the load from the previous 
day, as well as other variables like 
temperature and the calendar [23]. The 
industrial, commercial, and residential power 
consumption on the electrical grid 
demonstrates quick growth characteristics 
with a significant increase in economic and 
social levels. However, there are noticeable 
differences in the load characteristics of 
diverse consumers due to the disparate 
manufacturing processes and peak and trough 
times of energy demand among industries 
[24,25]. 

The load characteristics of energy 
consumers also change depending on the time 
of year, the weather, average days, where 
power is consumed, and other factors. 
Because individual loads fluctuate greatly in a 
short amount of time, there is a big difference 
between peak and trough [26]. Consequently, 
a crucial and challenging topic of research is 
how to comprehensively evaluate the power 
load parameters for accurate load forecasting 
[27]. The general expansion of the energy 
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infrastructure as well as population growth is 
responsible for the sharp increase in power 
demand. The use of "intelligent grids" is being 
made to successfully manage this increasing 
demand [28]. Demand predictions are the 
most important component of the 
demand-side idea of intelligent grids because 
they allow those in charge of the smart grid to 
make decisions. Short-term (from a few hours 
to a few days), medium-term, and long-term 
load forecasting are the three types available. 
The task of load forecasting involves many 
different dimensions and aspects. Because 
machine learning algorithms are so good at 
detecting patterns that appear to be random, 
numerical approaches like curve fitting are 
inaccurate. The paper aims to create a 
non-intrusive monitoring system that 
evaluates the behavior of each electric 
appliance based on a Light Gradient Boosted 
Ma-chine (LightGBM) machine learning (ML) 
technique for producing synthetic load 
profiles. 

Demand-side management and software 
control in the distribution network are 
empirical because every grid design may be 
simulated using different parameters. 
Electricity is produced and utilized on demand; 
it cannot be produced in large quantities and 
stored for use later. Several power demand 
modeling techniques that help with load 
prediction are explained in this section. The 
demand for residential, commercial, industrial, 
and other consumer characteristics may be 
predicted using a variety of machine learning 
and mathematical techniques for modeling 
electricity consumption [29, 30, 31, 32, 33]. 
Some of the methods utilized in earlier 
research include probability matrices and time 
series, linear auto-regression, Markov chains, 
Time-Use Survey data, autoregressive 
integrated moving average (ARIMA), artificial 
neural network (ANN), and multiple linear 
regression (MLR). These several techniques 
were used to cross-validate the results and 
were chosen depending on the type, quality, 
and quantity of available data. When a 
researcher has a lot of data gathered over a 
long enough period to cover the necessary 
population or sample size, for example, time 
series analysis is ideal since it accurately 

forecasts data [34]. The Holt-Winters (HWT) 
exponential smoothing model and 
Autoregressive Moving-Average (ARMA) 
approaches are the most used due to their 
ability to handle time-series data with patterns 
[35]. Fuzzy logic, on the other hand, is less 
ideal since expert systems rely on rules that 
are generated from the experiences of experts 
and operators. Another study focuses on 
modeling power demand regarding 
consumption patterns and cost and alternative 
energy sources. To explore the relationship 
between pricing and client consumption 
patterns, for instance, Author [36] built a 
multinomial logic model; the data were 
analyzed, and a response was produced. To 
regulate consumption patterns, a variety of 
pricing schemes (including fixed rate, variable 
rate, ladder pricing, single price, time-varying 
pricing, and others) have been studied. [37].  

Adding useful features to energy 
consumption predictions can enhance 
accuracy. Because building energy 
consumption has multiple daily patterns, 
labeling various patterns can help increase 
forecasting accuracy. The most 
straightforward way is to identify the daily 
pattern of building energy usage with a 
time-series clustering algorithm such as 
k-shape [38], or k-means [39]. The historical 
energy data of a building can be separated 
into groups with various patterns using 
time-series clustering. The problem in applying 
a load pattern to STLF is that we cannot name 
the predicting day's pattern until we know the 
actual load numbers. As a result, previous 
studies solely used clustering techniques in the 
preprocessing step. Ref. [40] discovered that 
k-shape clustering can aid in appropriately 
labeling a building's principal space 
consumption to improve building performance 
benchmarking and analysis. The authors of 
[41] used cluster analysis to discover daily 
heating load trends for both the training and 
test sets. To circumvent the contradiction, 
academics have created other approaches for 
labeling forecasting day patterns. 

