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Abstract: Various data mining techniques nowadays can generate results popularly known as patterns from 

large data repositories. However, there is no facility or infrastructure, or model to preserve it as persistent 

storage of patterns. The proposed storage system provides a model to make these patterns persistent. Most 

organizations are interested in knowledge or patterns rather than raw data or many unprocessed data because 

extracted knowledge plays a vital role in making the right decision for the organization's growth. In this paper, 

Frequent Pattern Mining (FPM) algorithms are used to extract large data set patterns. Result comparison was 

done using Apriori, Fp-Growth, and Eclat. The proposed model of the Pattern Storage System uses a pattern 

database to make all patterns persistent. Pattern Storage System (PSS) is used to store FPM algorithms' results 

in the MongoDB NoSQL database. The work proposed in this paper reduces unnecessary processing on row 

datasets for which patterns are already available. Pattern retrieval comes very easy with minimum time 

compared to traditional ways of finding patterns. The proposed model uses a unique way of generation of 

pattern id which is useful for pattern storage as well as pattern retrieval. 

Keywords: Frequent Pattern Mining, Pattern Database, NoSQL Database, MongoDB.  

 

I. Introduction 

Currently, a substantial volume of data is 

continuously generated by diverse sources.   Owing 

to the exponential growth of data [1], it is estimated 

that the global data volume would increase twofold 

every two years.   Since 2010, it has already 

experienced a 50-fold increase.   Both data generated 

by humans and data generated by machines are 

expanding at a rate that is 10 times faster than 

typical enterprise data. Additionally, 

machine-generated data is growing even more 

rapidly at a rate of 50 times.   In today's business 

environment, the majority of stakeholders are in 

need of a fast and precise system to extract valuable 

information from large datasets. This is done with the 

purpose of making well-informed decisions that will 

contribute to the growth of their businesses [2], [39].  

Data mining and data analytics are extensively 

utilised in diverse industries, including healthcare [3], 

tourism [4], manufacturing, electricity supply [5], 

financial services [6], railway safety management [7], 

education [8], wireless networking [9], [41], and 

quality monitoring for web services [10], as well as 

not-for-profit organisations [11].  

Users cannot successfully utilise the vast amount 

of data directly, and significant data insights may not  

be immediately extrapolated from casual observation 

[12].   Conventional databases are inadequate for 

storing and handling this vast dataset; therefore, it is 

stored in data warehouses for subsequent analysis 

and utilisation.   Further investigation is required to 

uncover concealed insights and obtain valuable 

patterns from this data [13].  

Data mining techniques play a crucial role in 

extracting knowledge, usually referred to as patterns, 

from unprocessed databases.   These methodologies 

yield outcomes like as association rules, clusters, 

decision trees, and other frameworks that aid in 

describing unprocessed data [14], [34].   Frequent 

Pattern Mining (FPM) is an essential method that 

may detect repeating connections among various 

things in the data [40], and express them as 

association rules [15].   Functional pattern mining 

(FPM) is essential for executing a wide range of data 

mining tasks. [15]. Many of the researchers proposed 

algorithms to find association rules like Apriori [16], 

Fp-Growth [17], Eclat [18], Tree Projection [19], COFI 

[20], TM [19], P-Mine [21], LP-Growth [22], 

Can-Mining [23], EXTRACT [24]. 

The resulting patterns are succinct and convey a 

full semantic representation of the source material 

[25], [35].   In the realm of databases or data 

warehouses, the extracted patterns are not 

considered to be enduring entities.   The current 
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Database Management Systems are insufficient in 

terms of their strength and adaptability to handle 

this novel form of knowledge. Therefore, a 

specialised management system is needed that can 

effectively model and store patterns" [12].   Extensive 

study in data mining has resulted in the discovery of 

numerous complex patterns.   It utilises a unique 

technique to effectively handle these patterns for 

future study.   The Pattern Storage System functions 

as a centralised database for storing the information 

derived from various algorithms.   These technologies 

enable the efficient comparison, querying, and 

storage of the Pattern in order to retrieve 

information or patterns as required" [14].   Patterns 

should be represented, stored, manipulated, and 

retrieved in a manner that is analogous to how data 

is handled in conventional database management 

systems (DBMS) [13], [42].   Due to the limitations of 

DBMS in handling data with complex meaning, it is 

necessary to utilise a distinct database management 

system to efficiently manage such data.  

