

515

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

A Novel Pattern Storage System to Preserve Patterns in a Pattern Database

Khedekar Vilas Baburao1, Dharmendra Singh Rajput2*
1 School of Computer Science and Engineering, Vellore Institute of Technology,

Vellore, India
2* School of Computer Science Engineering and Information Systems, Vellore Institute of Technology,

Vellore, India

Abstract: Various data mining techniques nowadays can generate results popularly known as patterns from

large data repositories. However, there is no facility or infrastructure, or model to preserve it as persistent

storage of patterns. The proposed storage system provides a model to make these patterns persistent. Most

organizations are interested in knowledge or patterns rather than raw data or many unprocessed data because

extracted knowledge plays a vital role in making the right decision for the organization's growth. In this paper,

Frequent Pattern Mining (FPM) algorithms are used to extract large data set patterns. Result comparison was

done using Apriori, Fp-Growth, and Eclat. The proposed model of the Pattern Storage System uses a pattern

database to make all patterns persistent. Pattern Storage System (PSS) is used to store FPM algorithms' results

in the MongoDB NoSQL database. The work proposed in this paper reduces unnecessary processing on row

datasets for which patterns are already available. Pattern retrieval comes very easy with minimum time

compared to traditional ways of finding patterns. The proposed model uses a unique way of generation of

pattern id which is useful for pattern storage as well as pattern retrieval.

Keywords: Frequent Pattern Mining, Pattern Database, NoSQL Database, MongoDB.

I. Introduction

Currently, a substantial volume of data is

continuously generated by diverse sources. Owing

to the exponential growth of data [1], it is estimated

that the global data volume would increase twofold

every two years. Since 2010, it has already

experienced a 50-fold increase. Both data generated

by humans and data generated by machines are

expanding at a rate that is 10 times faster than

typical enterprise data. Additionally,

machine-generated data is growing even more

rapidly at a rate of 50 times. In today's business

environment, the majority of stakeholders are in

need of a fast and precise system to extract valuable

information from large datasets. This is done with the

purpose of making well-informed decisions that will

contribute to the growth of their businesses [2], [39].

Data mining and data analytics are extensively

utilised in diverse industries, including healthcare [3],

tourism [4], manufacturing, electricity supply [5],

financial services [6], railway safety management [7],

education [8], wireless networking [9], [41], and

quality monitoring for web services [10], as well as

not-for-profit organisations [11].

Users cannot successfully utilise the vast amount

of data directly, and significant data insights may not

be immediately extrapolated from casual observation

[12]. Conventional databases are inadequate for

storing and handling this vast dataset; therefore, it is

stored in data warehouses for subsequent analysis

and utilisation. Further investigation is required to

uncover concealed insights and obtain valuable

patterns from this data [13].

Data mining techniques play a crucial role in

extracting knowledge, usually referred to as patterns,

from unprocessed databases. These methodologies

yield outcomes like as association rules, clusters,

decision trees, and other frameworks that aid in

describing unprocessed data [14], [34]. Frequent

Pattern Mining (FPM) is an essential method that

may detect repeating connections among various

things in the data [40], and express them as

association rules [15]. Functional pattern mining

(FPM) is essential for executing a wide range of data

mining tasks. [15]. Many of the researchers proposed

algorithms to find association rules like Apriori [16],

Fp-Growth [17], Eclat [18], Tree Projection [19], COFI

[20], TM [19], P-Mine [21], LP-Growth [22],

Can-Mining [23], EXTRACT [24].

The resulting patterns are succinct and convey a

full semantic representation of the source material

[25], [35]. In the realm of databases or data

warehouses, the extracted patterns are not

considered to be enduring entities. The current

516

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Database Management Systems are insufficient in

terms of their strength and adaptability to handle

this novel form of knowledge. Therefore, a

specialised management system is needed that can

effectively model and store patterns" [12]. Extensive

study in data mining has resulted in the discovery of

numerous complex patterns. It utilises a unique

technique to effectively handle these patterns for

future study. The Pattern Storage System functions

as a centralised database for storing the information

derived from various algorithms. These technologies

enable the efficient comparison, querying, and

storage of the Pattern in order to retrieve

information or patterns as required" [14]. Patterns

should be represented, stored, manipulated, and

retrieved in a manner that is analogous to how data

is handled in conventional database management

systems (DBMS) [13], [42]. Due to the limitations of

DBMS in handling data with complex meaning, it is

necessary to utilise a distinct database management

system to efficiently manage such data.

In response to the unpredictable nature of

patterns, the authors have suggested a pattern

warehouse model with a specific architectural design.

Nevertheless, the problem remains if patterns

continue to vary in response to changes in input

datasets. The proposed storage system presents a

paradigm that guarantees the durability of these

patterns in a NoSQL database, so resolving the

challenge at hand.

The paper is segmented into significant

subsections. 1. The Literature Survey entails a

comprehensive examination of association rules

mining algorithms such as Apriori, FP Growth, and

Eclat. It also includes a comparison analysis of these

association rule mining algorithms. The background

of the study includes essential aspects about the

production and storage architecture of patterns. 3.

The suggested design provides a detailed description

of the pattern storage architecture. 4. The Result

and Discussion section provides details regarding the

duration of pattern generation and the time

necessary for pattern storage in the pattern

database.

II. Literature Survey

Currently, there exists a variety of techniques that

can be used to extract significant insights, sometimes

known as patterns, from large datasets. The

subpoints A, B, C, and D provide further clarification

on the previous study undertaken in this topic.

Subpoint D includes a table that provides a

comparison of several FPM algorithms developed by

different scholars.