Based on numerous findings from the 
literature, First, tree-based models such as 
SVM and LightGBM algorithms are promising; 
further research on feature engineering should 
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be undertaken to increase their predicting 
performance. Second, most load pattern 
methods focus on day type and weather type, 
which are not equal to actual load patterns 
that are vital for building load forecasting. 
Because the forecasting day load is uncertain, 
a stochastic approach should be used to 
predefine the forecasting days' energy load 
pattern. Finally, a recursive multistep load 
forecasting algorithm produces better results, 
but at a higher calculation cost. 

 

3. Methods 
The two techniques of Gradient-Based 

Side Sampling and the EFB combine to provide 
the characteristics of the LightGBM Algorithm. 
The lightGBM was utilized in this study to 
predict the load profiles for the electricity 
distribution system. These algorithms include 
deep learning and shallow learning models, 
ensemble learning strategies, and traditional 
learning strategies like linear regression and 
support vector machines. They also include 
linear and nonlinear approaches. The Python 
program Pycaret is used to build the lightGBM 
model [42]. The construction of the Light 
Gradient Boosting Machine model for 
forecasting pillar stability, which was 
developed using Python 3.10 in Anaconda 3. It 
is easy to understand and use, resulting in skill 
estimations with less bias than previous 
methods. The training approach begins by 
reading three-phase power distribution 
systems' voltage and current datasets. The 
essential data used in this inquiry were load 
flow and voltage, current root-mean-square, 
and trend period information. The data for this 
research comes from the Brakfontein 
substation of the Tshwane electricity grid's 
supply region from August 29 2016 to 
September 19, 2017. The training dataset is 
then split into k subsets of 604 for 
cross-validation. This makes it feasible to   
produce identical k models without delay. 
Each model is then tested on the remaining 
partitions after being trained on k -10 
partitions. The method parameter k denotes 
the number of groups that are created from a 
given data sample. The final evaluation 
performance is averaged k times to get the 
method's total performance. The results of 

this small dataset are then enhanced by 
cross-validation. 
3.1. Load Demand Parameter Identification 

To capture load characteristics, the 
component-based methodology necessitates 
the use of field data. The measurement-based 
method is organized in stages. First, collect 
measurement data; next, choose a load model 
structure; then, estimate parameters; and 
finally, validate the load model. The 
measurement is carried out strictly under 
various situations and disturbances. Finally, 
model parameters are determined by 
minimizing the discrepancy between the load 
model response and field data.  
As seen in equation (1), the 
measurement-based load model is presented 
as a curve-fitting problem. 

𝑚𝑖𝑛
1

𝑛
∑ [(𝑃𝑖

𝑚 − 𝑃𝑖
𝑒)2 + (𝑄𝑖

𝑚 − 𝑄𝑖
𝑒)2]𝑛

𝑖=1 ,  (1)  

where 𝑃𝑖
𝑚  and 𝑄𝑖

𝑚  are the measured 
active and reactive power, respectively, 𝑃𝑖

𝑒 
and 𝑄𝑖

𝑒 are the modeled active and reactive 
power. The parameters can be calculated 
using robust algorithms: least squares, Genetic 
Algorithms (GA), Support Vector Machines 
(SVM), Kalman Filter (KF), 
Levenberg-Marquardt algorithm, and 
Simulated Annealing. 
3.2. Light Gradient Boosted Machine Learning 

Algorithms 

LightGBM, an upgraded form of Gradient 
Boosting Decision Tree (GBDT), was proposed 
in 2017 [9]. GBDT, an integrated algorithm, is 
made up of a succession of linear subset 
combinations. Based on the iteration concept, 
it takes the regression tree as the subset and 
adds the subsets one by one to reduce the 
learner's loss function. Equation (2) can be 
used to express GBDT. 