 

In response to the unpredictable nature of 

patterns, the authors have suggested a pattern 

warehouse model with a specific architectural design.   

Nevertheless, the problem remains if patterns 

continue to vary in response to changes in input 

datasets.   The proposed storage system presents a 

paradigm that guarantees the durability of these 

patterns in a NoSQL database, so resolving the 

challenge at hand.  

The paper is segmented into significant 

subsections.   1. The Literature Survey entails a 

comprehensive examination of association rules 

mining algorithms such as Apriori, FP Growth, and 

Eclat. It also includes a comparison analysis of these 

association rule mining algorithms.   The background 

of the study includes essential aspects about the 

production and storage architecture of patterns.   3. 

The suggested design provides a detailed description 

of the pattern storage architecture.   4. The Result 

and Discussion section provides details regarding the 

duration of pattern generation and the time 

necessary for pattern storage in the pattern 

database.  

 

II. Literature Survey 

Currently, there exists a variety of techniques that 

can be used to extract significant insights, sometimes 

known as patterns, from large datasets.  The 

subpoints A, B, C, and D provide further clarification 

on the previous study undertaken in this topic.  

Subpoint D includes a table that provides a 

comparison of several FPM algorithms developed by 

different scholars.  

A. The Apriori Algorithm  

The Apriori algorithm [16] generates item sets that 

recur frequently in order to establish association 

rules.   The method utilises a recursive strategy to 

detect sets of (K + 1) items from all sets of k items.   

Transactional data refers to the information related 

to the acquisition of different products in various 

transactions, as shown in Table I.   In order to identify 

frequent item sets, it is necessary to scan the 

complete database and compute the support of each 

item set. Only those item sets that above the minimal 

support level are selected.  This method continues 

until the entire database has been examined and no 

further frequent item-sets can be recognised. 

 

Table 1. Sample Transactional Data 
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Figure 1. Testing data- load current (amperes) 

 

Although the Apriori algorithm demonstrates 

commendable performance, it is important to 

recognise its considerable limits.   The approach 

requires the repeated examination of the full 

database for each iteration [26].   In addition, 

processing large input datasets requires a significant 

quantity of internal memory [1] [27].   In order to 

tackle these difficulties, scientists have devised 

innovative algorithms such as AprioriTID, 

AprioriHybrid, MR-Apriori, and HP-Apriori with the 

aim of minimising the duration of execution.   

Nevertheless, the processing time needed to analyse 

the existing patterns remains constant.  

 

An enduring resolution is necessary to eradicate 

the necessity for iterative database scanning and to 

minimise the data kept in internal memory.   The 

Pattern Storage System (PSS) provides a practical 

answer to this problem.   PSS stores previously 

formed patterns in the NoSQL database, which 

reduces the need for repetitive scanning of the 

database and minimises the internal memory needed 

for creating new patterns.  

 

B. Eclat Algorithm  

The Eclat technique, short for Equivalence class 

transformation, is utilised to detect common 

itemsets by employing a vertical data format, as 

demonstrated in Table III.   This algorithm employs a 

grouping mechanism to categorise transactions 

involving related items, hence minimising the need 

for repetitive scanning of the full database.   The 

Eclat method converts the input data format from 

horizontal to vertical, as shown in Table III.   After the 

transactions from all k-item sets are intersected, 

(k+1)-item sets (Frequent) are formed. 
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Table 2 Item sets-1 in Vertical Data Format [27] 

 
 

Table 3 Item sets-2 in Vertical Data Format [27] 

 
 

Table 4 Item sets-3 in Vertical Data Format [27] 

 
 

In this approach, the first iteration entails a 

comprehensive examination of the entire database. 