A. The Apriori Algorithm

The Apriori algorithm [16] generates item sets that

recur frequently in order to establish association

rules. The method utilises a recursive strategy to

detect sets of (K + 1) items from all sets of k items.

Transactional data refers to the information related

to the acquisition of different products in various

transactions, as shown in Table I. In order to identify

frequent item sets, it is necessary to scan the

complete database and compute the support of each

item set. Only those item sets that above the minimal

support level are selected. This method continues

until the entire database has been examined and no

further frequent item-sets can be recognised.

Table 1. Sample Transactional Data

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Figure 1. Testing data- load current (amperes)

Although the Apriori algorithm demonstrates

commendable performance, it is important to

recognise its considerable limits. The approach

requires the repeated examination of the full

database for each iteration [26]. In addition,

processing large input datasets requires a significant

quantity of internal memory [1] [27]. In order to

tackle these difficulties, scientists have devised

innovative algorithms such as AprioriTID,

AprioriHybrid, MR-Apriori, and HP-Apriori with the

aim of minimising the duration of execution.

Nevertheless, the processing time needed to analyse

the existing patterns remains constant.

An enduring resolution is necessary to eradicate

the necessity for iterative database scanning and to

minimise the data kept in internal memory. The

Pattern Storage System (PSS) provides a practical

answer to this problem. PSS stores previously

formed patterns in the NoSQL database, which

reduces the need for repetitive scanning of the

database and minimises the internal memory needed

for creating new patterns.

B. Eclat Algorithm

The Eclat technique, short for Equivalence class

transformation, is utilised to detect common

itemsets by employing a vertical data format, as

demonstrated in Table III. This algorithm employs a

grouping mechanism to categorise transactions

involving related items, hence minimising the need

for repetitive scanning of the full database. The

Eclat method converts the input data format from

horizontal to vertical, as shown in Table III. After the

transactions from all k-item sets are intersected,

(k+1)-item sets (Frequent) are formed.

518

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Table 2 Item sets-1 in Vertical Data Format [27]

Table 3 Item sets-2 in Vertical Data Format [27]

Table 4 Item sets-3 in Vertical Data Format [27]

In this approach, the first iteration entails a

comprehensive examination of the entire database.

Subsequent scans to find frequent item groupings are

unnecessary. Due to the vertical data format,

support counts per itemset are calculated only in the

initial iteration, reducing the necessity of

recalculating the support count of an item.

C. FP Growth Algorithm

FP-Growth is an association rule mining technique

that discovers item sets without incurring fees for

generating regular candidates [28]. This strategy use

a two-pass methodology to discover recurring

patterns. During the first iteration, the FP Growth

Algorithm assesses the frequency of numerous

instances of an item in the transactional datasets and

keeps track of this frequency in a data structure

called the 'Header Table.' In the second iteration,

the method creates an FP-tree structure by placing

transactions one by one into a tree [36]. By utilising

a Division and Conquer strategy, this method

preserves data regarding the correlation between

regularly compressed elements within a pattern tree.

Utilising the hierarchical arrangement of the tree

effectively addresses the difficulty of regularly

recognising patterns. Figure 4 displays the

Conditional FP-tree specifically linked to node I3,

serving as an illustrative example. Figure 3 provides

comprehensive details about all conditional FP-Trees.

[27].

Figure 2. Frequent pattern Tree (FP-Tree)

Figure 3. Conditional FP-Tree associated with Node 13

519

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Table 5 Conditional Pattern Base and Conditional Fp-Tree [27]

As a result, this approach results in a decrease in

the cost of identifying common patterns.

Nevertheless, the FP-Growth algorithm exhibits a

significant time overhead when employed on large

input datasets. There are many techniques available

for detecting repeating patterns in raw input

datasets. Below is a compilation of many algorithms,

including the TreeProjection algorithm, COFI

algorithm, TM algorithm, P-Mine algorithm,

LP-Growth method, Can-Mining algorithm, EXTRACT

algorithm, and others.

D. Comparisons of Frequent Pattern Mining Algorithms

Table 6 Comparison of Frequent Pattern Mining Algorithms [29]

FPM

Algorithm
Technique Used Advantages Disadvantages

Apriori
An iterative level-based

search mechanism

k-item sets uses a repeated

level-based search

technique to find (k + 1)

–item sets

If datasets are more than k-item

sets, it creates multiple sets of

candidates and scans the

database frequently to generate

the support count for the item

sets.

FP-Growth
Divide-and-conquer

technique

Keeps all association

information of item sets,

which reduces the

searching time of data.

The processing time to create

FP-Tree becomes more if the

input data set size is large.

EClaT
Vertical data format

technique

Repetitive scanning of the

entire database is not

required.

In the case of a large input

dataset, it needs more internal

memory and processing time.

TreeProjection

Different searching

techniques such as

breadth-first, depth-first,

or a mixture of the two.

It requires lesser time

because the algorithm

searches the frequent item

sets, which are a part of a

subset for all transactions.

Various representations of the

lexicographic tree become a

limitation in the form of

efficiency in memory

consumption.

COFI

Pruning method used to

constructs short trees

from the Frequent

Pattern(FP)-Tree

The pruning method is

used to minimize the use of

memory-space by creating

small COFl-Tree

The performance of algorithms

reduces in sparse databases

when the threshold value is low

for minimum support. Its

performance depends on the

threshold value.

TM
representation of vertical

data like the EClaT.

It saves the intersection

time for finding frequent

item sets by compressing

the item sets into a list of

transactions.

The processing speed of this

algorithm is slower than the

FP-Growth algorithm.

P-Mine

A parallel disc-based

approach to multi-core

processors.

Optimizes scalability and

performance

 by executing frequent

Algorithms can only be optimized

at the maximum level when there

are multiple cores available in the

520

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

mining of items in parallel

with multiple processors

processors.