𝐹𝑥 (𝑥) = ∑ 𝑓𝑖 (𝑥|𝜃1)𝑘
𝑖=1                 (2)  

where 𝑓𝑖 (𝑥|𝜃1) is regression tress subsets in 
the i-th iteration; 𝜃1= parameter of subsets; 𝑥 
is number of subsets;  𝜃1  is obtained by 
minimizing the loss functions by equation (3). 

     𝜃1 = arg min 𝐿 [𝐹𝑖=1 (𝑥) + 𝑓𝑖 (𝑥|𝜃1)]        (3),  

Where 𝐿 is the loss function that the learner uses 
for prediction. 

The algorithm enhances the gradient 
boosting technique employed by LightGBM by 
focusing on boosting situations with stronger 
gradients and using a type of autonomous 
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feature selection. To get over the limitations of 
the histogram-based approach used GBDT 
frameworks, it also uses two cutting-edge 
techniques, Gradient-based One Side Sampling 
and Exclusive Feature Bundling (EFB). The 
histogram method and the leaf-wise strategy 
with depth limitation are the key advances of 
the LightGBM model. The histogram algorithm 
separates continuous data into K integers and 
creates a K-width histogram. The discretized 
value is accumulated in the histogram as an 
index during the traversal, and the best 
decision tree split point is then searched for. 
The Leaf-wise technique with depth limitation 
entails choosing the leaf with the highest gain 
to split and loop throughout each split. 
Simultaneously, by restricting the depth of the 
tree and the number of leaves, the model's 
complexity is minimized and overfitting is 
avoided. The LightGBM model is trained using 
the gradient boosting approach, and the grid 
search method is used to optimize the model's 
hyperparameters. The major hyperparameters 
of the LightGBM model optimized using the 
grid search approach are as follows: the 
number of weak regression trees is 200, the 
number of leaves is 50, the learning rate is 0.1, 
and the number of iterations is 2000.  
3.3. Support Vector Machine Algorithm 

The support vector machines (SVM) 
method is excellent at resolving issues brought 
on by overfitting, a short sample size, 
nonlinear data, and extensive computing. For 
instance, in SVM, the most significant 
threshold in the feature set is used to first 
separate the good data grouping from the bad 
data. SVM is used in this dissertation with 
linear, RBF, and MLP kernels. By equation (4), 
the SVM algorithm, a classification algorithm 
based on linear discriminant function, was 
proposed in 1995 [7]. It uses convex 
optimization technologies to determine the 
best discriminant surface for sample 
categorization. 

                      𝐹𝑥 (𝑥) = 𝑤𝑇𝑥 + 𝑏                                 (4) (4) 

where w and b are the normal vector and 
displacement term of the hyperplane 
respectively; 𝒙 is the sample data. Decision 
rule: if 𝑭𝒙 (𝒙)  > 𝟎, it is taken as a positive 
class, i.e., the black dots in Figure 3, namely 
the stable point; if 𝑭𝒙 (𝒙)  < 𝟎, as negative 
class.  

Because most data are not linearly 
separable, SVM introduces a kernel function x, 
x to replace xx in equation (4) to translate the 
input space to a high-dimensional feature 
space, locate a hyperplane, and realize the 
classification function. SVM bypasses the 
high-dimensional transformation of data by 
calculating the inner product directly in the 
original input space, which circumvents the 
dimension explosion of high-dimensional 
space. SVM has an excellent classification 
impact, great interpretability, and 
generalization ability since it is based on the 
idea of structural risk reduction and the 
introduction of kernel function technology. 
When a linear kernel function is utilized, SVM 
can provide the expression of the classification 
hyperplane, i.e. the DSR border. Where is the 
relaxation variable, suggesting that the 
interval between the admissible samples and 
the hyperplane is less than the hard threshold 
1, allowing for a given number of outliers; C, 
the penalty parameter indicating the 
significance of outliers; n, the number of 
training samples. When the number of 
features is enormous, however, the cost of 
SVM training is very high and overfitting is very 
likely. As a result, a feature selection process is 
required, and the quality of the outputs has a 
significant impact on SVM accuracy. Figure 3 
depicts the fundamental principles of the SVM 
algorithm. The hyper parameter configurations 
of SVM are the kernel function, the penalty 
parameter C and the γ. 
3.4  K-Folds Cross-Validation 

Cross-validation is a model evaluation 
method that is superior to residual evaluations 
since it predicts how well the learner will 
perform when asked to make new predictions 
for data, which was handled by eliminating 
some of the data before training. After 
training, the data that was removed can be 
used to assess the learned model's 
performance on ''fresh'' data. The data set is 
divided into two parts: the training set and the 
testing set. The function approximator solely 
uses the training set to fit a function. The 
function approximator is then asked to 
forecast the output values for the data in the 
testing set (which it has never seen before).  