Subsequent scans to find frequent item groupings are 

unnecessary.   Due to the vertical data format, 

support counts per itemset are calculated only in the 

initial iteration, reducing the necessity of 

recalculating the support count of an item.  

C. FP Growth Algorithm  

FP-Growth is an association rule mining technique 

that discovers item sets without incurring fees for 

generating regular candidates [28].   This strategy use 

a two-pass methodology to discover recurring 

patterns.   During the first iteration, the FP Growth 

Algorithm assesses the frequency of numerous 

instances of an item in the transactional datasets and 

keeps track of this frequency in a data structure 

called the 'Header Table.'   In the second iteration, 

the method creates an FP-tree structure by placing 

transactions one by one into a tree [36].   By utilising 

a Division and Conquer strategy, this method 

preserves data regarding the correlation between 

regularly compressed elements within a pattern tree.   

Utilising the hierarchical arrangement of the tree 

effectively addresses the difficulty of regularly 

recognising patterns.   Figure 4 displays the 

Conditional FP-tree specifically linked to node I3, 

serving as an illustrative example. Figure 3 provides 

comprehensive details about all conditional FP-Trees. 

[27]. 

 
Figure 2. Frequent pattern Tree (FP-Tree) 

 
Figure 3. Conditional FP-Tree associated with Node 13 
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Table 5 Conditional Pattern Base and Conditional Fp-Tree [27] 

 
 

As a result, this approach results in a decrease in 

the cost of identifying common patterns.   

Nevertheless, the FP-Growth algorithm exhibits a 

significant time overhead when employed on large 

input datasets.   There are many techniques available 

for detecting repeating patterns in raw input 

datasets.   Below is a compilation of many algorithms, 

including the TreeProjection algorithm, COFI 

algorithm, TM algorithm, P-Mine algorithm, 

LP-Growth method, Can-Mining algorithm, EXTRACT 

algorithm, and others. 

D. Comparisons of Frequent Pattern Mining Algorithms 

 

Table 6 Comparison of Frequent Pattern Mining Algorithms [29] 

FPM 

Algorithm  
Technique Used Advantages  Disadvantages 

Apriori  
An iterative level-based 

search mechanism 

k-item sets uses a repeated 

level-based search 

technique to find (k + 1) 

–item sets 

If datasets are more than k-item 

sets, it creates multiple sets of 

candidates and scans the 

database frequently to generate 

the support count for the item 

sets. 

FP-Growth  
Divide-and-conquer 

technique 

Keeps all association 

information of item sets, 

which reduces the 

searching time of data. 

The processing time to create 

FP-Tree becomes more if the 

input data set size is large. 

EClaT 
Vertical data format 

technique 

Repetitive scanning of the 

entire database is not 

required. 

In the case of a large input 

dataset, it needs more internal 

memory and processing time. 

TreeProjection 

Different searching 

techniques such as 

breadth-first, depth-first, 

or a mixture of the two. 

It requires lesser time 

because the algorithm 

searches the frequent item 

sets, which are a part of a 

subset for all transactions. 

Various representations of the 

lexicographic tree become a 

limitation in the form of 

efficiency in memory 

consumption. 

COFI 

Pruning method used to 

constructs short trees 

from the Frequent 

Pattern(FP)-Tree 

The pruning method is 

used to minimize the use of 

memory-space by creating 

small COFl-Tree 

The performance of algorithms 

reduces in sparse databases 

when the threshold value is low 

for minimum support. Its 

performance depends on the 

threshold value. 

TM 
representation of vertical 

data like the EClaT. 

It saves the intersection 

time for finding frequent 

item sets by compressing 

the item sets into a list of 

transactions. 

The processing speed of this 

algorithm is slower than the 

FP-Growth algorithm. 

P-Mine 

A parallel disc-based 

approach to multi-core 

processors. 