LP-Growth
 Linear Prefix Tree

(LP-Tree)

Quickly generates LP-Tree

in the manner as a group of

array operations are used

to create various nodes

concurrently

Memory needs to be released

continuously as the items from

the transaction saved in various

LPNs.

Can-Mining

Incremental manner of

Canonical-Order Tree

(Can-Tree)

When the threshold value

for the minimum support is

high, then it performs

better than the FP-Growth

algorithm.

If the minimum support for the

threshold value is too low, then

mining time is high.

EXTRACT

Galois lattice a

mathematical concept

More than 300 items and

mines 10 attributes with an

execution

time

If the data set changes, then the

algorithm must be repeated to

mine a new set of items.

Table 7 Runtime of Different Horizontal Layout Algorithms [29]

Algorithm Transaction size (MB) Threshold Execution time (in Sec)

Apriori 30 1.5 15.9

SETM 30 1 114

AprioriTID 30 1.5 150

AprioriHybrid 30 0.75 22.5

FPGROWTH 30 3 31.404

PP-Mine 30 1.18 34.311

COFI 30 3.11 18.8445

DynGrowth 30 5 8.23

PRICES 30 5 450

TFP 30 3 4.1955

SSR 30 1 5.298

The results produced by data mining algorithms,

which encompass significant insights or patterns, are

ephemeral and immediately deleted after utilisation.

A pattern warehouse provides the essential structure

for ensuring the constant maintenance of all patterns

[30]. The current system provides a solution for

pattern generation, classification, and manipulation.

"To reveal hidden knowledge and increase the value

of these patterns, it is imperative to conduct further

investigation into sophisticated and advanced

techniques." [13, 31].

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Figure 4. Runtime of different horizontal layout algorithms [29]

The results obtained via data mining algorithms,

such as useful insights or patterns, are ephemeral.

Once the patterns are employed, they are instantly

erased. An architecture for pattern warehousing is

implemented to ensure consistent maintenance of all

patterns [30]. The existing system deals with the

generation, classification, and manipulation of

patterns. "Further investigation into more intricate

and advanced methodologies is necessary to unveil

concealed knowledge and augment the significance

of these patterns" [13], [31].

The existing approach is limited by its inability to

retain the transient outcomes of data mining

techniques. Data mining outcomes are evident in

the form of association rules, decision trees, clusters,

and other patterns that reveal the distinctive

features of the input data [3], [33]. The input data

structure for the generated patterns is both

semantically meaningful and concise [4], [38]. When

patterns become unstable, other programmes

require access to them, which necessitates the

regeneration of the same pattern. This exacerbates

superfluous and duplicative processing expenses.

III. Pattern Storage Architecture

The proposed system provides a solution for this

situation. It enables the storage of previously

created patterns, either in the pattern database or in

the pattern warehouse, depending on the type of

pattern. When there are repeated patterns for the

same data items, the stored patterns are directly

given to the application, avoiding the need for

additional processing on raw data sets.

Presently, traditional databases lack the capability

to manage and store the vast amount of data, hence

requiring the utilisation of data warehouses for

storing and subsequent processing. Data mining

techniques heavily depend on databases and data

warehouses as their main sources of information.

The process of extracting latent knowledge from data

warehouses leads to the creation of distinctive forms

of information, generally referred to as patterns [6].

These patterns are obtained using several data

mining algorithms [7], such as association rules,

classification, clustering, decision trees, and other

approaches employed to extract concealed

knowledge from large datasets. Valuable knowledge

becomes ephemeral if not stored [8], [32].

Currently, apps that generate patterns operate on a

disposable basis. Patterns that are generated can fall

into two categories: 'simple' or 'complex' [9]. It is

important to note that the nature of these patterns is

not permanent [10]. The suggested system presents

two approaches to guarantee the long-term storage

of all patterns: storing patterns in a pattern database

and storing patterns in the pattern warehouse.

A. Architecture

Figure 5 illustrates the operational mechanism of the

Pattern Storage System (PSS) using a layered design.

This figure illustrates the methodology for

guaranteeing the enduring existence of all patterns.

The architecture is divided into four separate layers:

The system consists of four layers: the Input Data

522

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Layer, the Processing/Data Mining Layer, the PSS

Layer, and the Application Layer.

Figure 5. Layered Architecture for Pattern Storage System

1. Input Data Layer:

This layer provides all necessary info to the layer

above it. Raw or unprocessed data is used as an

input for different data mining techniques and can be

found in databases, data warehouses, and files. The

main purpose of this layer is to guarantee the

availability of all essential data for the next stage. The

accuracy of the outcomes relies on the quality of the

dataset and the correctness of the data mining

algorithm.

2. Processing / Data Mining Layer

Data mining is the process of obtaining valuable

information from large databases, data warehouses,

and files. Popular data mining techniques

encompass classification, association rule mining,

clustering, and decision trees. Every technique

produces a variety of patterns depending on the

algorithms employed and the specifications of the

customer. The Processing Layer receives extensive

datasets from the Input Data Layer, applies several

data mining algorithms to analyse them, and

produces patterns according to customer

requirements.

3. Pattern Storage System (PSS) Layer

After the production of patterns and the fulfilment

of client requirements, the inherently unstable

nature of patterns results in their automatic

obliteration. Therefore, if another customer has the

same request for the same dataset, there is no

provision to use patterns that were developed

before. The entire process of generating patterns

must be repeated, which places an unnecessary

demand on the processing unit. To resolve this

issue, it is necessary to ensure that all created

patterns are stored permanently. The created

patterns can be classified as either static or dynamic.