The errors it makes are compounded in 
the same way as before to produce the mean 
absolute test set error, which is used to 
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evaluate the model. The data set is partitioned 
into 𝑘 subsets, and the holdout approach is 
applied to each one 𝑘 times. Each time, one 
of the 𝑘 subsets is utilized as the test set, 
while the remaining 𝑘 − 1  subsets are 
combined to form the training set. The 
average error for all 𝑘  trials is then 
computed. The advantage of this strategy is 
that it is less important how the data is 
separated. Every data point appears exactly 
once in a test set and 𝑘 − 1  times in a 
training set.  

As 𝑘 is increased, the variance of the 
resulting estimate decreases. K-folds are 
frequently used in applied machine learning to 
compare and select a model for a predictive 
modeling issue. It produces skill estimates with 
less bias than other approaches since it is 
straightforward to understand and apply. 
Additionally, it is less biased than previous 
approaches because an average estimate of 
any characteristic is less biased than a 
single-shot estimate [43, 44]. According to 
[43], the entire process of the K-Fold 
cross-validation technique employed in this 
area of the paper is broken down into four 
phases. 

Step 1: If the total number of training 
instances in 𝑆 sets is 𝑚, divide the entire 
training set 𝑆  into 𝐾  equal subgroups so 
that each subgroup contains 𝑚/𝑘  training 
examples. 

Step 2: Select a model from the collection 
to serve as 𝑀𝑖. Next, select 𝑘 − 1 from the 
training subset {𝑆1,𝑆2,𝑆3,𝑆𝑗−1,𝑆𝑗+1, … , 𝑆𝑘,}. The 

last one left in the order is 𝑆𝑗 . For the 
hypothetical function ℎ𝑖𝑗 , practice with this 
𝑘 − 1  subset 𝑀𝑖. Use the last 𝑆𝑗 as a test to 
see if you can encounter issues. 

Step 3: Because we release 𝑆𝑗 (j from 1 
to k) empirical errors one at a time. As a result, 
the mean of all 𝑘 empirical errors are the 
empirical error for a 𝑀𝑖,. Consequently, the 
average produced is the K-Fold 
cross-validation performance metric in the 
loop. 

Step 4: Pick the ones with the lowest 
average empirical error rate 𝑀𝑖. Next, use all 
𝑆 to complete additional training for the final 
ℎ𝑖. 
3.4.1. Training Data Process 

Reading the root mean square voltage 
and current datasets for three-phase power 
distribution systems begins the training 
operation. The training dataset is then split 
into K subsets of 604 for cross-validation, 
yielding K identical models right away. The 
models are then trained on K-1 partitions 
before being evaluated on the remaining 
partitions. The number of groups into which a 
given data sample is divided is represented by 
K, a method parameter. In the model, for 
example, K is 10, and the processing is shown 
in Figure 2. The total performance of the 
approach is determined by averaging the final 
evaluation performance K times. Finally, 
cross-validation is used to improve the 
outcomes of this little dataset. 

 



     

 

 

2331 

 

Journal of Harbin Engineering University 

ISSN: 1006-7043 
Vol 44 No. 8 

August 2023 

 

Figure 2. The Process of 10-Fold Cross-Validation 
 

There are several lightGBM 
hyperparameter setups (Table 1), including the 
learning rate, the number of trees, the 
subsample ratio, the subsample ratio of 

columns, the regularization terms of the 
number of leaves, and the minimum amount 
of data in a child leaf. 
 

 
Table 1. Tuned LightGBM and SVM parameters for model development. 

Hyperparameter configurations 

of LightGBM 

Hyperparameter configurations 

of SVM 

Variables Tuned LightGBM 
parameters 

Variables Tuned SVM 
parameters 

boosting_type  gbdt Regularization 9.703 
class_weight  None constant C 200 

colsample_bytree  1 cache_size 0.0 
importance_type  split coef0 3 

learning_rate  0.2 degree 1.8 
max_depth  -1 epsilon scale 

min_child_samples  91 gamma rbf 
min_child_weight  0.001 kernel -1 

min_split_gain  0.3 max_iter True 
n_estimators  280 shrinking 0.001 

n_jobs  -1 tol False 
num_leaves  10 verbose 9.703 

objective  None   
random_state  291   

reg_alpha  0.5   
reg_lambda  1.00E-06   

silent  warn   
subsample  1   

subsample_for_bin  200000   
subsample_freq  0   
feature_fraction  0.9   

All Data

Training Valid 

Split 1 Split 2 Split 3 Split 4 Split 5 Split 6 Split 7 Split 8 Split 9 Split 10

Pred1 Pred2 Pred3 Pred4 Pred5 Pred6 Pred7 Pred8 Pred9 Pred10

Final Evaluation

T
ra

in
in

g
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e
ts
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bagging_freq  5   
bagging_fraction  0.9   

 
3.5. Sensitivity analysis 

Performance is significantly impacted by 
how the learning algorithms' 
hyper-parameters are configured. The variety 
of hyper-parameter search and tuning 
techniques depends on the diversity of 
learning algorithms. The hyper-parameter 
values are adjusted for the validation set after 
training the machine learning models on the 
training set. The phrase "load model" refers to 
a mathematical relationship between the 
active or reactive power of a load bus and the 
same bus voltage. There are two methods for 
modeling loads: the first gauges the active and 
reactive powers' voltage and frequency 
sensitivity at the substation; the second builds 
a composite load model for a specific 
substation based on the mix of load classes at 
that substation. Static models and dynamic 
models are the two categories into which load 
models are separated. 

 

The frequency-dependent model is 
derived by multiplying the exponential model 
by a factor that depends on the bus frequency 
[45]; the factor is responsible for the efficiency 
of the system data for the creation of the 
prediction model. 

 

𝐹𝑎𝑐𝑡𝑜𝑟 = [1 + 𝑎𝑓(𝑓 − 𝑓0)]              (5) 

Where 𝑓 = The frequency of the bus voltage; 
𝑓0=Nominal frequency; and 𝑎𝑓=The frequency 
sensitivity parameter. 

The active and reactive power responses 
to step disturbances of the bus voltage are 
represented in the ERL model; the load that 
recovers slowly over time is the right 
candidate for this model [46]. The ERL is 
modeled as a nonlinear first-order equation of 
the load response shown in the equation. 

 
 
 

𝑇𝑝
𝑑𝑥𝑝

𝑑𝑡
= −𝑥𝑝 + 𝑃0 (

𝑉

𝑉0
)

𝑁𝑝𝑠
− 𝑃0 (

𝑉

𝑉0
)

𝑁𝑝𝑡
,  

(6) 

𝑇𝑝
𝑑𝑥𝑝

𝑑𝑡
= −𝑥𝑝 + 𝑃0 (

𝑉

𝑉0
)

𝑁𝑝𝑠
− 𝑃0 (

𝑉

𝑉0
)

𝑁𝑝𝑡
, (7) 

𝑃𝑑 = 𝑥𝑝 + 𝑃0 (
𝑉

𝑉0
)

𝑁𝑝𝑡
, (8) 

𝑇𝑞
𝑑𝑥𝑞

𝑑𝑡
= −𝑥𝑞 + 𝑄0 (

𝑉

𝑉0
)

𝑁𝑞𝑠
− 𝑄0 (

𝑉

𝑉0
)

𝑁𝑞𝑡
,  

(9) 

𝑄𝑑 = 𝑥𝑞 + 𝑄0 (
𝑉

𝑉0
)

𝑁𝑞𝑡
,  (10) 

where 𝑥𝑝 and 𝑥𝑞 are state variables related 
to active and reactive power dynamics, 𝑇𝑝and 
𝑇𝑞  are time constants of the exponential 
recovery response, 𝑁𝑝𝑠  and 𝑁𝑞𝑠  are 
exponents related to the steady-state load 
response, 𝑁𝑝𝑡 and 𝑁𝑞𝑡are exponents related 
to the transient load response. The equations 
above are responsible for computing the 
power load factor of the system data for the 
creation of the prediction model. 