The Pattern Storage System (PSS) offers two kinds,

specifically Storing Patterns in NoSQL Databases and

Pattern Warehouses, to guarantee the long-term

existence of patterns.

a) Store Patterns in NoSQL Database:

Variable patterns experience modifications as the

input dataset is refreshed with the most recent

values. The variable patterns are stored in

databases for the convenience of updating them

whenever updates are made. NoSQL databases are

a suitable choice for assuring the survival of all

patterns in data mining findings, as they can

523

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

accommodate the lack of a defined structure.

b) Store Patterns in Pattern Warehouse:

The pattern warehouse functions as a storage

facility for established patterns. The patterns

produced by different data mining techniques are

kept in the pattern warehouse for later examination.

The inclusion of a particular pattern in the pattern

warehouse is contingent upon its similarity to

existing patterns, and the patterns are categorised

and stored according to their respective types.

4. Application layer:

Like the view component in the

Model-View-Controller (MVC) architecture, this layer

is linked to one or more applications. It has the

capability to immediately obtain suitable outcomes

from the Data Mining layer, bypassing the PSS

System, as well as from the Pattern Database and the

Pattern Warehouse.

B. Pattern Warehouse

The pattern warehouse facilitates the long-term

storing of patterns. Invariant patterns, derived from

past data, remain unaltered under particular

circumstances. The pattern warehouse provides the

ability to store comparable patterns in close

proximity. Furthermore, it offers segregated

compartments for the outcomes of different data

mining methodologies.

P = { P1, P2, P3, …. Pn} // P is pattern

D = {D1,D2,D3,….,Dn} // D is a data input

P = PSS (D)

If D is Historical / not change time to time then

Patterns are fixed then pattern P will be stored in the

Pattern Warehouse.

C. Pattern Database

The pattern database serves to temporarily store

patterns, which may undergo changes over time due

to alterations or updates in the source datasets. The

proposed system allows for the storage of variable

(frequently changing) patterns in the pattern

database using a NoSQL database such as MongoDB.

The choice of the specific NoSQL database is

contingent upon the type of patterns being handled.

For instance, in the case of association rules

generating associated items and quantities, such as

"Milk-Butter-Toast->15," the pattern name

"Milk-Butter-Toast" and the resulting quantity of 15

are stored. Here, the pattern name functions as the

"Key," and the quantity serves as the "Value."

Therefore, a Key-value pair NoSQL Database or a

Document Oriented NoSQL database would be

suitable for storing the aforementioned patterns.

P = { p1, p2, p2, …. Pn} nth number of patterns

D = {D1,D2,D3,….,Dn} // D is a data input

P = Algorithm (D)

If D is not historical / change from time to time

then Patterns P are variable then store in the Pattern

Database.

D. Advantages of PSS

PPS offers several advantages, such as a significant

decrease of over 80% in processing time, which

depends on the number of patterns stored in the

database. It also requires minimal internal space for

generating new frequent patterns, reduces

algorithmic complexity, ensures secure storage for all

generated patterns, and enables rapid computation

of results.

E. Database Selection for Storage System

The association rule algorithm produces diverse

frequent patterns, necessitating the use of a NoSQL

database for storing due to the lack of a predefined

pattern structure. Unlike relational databases,

NoSQL databases are the preferable choice for

managing input in any format and sequence due to

their ability to accommodate data input without

requiring a predefined format.

F. Disadvantages / Drawbacks of SQL Databases

SQL databases have restrictions in terms of data

type support, necessitating the use of predetermined

data input formats and sequences. Moreover, their

ability to scale is lower compared to NoSQL

databases, particularly when dealing with huge input

datasets. SQL database performance decreases as

the volume of input data grows, while NoSQL

databases are not impacted by the size of the input

dataset, ensuring efficient database operations.

G. MongoDB NoSQL Database

The objective of the proposed system is to reduce

algorithmic complexity, decrease processing time for

large input datasets, and minimise needless internal

memory consumption. It accomplishes this by

employing two primary approaches: firstly, by

retaining previously generated patterns in a durable

storage system (NoSQL Database), and secondly, by

524

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

updating previously stored patterns using the

MAP-REDUCE technique as needed. The table below

presents a comparative analysis of MySQL,

MongoDB, and other NoSQL databases.

Table 8 Comparison of MySQL, MongoDB and Other NoSQL databases [25]

Parameters MySQL Other NoSQL DB MongoDB

ACID Property Yes No Yes

Rich and flexible data model No

Partial-

Only simple data structures

support the flexibility of

schema.

Yes

Schema governance Yes No Yes

 Powerful aggregations, expressive joins, graphs

queries, faceted search
Yes No Yes

Native, Idiomatic language drivers No No Yes

Horizontal scale-out No
Partial: Controls on data

locality not available
Yes

BI and Analytics ready Yes No Yes

Enterprise-grade security, reliable management tools Yes No Yes

Cloud Service (Database as a service) Yes No Yes

IV. Pattern Storage in NoSQL Database

A. Architecture

The following architecture shows a building blogs

of the proposed model. The proposed model accepts

input data from various data sources as mentioned in

the diagram, minimum support and minimum

confidence.

Figure 6. Proposed model for Pattern Storage System

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

The database, file and data warehouse are a

storage media for all row datasets. Data mining

Engine is the brain of the pattern storage system

which accepts input data and generates patterns.

Pattern database is a storage unit of the proposed

model. Initially, data is fed into the FPM algorithm,

which generates patterns based on the input

parameters. The input parameters are the Name of

the file, minimum support, minimum confidence, etc.

The generated patterns will be preserved or store in

a MongoDB NoSQL Database using a pattern storage

system with a unique pattern id. Section IV. B shows

how pattern id will be generated?