The measurement-based methodology 
adapted from [47] employs a step-by-step 
process. Getting measurement data is the first 
step, followed by choosing a load model 
structure, estimating parameters, and 
validating the load model. Under a specific set 

of circumstances and disturbances, the 
measurement is performed. By minimizing the 
discrepancy between the load model response 
and the field observations, the model 
parameters are finally computed. 

Equation (10) explains how to express the 
measurement-based load model as a 
curve-fitting issue. 

𝑚𝑖𝑛
1

𝑛
∑ [(𝑃𝑖

𝑚 − 𝑃𝑖
𝑒)2 + (𝑄𝑖

𝑚 − 𝑄𝑖
𝑒)2]𝑛

𝑖=1 , (11) 

𝑃𝑖
𝑒and 𝑄𝑖

𝑒are the modeled active and reactive 
power, 𝑃𝑖

𝑚and 𝑄𝑖
𝑚are the measured active 

and reactive power, respectively. Least 
squares, Genetic techniques (GA), Support 
Vector Machines (SVM), Kalman Filter (KF), 
Levenberg-Marquardt method, and Simulated 
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Annealing are some of the reliable techniques 
that can be used to determine the parameters. 
3.6. Evaluation Criteria 

The coefficient of determination (𝑅2) is a 
standard metric in machine learning for 
evaluating the linear relationship between 
actual and predicted values. Furthermore, 
mean absolute error (MAE) and mean squared 
error (MSE) are popular model performance 

metrics. MAE and MSE calculated the mean of 
the absolute errors and the mean of the 
squared errors between the actual values and 
the model-predicted values on the data set. 
The Root Mean Squared Logarithmic Error 
(RMSLE) calculates the difference between 
predicted and actual results. These are their 
definitions: 

𝑀𝐴𝐸 =  
∑ |𝑦̂𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
, (12) 

𝑀𝑆𝐸 =
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
, (13) 

𝑅2 = 1 −
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

, (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖−1 , (15) 

𝑅𝑀𝑆𝐿𝐸 =  √
1

𝑛
 ∑ (log(𝑦̂𝑖 + 1) − log(𝑦𝑖 + 1))2𝑛

𝑖=1 , (16) 

 
𝑛  is the total number of observations, 𝑦𝑖  
represents the average value, 𝑦𝑖 the true 
value, and 𝑦̂ represents the predicted. 
 
 
 
4. Results 

The configurations of the 
hyper-parameters of the learning algorithms 
have a significant effect on the performance. 
The diversity of learning algorithms 
determines the variety of hyperparameter 
search and tuning methods. After training the 
machine learning models on the training set, 
the hyper-parameter settings are tweaked for 
the validation set. As used in power systems 
terminology, the load model describes a 
mathematical relationship between a load 
bus's active or reactive power and the same 
bus voltage. Two approaches exist for load 
modeling: the first measures the voltage and 
frequency sensitivity of the active and reactive 
powers at the substation; the second is to 
construct a composite load model for a given 
substation based on the mix of load classes 
substation. Load models are divided into two 
types: static models and dynamic models.  

Data pre-processing is a crucial first step in 
every machine-learning technique. In this 
paper, each regression model's leading 
training and prediction measure is distance. 
First, each data characteristic is normalized 
such that its contribution to the distance 
measure is proportional. Next, the calculation 
of a fresh weight is done to guarantee that the 
average difference between all locations 
remains consistent between weight sets. The 
data is then segregated into training, 
validation, and testing sets. 

This section may be divided into 
subheadings. It should provide a concise and 
precise description of the experimental 
results, their interpretation, as well as the 
experimental conclusions that can be drawn. 
4.1. Visualising Training Sets Results 

The training and testing results for the 
residuals LGBM model show that both the 
train and test accuracy values are better than 
for the LGBM model, as shown in Table 2 is 
used to calculate the load profiles for 
Tshwane's energy grid's electric power 
distribution system. In applied machine 
learning, K-folds are often used to compare 
and choose a predictive modeling issue. 