B. Mathematical Representation of PID

PID = Index for patterns

FN = Name of the file

MS = Minimum Support

MC = Minimum Confidence

FD = From Date

TD = To Date

PID = FN + MS + MC + FD + TD

Name of the file, minimum support, and minimum

confidence, From-Date, To-Date are the parameters

to understand the existence of already generated

patterns.

C. Algorithm of the proposed model

Algorithm 1: Pattern Storage in Pattern Database

Input: Supermarket data which consist of date, time, customer id, and all grocery items with quantity and price

Output: Patterns (association rules) generated and preserve in pattern database.

1: Start

2: Pid = Fn + Ms + Mc + Fd + Td // Pid required to store result in NoSQL Database

3: I = { i1,i2,i3,....,in} //Input data items

4: T= {t1,t2,t3,....,tn} //Transactions

5: P={p1,p2,p3,….,pn} //Resultant Patterns

6: tPid = find(Pid);

7: IF tPid ≠ Pid THEN

8: P = Algorithm(I,Ms,Mc); //Generate patterns by Apriori, Eclat, FP-Growth etc

9: D = store(P,Pid); //Store patterns in Database (D) where Key=Pid, value=Patterns P

10: ELSE

11:

12:

Fetch patterns from the database where id = Pid

End

As shown in Algorithm 1, the pattern ID functions

as a unique identifier for all freshly generated

patterns. The construction of this ID involves the

amalgamation of the file name, minimum support,

minimum confidence, and the from date and to date.

In Algorithm 1, 'I' represents the input datasets, 'T'

represents all transactions, and 'P' defines the set of

patterns. The purpose of the 'find(Pid)' function is to

validate the existence of the provided 'Pid' in the

NoSQL database by taking it as an input parameter.

If the pattern ID is not present in the NoSQL

database, it signifies that the pattern corresponding

to the given parameters has not been created. Here,

the system invokes a suitable algorithm to create the

patterns and then saves them in the NoSQL database,

along with their respective pattern ID. Conversely, if

the pattern ID exists in the NoSQL database, the

system directly obtains all patterns linked to that

specific pattern ID.

V. Results and Discussion

The input dataset for this research consists of

supermarket data that includes information such as

the date, time, customer ID, and the amounts and

prices of all grocery goods. This dataset is quite

valuable for extracting correlations between two or

more components. The suggested architecture aims

to save association rules (patterns) in the pattern

database, reducing duplicate processing on datasets

where the patterns have already been developed and

are accessible in the pattern storage system.

A. Time required for storage

The following table shows the execution time

needed for an algorithm to generate patterns. It

depends on the size of input data given to an

algorithm. Various researchers have performed

multiple experiments to evaluate the efficiency of

526

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Frequent Pattern Mining (FPM) algorithms in terms

of execution time and memory usage when mining

frequent item sets from a data set.

Table 9 to 15 display time required to execute an

algorithm and store the pattern database patterns

and total execution time. Table value shows that the

execution time for an algorithm is different for

different support and confidence and time required

to store patterns in pattern database is also different

for different support and confidence.

Table 9 Time require for execution and storage for 10 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 0.006913 0.0065011 0.0134141

0.1 0.5 0.046891928 0.036593199 0.083503962

0.3 0.5 0.006407976 0.001573801 0.007990837

0.2 0.6 0.006868839 0.005994081 0.012897015

0.1 0.6 0.010102034 0.036376953 0.046500921

0.3 0.6 0.008606911 0.001837969 0.010458946

Table 10 Time require for execution and storage for 100 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 0.010266 0.007652 0.017918

0.1 0.5 0.01058507 0.033909798 0.044523001

0.3 0.5 0.007591963 0.001481056 0.0090909

0.2 0.6 0.009322166 0.005419016 0.014793158

0.1 0.6 0.032276869 0.032276869 0.042598009

0.3 0.6 0.007725 0.001298189 0.009031057

Table 11 Time require for execution and storage for 1000 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 0.015124 0.005512 0.020636

0.1 0.5 0.026736975 0.031322956 0.05811286

0.3 0.5 0.01424408 0.001650095 0.015913963

0.2 0.6 0.015249014 0.004982948 0.020246983

0.1 0.6 0.026834965 0.036405087 0.063281059

0.3 0.6 0.014594078 0.001335859 0.015939951

Table 12 Time require for execution and storage for 10000 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 0.22868 0.004312 0.232992

0.1 0.5 0.30761385 0.036018133 0.343665838

0.3 0.5 0.083166122 0.001574993 0.084755182

0.2 0.6 0.095443964 0.00454998 0.100008965

0.1 0.6 0.198750019 0.034356117 0.233121157

527

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

0.3 0.6 0.085319996 0.001767874 0.087103844

Table 13 Time require for execution and storage for 100000 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 1.656647 0.005782 1.662429

0.1 0.5 2.071568966 0.035224915 2.106809855

0.3 0.5 0.803340197 0.001611948 0.804961205

0.2 0.6 0.943425179 0.005573988 0.949010134

0.1 0.6 2.000555038 0.030066013 2.030660868

0.3 0.6 0.772572041 0.001523018 0.774102926

Table 14 Time require for execution and storage for 500000 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 8.074649 0.006062 8.080711

0.1 0.5 10.57745409 0.034883022 10.61238408

0.3 0.5 4.233985901 0.001554966 4.235555887

0.2 0.6 5.031282902 0.00455904 5.035853863

0.1 0.6 10.62795019 0.030773878 10.65874505

0.3 0.6 0.010827065 0.001610994 4.051609039

Table 15 Time require for execution and storage for 1000000 transactions

Support Confidence

Time in sec.

for rule

generation

Time in sec. to

store in

database

Total time in

sec. for

execution

0.2 0.5 14.688235 0.004801 14.693036

0.1 0.5 20.68601894 0.03431201 20.72034597

0.3 0.5 8.75031805 0.001667023 8.751995087

0.2 0.6 9.780344963 0.005496025 9.785851955

0.1 0.6 22.16622782 0.036239147 22.20249105

0.3 0.6 8.419794083 0.00159502 8.42140007

Table 9 displays the time required for execution

and storage for ten transactions. The limited

transactions were purposefully chosen to test the

proposed model's performance on a small dataset.

It was discovered that the time required to

compute patterns is less and comparatively the

same with different parameters, and the time

necessary to save generated patterns in pattern

database is almost the same with varied support

and confidence. For various levels of assistance and

confidence, the total time necessary to complete

the process ranges from 0.007990837 to

0.083503962.

Table 10 displays the time required for execution

and storage for 100 transactions. The number of

transactions was raised to test the proposed

model's performance on different size datasets. It

was discovered that the time required to compute

patterns is less and comparatively the same with

different parameters, and the time necessary to

save generated patterns in pattern database is

almost the same with varied support and

confidence. For various levels of support and

confidence, the total time required to complete the

process ranges from 0.009031057 to 0.044523001.

528

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Table 11 displays the time required for execution

and storage for 1000 transactions. The number of

transactions was raised to test the proposed

model's performance on different size datasets. It

has been discovered that the time required to

compute patterns is less and comparatively the

same with different parameters, and that the time

necessary to save generated patterns in the pattern

database is virtually the same with varied support

and confidence. For various levels of support and

confidence, the total time necessary to complete

the process ranges from 0.015913963 to

0.063281059.

Table – 12 shows the time required for execution

and storage for 10000 transactions, The limit of

transactions increased to check the working of the

proposed model on different size datasets. It has

been found that time required to calculate patterns

has slightly increased and comparatively the same

with different parameters and time required to

save generated patterns in pattern database is also

nearly equal to same with different support and

confidence. Total time required to perform entire

process is between 0.774102926 to 2.106809855

for different support and confidence. Table – 13

shows the time required for execution and storage

for 100000 transactions, The limit of transactions

increased to check the working of the proposed

model on different size datasets. It has been found

that time required to calculate patterns has slightly

increased and is comparatively same with different

parameters and time required to save generated

patterns in pattern database is also nearly equal to

same with different support and confidence. Total

time required to perform entire process is between

0.803340197 to 2.071568966 for different support

and confidence. Table – 14 shows the time required

for execution and storage for 500000 transactions,

The limit of transactions increased to check working

of proposed model on different size datasets. It has

found that time required to calculate patterns has

majorly increased and comparatively same with

different parameters and time required to save

generated patterns in pattern database is also

nearly equal to same with different support and

confidence.

The Table – 12 shows the time required for

execution and storage for 1000000 transactions,

The limit of transactions increased to check working

of proposed model on different size datasets. It has

been found that the time required to calculate

patterns has majorly increased and is comparatively

the same with different parameters and the time

required to save generated patterns in pattern

database is also nearly equal to the same with

different support and confidence. The total time

required to perform entire process is between

4.235555887 to 22.20249105 for different support

and confidence.

After various experiments on different data sets

and different support, confidence value, we found

that whenever the input data size is less, then the

execution time for pattern generation is similar to

the time required to store in the database. But as

soon as input data size increases, the time required

to execute an algorithm also increases and the time

required to store patterns in the database remains

the same or slightly changes. This demonstrates

that whenever amount of the data increases, the

time required to mine the frequent item sets will

inevitably increase. Hence it has experimentally

proved that “Whenever input data size increases

then the pattern generation time also increases.

However, if pattern storage system is used to

preserve patterns in pattern database then it will

reduce unnecessary processing time and pattern

retrieval can be possible within minimum time as

compared to traditional way.

VI. Conclusion

The goal of this research is to evaluate the

strengths and shortcomings of algorithms in

Frequent Pattern Mining (FPM) in order to create a

more efficient model that addresses at least one of

the stated issues. The investigation uncovered two

major issues within FPM. To begin, the extraction of

latent patterns in a dataset gets increasingly

time-consuming as data amount increases,

resulting in high memory usage. To address this

issue quickly, a comprehensive solution for all

created patterns was designed and implemented,

lowering search times for patterns that are already

accessible in the NoSQL database. The suggested

pattern storage system enables users to accelerate

decision-making processes and improve overall

system performance, potentially increasing

business income.

Several research issues and research fields

529

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

remain unanswered. The first is concerned with

retrieving patterns from the pattern database.

Second, it entails the finding of complicated

patterns, such as patterns inside patterns. Third, it

aims to discover new strategies for creating pattern

recognition. Finally, it intends to build query

processing and optimisation approaches that

include access methods and algebraic features, as

well as to establish appropriate structures for

linking patterns and databases. Addressing these

issues indicates a viable direction for future study in

this field.

VII. References

[1] www.insidebigdata.com, "The Exponential

Growth of Data", www.insidebigdata.com,

2019.

[2] C.-H. Chee, W. Yeoh, H.-K. Tan, and M.-S. Ee,

“Supporting Business Intelligence Usage: An

Integrated Framework with Automatic

Weighting”, J. Comput. Inf. Syst., Volume- 56,

Issue- 4, PP- 301–312, 2016.

[3] J. P. McGlothlin and L. Khan, “Managing

evolving code sets and integration of multiple

data sources in health care analytics”, in

Proceedings of the 2013 international

workshop on Data management & analytics

for healthcare DARE '13, PP- 9–14, 2013.