 

 

Table 2. Summary of Train and Test Results of the LGBM model. 
 Irms_A_avg 

Residuals 
(R2) 

Irms_B_avg 
Residuals 

(R2) 

Irms_C_avg 
Residuals 

(R2) 
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Train 0.941 0.976 0.801 
Test 0.898 0.903 0.813 

 
4.1. Evaluation cross-validation model Model 
Results 

Tables 3 and 4, respectively, illustrate the 
performance of the K-Fold cross-validation 
model for the SVM and LightGBM models. The 
Mean Absolute Error (MAE), Mean Square 
Error (MSE), Root Mean Square Error (RMSE), 
R-Square (R2), Root Mean Squared  

 
Logarithmic Error (RMSLE), and Mean Absolute 
Percentage Error (MAPE) are all displayed in 
the tables. Due to its lower values of the MAE 
(3.0698), MSE (15.2757), RMSE (3.9020), 
RMSLE (0.1433), and MAPE (0.0049), 
respectively, the estimation-based lightGBM is 
shown to be more accurate than the SVM in 
this experiment. 

 
Table 3. LightGBM Evaluation Model. 

Fold MAE MSE RMSE R2 RMLSE MAPE 

0 3.1850 16.3168 4.0394 0.9212 0.1445 0.1175 
1 3.1425 16.1701 4.0212 0.9159 0.1486 0.1195 

2 2.8842 12.8020 3.5780 0.9258 0.1379 0.1141 

3 2.8864 13.1910 3.6319 0.9180 0.1381 0.1122 

4 3.1488 16.0548 4.0068 0.9143 0.1499 0.1207 

5 3.2420 18.3126 4.2793 0.9150 0.1444 0.1144 

6 3.1601 15.7749 3.9718 0.9183 0.1515 0.1246 
7 3.1772 15.9247 3.9906 0.9096 0.1448 0.1199 

8 3.0629 15.6130 3.9513 0.9203 0.1429 0.1145 

9 2.8092 12.5966 3.5492 0.9320 0.1307 0.1063 

Mean 3.0698 15.2757 3.9020 0.9190 0.1433 0.1164 
Std 0.1450 1.7361 0.2245 0.0060 0.0060 0.0049 

Table 4. SVM Evaluation Model. 

Fold MAE MSE RMSE R2 RMLSE MAPE 

0 5.1526 45.2995 6.7305 0.7811 0.2217 0.1849 
1 5.2075 44.9283 6.7029 0.7665 0.2373 0.2034 

2 4.6869 36.2160 6.0180 0.7900 0.2155 0.1833 

3 4.6784 34.8448 5.9029 0.7835 0.2136 0.1820 

4 4.7701 37.9491 6.1603 0.7975 0.2225 0.1860 

5 4.9934 42.8764 6.5480 0.8010 0.2125 0.1799 

6 4.9565 40.8569 6.3919 0.7885 0.2295 0.1996 
7 5.0272 41.4177 6.4357 0.7648 0.2248 0.1915 

8 5.1403 46.0304 6.7846 0.7652 0.2253 0.1912 

9 4.6993 36.8997 6.0745 0.8009 0.2080 0.1750 

Mean 4.9312 40.7319 6.3749 0.7839 0.2211 0.1877 
Std 0.1965 3.8615 0.3037 0.0136 0.0084 0.0084 

4.1. Prediction Error Output and Residuals 
Model 

Figure 3 shows the estimated prediction 
error for the lightGBM model. Again, the 
Figures indicate that the lightGBM model had 

the most accurate prediction compared to 
their R-Square values of 89.8%, 90.3%, and 
88.5%, respectively for Irms_A_avg, 
Irms_B_avg and Irms_C_avg. 
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Figure 3. Prediction Error for the Light Gradient Boosting Machine Model (a) Irms_A_avg Output 
Prediction Error; (b) Irms_B_avg Output Prediction Error; (c) Irms_C_avg Output Prediction Error. 