[4] F. Rebón, G. Ocariz, J. K. Gerrikagoitia, and A.

Alzua-Sorzabal, “Discovering Insights within a

Blue Ocean Based on Business Intelligence”,

Procedia - Soc. Behav. Sci., Volume- 175, PP-

66–74, 2015.

[5] Qun Qiu, J. A. Fleeman, D. R. Ball, G. Rackliffe,

J. Hou, and L. Cheim, "Managing critical

transmission infrastructure with advanced

analytics and smart sensors", IEEE Power &

Energy Society General Meeting, PP- 1–6,

2013.

[6] V. Chang, "The Business Intelligence as a

Service in the Cloud", Futur. Gener. Comput.

Syst., Volume- 37, PP- 512–534, 2014.

[7] W. P. Lira et al., "A Visual-Analytics System for

Railway Safety Management", IEEE Comput.

Graph. Appl., Volume- 34, Issue- 5, PP- 52–57,

2014.

[8] R. Haupt, B. Scholtz, and A. Calitz, "Using

Business Intelligence to Support Strategic

Sustainability Information Management",

Proceedings of the Annual Research

Conference on South African Institute of

Computer Scientists and Information

Technologists - SAICSIT, PP- 1–11, 2015.

[9] S. Qaiyum, I. A. Aziz, and J. Bin Jaafar,

"Analysis of Big Data and

Quality-of-Experience in High-Density Wireless

Network", International Conference on

Computer and Information Sciences (ICCOINS)

, PP- 287–292, 2016.

[10] M. H. Hasan, J. Jaafar, and M. F. Hassan,

"Monitoring web services quality of service: a

literature review", Artif. Intell. Rev., Volume-

42, Issue- 4, PP- 835–850, 2014.

[11] R. L. Oakley, L. Iyer, and A. F. Salam,

"Examining the Role of Business Intelligence in

Non-profit Organizations to Support Strategic

Social Goals", Hawaii International Conference

on System Sciences, PP- 4641–4650, 2015.

[12] I. Bartolini et al., "PAtterns for

Next-generation DAtabase systems:

preliminary results of the PANDA project.", PP-

293–300, 2003.

[13] M. Terrovitis et al., "Modeling and language

support for the management of

pattern-bases", Data Knowl. Eng., Volume- 62,

Issue- 2, PP- 368–397, 2007.

[14] J. Wang, "Encyclopedia of Business Analytics

and Optimization", J. Clean. Prod., Volume-

16, Issue- 15, PP- 1799–1808, 2014.

[15] C.-H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan,

and W. Yeoh, "Algorithms for frequent itemset

mining: a literature review", Artif. Intell. Rev.,

2018.

[16] R. Agrawal and R. Srikant, "Fast Algorithms for

Mining Association Rules in Large Databases",

International Conference on Very Large Data

Bases, PP- 487–499, 1994.

[17] J. Han, J. Pei, and Y. Yin, "Mining frequent

patterns without candidate generation",

Proceedings of the 2000 ACM SIGMOD

international conference on Management of

data - SIGMOD '00, PP- 1–12, 2000.

[18] M. J. Zaki, "Scalable algorithms for association

mining", IEEE Trans. Knowl. Data Eng.,

Volume- 12, Issue- 3, PP- 372–390, 2000.

[19] R. C. Agarwal, C. C. Aggarwal, and V. V. Prasad,

"A Tree Projection Algorithm for Generation of

Frequent Item Sets", J. Parallel Distrib.

530

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Comput., Volume- 61, Issue- 3, PP- 350–371,

2001.

[20] M. El-hajj and O. R. Zaiane, "COFI-tree Mining:

A New Approach to Pattern Growth with

Reduced Candidacy Generation", Workshop

on Frequent Itemset Mining Implementations

(FIMI2003) in conjunction with IEEE-ICDM,

2003.

[21] E. Baralis, T. Cerquitelli, S. Chiusano, and A.

Grand, "P-Mine: Parallel itemset mining on

large datasets", IEEE 29th International

Conference on Data Engineering Workshops

(ICDEW), PP- 266–271, 2013.

[22] G. Pyun, U. Yun, and K. H. Ryu, "Efficient

frequent pattern mining based on Linear

Prefix tree", Knowledge-Based Syst., Volume-

55, PP- 125–139, 2014.

[23] M. S. Hoseini, M. N. Shahraki, and B. S.

Neysiani, "A new algorithm for frequent

mining patterns in Can Tree", International

Conference on Knowledge-Based Engineering

and Innovation (KBEI), PP- 843–846, 2015.

[24] I. Feddaoui, F. Felhi, and J. Akaichi, "EXTRACT:

New extraction algorithm of association rules

from frequent item sets", IEEE/ACM

International Conference on Advances in

Social Networks Analysis and Mining

(ASONAM), PP- 752–756, 2016.

[25] E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis,

"Database support for data mining patterns,"

10th Panhellenic Conference on Informatics,

PCI 2005, Volas, Greece, PP- 14-24, 2005.

[26] M. Han, Jiawei and Kamber, “Data Mining:

Concepts and Techniques”, Volume- 12, 2011.

[27] J. Han, M. Kamber, and J. Pei, “Data Mining:

Concepts and Techniques”, 2012.

[28] C.-H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan,

and W. Yeoh, “Algorithms for frequent itemset

mining: a literature review”, Artif. Intell. Rev.,

Volume- 52, Issue- 4, PP- 2603–2621, 2019,

doi: 10.1007/s10462-018-9629-z.

[29] C. H. Chee, J. Jaafar, I. A. Aziz, M. H. Hasan,

and W. Yeoh, "Algorithms for frequent itemset

mining: a literature review", Artif. Intell. Rev.,

PP- 1–19, 2018.

[30] J. Dean and S. Ghemawat, "Map-Reduce:

Simplified Data Processing on Large Clusters",

D Osdi Ieee, Volume- 51, Issue- 1, PP-

107–113, 2004.

[31] S. Mallik, T. Bhadra, and A. Mukherji,

“DTFP-Growth: Dynamic Threshold-Based

FP-Growth Rule Mining Algorithm Through

Integrating Gene Expression, Methylation, and

Protein–Protein Interaction Profiles”, IEEE

Trans. Nanobioscience, Volume- 17, Issue- 2,

PP- 117–125, 2018, doi:

10.1109/TNB.2018.2803021.

[32] B. Huynh, B. Vo, and V. Snasel, “An Efficient

Parallel Method for Mining Frequent Closed

Sequential Patterns”, IEEE Access, Volume- 5,

PP- 17392–17402, 2017, doi:

10.1109/ACCESS.2017.2739749.

[33] Md Shamsur Rahim, et al., "A clustering

solution for analyzing residential water

consumption", Knowledge-Based Systems,

Volume 233, 107522, ISSN 0950-7051, 2021,

https://doi.org/10.1016/j.knosys.2021.107522

.

[34] Cristina Nica, Victor-Petru Almăşan, Adrian

Groza, "FastRCA-Seq: An efficient approach for

extracting hierarchies of multilevel closed

partially-ordered patterns", Knowledge-Based

Systems, Volume 210, 2020, 106533, ISSN

0950-7051,

https://doi.org/10.1016/j.knosys.2020.106533

.

[35] Dakshi T. Kapugama Geeganage, Yue Xu,

Yuefeng Li, "Semantic-based topic

representation using frequent semantic

patterns", Knowledge-Based Systems, Volume

216, 2021, 106808, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2021.106808

.

[36] Youxi Wu, et al.,"HANP-Miner: High average

utility nonoverlapping sequential pattern

mining", Knowledge-Based Systems, Volume

229, 2021, 107361, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2021.107361

.

[37] Huan Liu, et. al.,"Memory transformation

networks for weakly supervised visual

classification", Knowledge-Based Systems,

Volume 210, 2020, 106432, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2020.106432

.

[38] D. S. Rajput, R.S. Thakur, G.S. Thakur, “A

Computational Model for Knowledge

Extraction in Uncertain Textual Data using

https://doi.org/10.1016/j.knosys.2021.107522
https://doi.org/10.1016/j.knosys.2021.107522
https://doi.org/10.1016/j.knosys.2020.106533
https://doi.org/10.1016/j.knosys.2020.106533
https://doi.org/10.1016/j.knosys.2021.106808
https://doi.org/10.1016/j.knosys.2021.106808
https://doi.org/10.1016/j.knosys.2021.107361
https://doi.org/10.1016/j.knosys.2021.107361
https://doi.org/10.1016/j.knosys.2020.106432
https://doi.org/10.1016/j.knosys.2020.106432

531

Vol 44 No. 12

December 2023

Journal of Harbin Engineering University

ISSN: 1006-7043

Karnaugh Map Technique ”, International

Journal of Computing Science and

Mathematics, Inderscience. ISSN: 1752-5063

Vol. 7 No 2, pp. 166-176, 2016.

[39] D. S. Rajput, Neelu Khare, “FSS Decision

Making Model for Social Networking Sites”,

published in International Journal of Social

Network Mining, Inderscience, Vol 2(3) pp.

256-266, 2016.

[40] D. S. Rajput, “Review on recent developments

in frequent itemset based document

clustering, its research trends and

applications”, accepted in International

journal of data analysis techniques and

strategies, InderScience ISSN: 1755-8069, Vol.

11(2), pp. 176-195, 2019.

[41] Arpita Jadhav, Saurabh Rajput, Khedekar Vilas

Baburao, Dr. Dharmendra Singh Rajput,

"Smart Helmet Using Natural Language

Processing, Head Mounted Display And Solar

Panel", International Journal Of Scientific &

Technology Research Volume 8, Issue 10,

2019, ISSN 2277-8616.

[42] K.V, B. & Rajput, D., A Pattern Storage System

using Pattern Warehouse along with Sources

of Pattern Generation and Applications.

International Journal of Innovative Technology

and Exploring Engineering Special Issue,

8(10S):357–362, 2019, doi:

10.35940/ijitee.J1063.08810S19

Author Biographies

First Author Khedekar Vilas

Baburao, from Pune, India, Date of

Birth: 16th May, 1985, pursuing Ph.D.

from SCOPE, VIT, Vellore, India.

Completed M.Tech (July 2014) in

Computer Science from JNTU,

Hyderabad, India. Completed B.E.

(May 2009) in Information

Technology from Pune University,

India. Area of research work is Data

mining, Pattern Mining, Pattern

Database.

Second Author The Dr. Dharmendra

Singh Rajput working as Professor in

the School of Computer Science

Engineering and Information

Systems, VIT, Vellore since June

2014. He has Completed Ph.D.

(2014) from NIT, Bhopal, India. His

research areas are Data Mining,

machine learning, and big data. He

has published 35+ reputed Journal

Papers, 5 edited books published

under reputed publishers, and 17

papers presented in the reputed

international conference. He is also a

guest editor of various reputed

journals. He has received various

awards from the Indian Government

like DST-SERB, CSIR Travel Grant, and

MPCST Young Scientist Fellowship.

He is doing the funded project of 80

lakhs which is received from Erasmus

+ Programme of the European Union

with the partner the University of

Nottingham UK. He has visited

various countries UK, France,

Singapore, UAE, China, and Malaysia

for academic purposes.