 
Figure 3 depicts the calculated residual model for the LGBM, according to the developed machine 
learning model, the training and testing residuals for LGBM models. 

  

Figure 4. Residuals for Light Gradient Boosting Machine Model (a) Irms_A_avg Output 
Prediction; (b) Irms_B_avg Output Prediction; (c) Irms_C_avg Output Prediction 

 
Figure 4 shows the estimated prediction 

error for the SVM models for the Irms_A_avg 
Output, Irms_B_avg Output, and Irms_C_avg 

Output. Figure 5 indicate that the SVM model 
predicted 80.1%, 78.8%, and 81.3%, 
respectively, owing to their R-Square values. 

 

Figure 5. Prediction Error for the SVM Model (a) Irms_A_avg Output Prediction Error; (b) 
Irms_B_avg Output Prediction Error; (c) Irms_C_avg Output Prediction Error. 



     

 

 

2336 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 44 No. 8 

August 2023 

 
Figure 6. Residuals for SVM Model (a) Irms_A_avg Output Prediction; (b) Irms_B_avg Output 

Prediction; (c) Irms_C_avg Output Prediction. 
 

4.1. Prediction Error Output Validation  
The relationship between a model 

parameter and the model score is often 
established using a validation curve. Two 
curves make up a validation curve: one for the 
cross-validation score and one for the training 
set score. This paper uses 10-fold 
cross-validation as its validation curve 

function. For Irms_A_avg Output, Irms_B_avg 
Output, and Irms_C_avg Output, respectively, 
Figure 8 displays the SVM validation curve. The 
curve in Figure 6 suggests that K = 10 would be 
the ideal value for K. The training and 
cross-validation results improve with 
increasing neighbors (K). 

 

Figure 7. Prediction Error for the Validation Curve for SVM Model (a) Irms_A_avg Output 
Prediction Validation; (b) Irms_B_avg Output Prediction Validation; (c) Irms_C_avg Output 

Prediction Validation. 

 

Figure 8. Residuals for Validation Curve for SVM Model (a) Irms_A_avg Output Prediction 
Validation; (b) Irms_B_avg Output Prediction Validation; (c) Irms_C_avg Output Prediction 

Validation
 

The training dataset is then split into K 
subsets of 604 for cross-validation. This makes 
it feasible to produce identical K models 
without delay. A validation test is presented to 

check the effectiveness of the proposed 
technique. The estimation-based lightGBM is 
more precise than the SVM since its MAE, 
MSE, RMSE, RMSLE, and MAPE values are 
more diminutive than SVM. However, as the 
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number of neighbors (K) increases, the 
accuracy of the training and cross-validation 
scores decreases. In other words, the ideal 
value of K for the Irms A avg forecast would be 
10. 

 
5. Conclusions 

In this paper, machine learning models 
are used to estimate the load profiles for the 
electric power distribution system in Tshwane 
municipality. The authors employ MLP, RBF, 
and linear SVM kernels. It determines the load 
profiles for the electricity distribution network 
in Tshwane. K-folds are frequently used in 
applied machine learning to compare and 
select a predictive modeling problem. Reading 
the root mean square voltage and current 
datasets for three-phase power distribution 
systems correspondingly is the first step in the 
training approach. For cross-validation, the 
training dataset is then split into K subsets of 
604 each, yielding K identical models right 
away. Each model is then tested on the 
remaining partitions after being trained on K-1 
partitions. The method parameter K denotes 
the number of groups that are created from a 
given data sample. The final evaluation 
performance is averaged K times to get the 
method's total performance. The results of 
this small dataset are then enhanced by 
cross-validation. It is mentioned how well the 
K-Fold cross-validation model performs for the 
SVM and LightGBM models. The relationship 
between a model parameter and the model 
score is often established using a validation 
curve. Two curves make up a validation curve: 
one for the cross-validation score and one for 
the training set score. Future work will look at 

recursive feature elimination with 
cross-validation (RFECV) to better understand 
what features will be included in the 
machine-learning model. Even though the data 
points used in this research are over 6040 by 
20, more data is required to improve the 
accuracy of the prediction model. 
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