Optimizes scalability and 

performance 

 by executing frequent 

Algorithms can only be optimized 

at the maximum level when there 

are multiple cores available in the 
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mining of items in parallel 

with multiple processors  

processors. 

LP-Growth 
 Linear Prefix Tree 

(LP-Tree)  

Quickly generates LP-Tree 

in the manner as a group of 

array operations are used 

to create various nodes 

concurrently 

Memory needs to be released 

continuously as the items from 

the transaction saved in various 

LPNs. 

Can-Mining 

Incremental manner of 

Canonical-Order Tree 

(Can-Tree) 

When the threshold value 

for the minimum support is 

high, then it performs 

better than the FP-Growth 

algorithm. 

If the minimum support for the 

threshold value is too low, then 

mining time is high. 

EXTRACT 

 

Galois lattice a 

mathematical concept 

More than 300 items and 

mines 10 attributes with an 

execution  

time 

If the data set changes, then the 

algorithm must be repeated to 

mine a new set of items. 

 

Table 7 Runtime of Different Horizontal Layout Algorithms [29] 

Algorithm Transaction size (MB) Threshold Execution time (in Sec) 

Apriori 30 1.5 15.9 

SETM 30 1 114 

AprioriTID 30 1.5 150 

AprioriHybrid 30 0.75 22.5 

FPGROWTH 30 3 31.404 

PP-Mine 30 1.18 34.311 

COFI 30 3.11 18.8445 

DynGrowth 30 5 8.23 

PRICES 30 5 450 

TFP 30 3 4.1955 

SSR 30 1 5.298 

 

The results produced by data mining algorithms, 

which encompass significant insights or patterns, are 

ephemeral and immediately deleted after utilisation.   

A pattern warehouse provides the essential structure 

for ensuring the constant maintenance of all patterns 

[30].   The current system provides a solution for 

pattern generation, classification, and manipulation.   

"To reveal hidden knowledge and increase the value 

of these patterns, it is imperative to conduct further 

investigation into sophisticated and advanced 

techniques." [13, 31]. 



     

 

 

Vol 44 No. 12 

December  2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

 
Figure 4. Runtime of different horizontal layout algorithms [29] 

 

The results obtained via data mining algorithms, 

such as useful insights or patterns, are ephemeral.   

Once the patterns are employed, they are instantly 

erased.   An architecture for pattern warehousing is 

implemented to ensure consistent maintenance of all 

patterns [30].   The existing system deals with the 

generation, classification, and manipulation of 

patterns.   "Further investigation into more intricate 

and advanced methodologies is necessary to unveil 

concealed knowledge and augment the significance 

of these patterns" [13], [31].  

The existing approach is limited by its inability to 

retain the transient outcomes of data mining 

techniques.   Data mining outcomes are evident in 

the form of association rules, decision trees, clusters, 

and other patterns that reveal the distinctive 

features of the input data [3], [33].   The input data 

structure for the generated patterns is both 

semantically meaningful and concise [4], [38].   When 

patterns become unstable, other programmes 

require access to them, which necessitates the 

regeneration of the same pattern.   This exacerbates 

superfluous and duplicative processing expenses. 

III. Pattern Storage Architecture 

The proposed system provides a solution for this 

situation.   It enables the storage of previously 

created patterns, either in the pattern database or in 

the pattern warehouse, depending on the type of 

pattern.   When there are repeated patterns for the 

same data items, the stored patterns are directly 

given to the application, avoiding the need for 

additional processing on raw data sets.  

 

Presently, traditional databases lack the capability 

to manage and store the vast amount of data, hence 

requiring the utilisation of data warehouses for 

storing and subsequent processing.   Data mining 

techniques heavily depend on databases and data 

warehouses as their main sources of information.   

The process of extracting latent knowledge from data 

warehouses leads to the creation of distinctive forms 

of information, generally referred to as patterns [6].   

These patterns are obtained using several data 

mining algorithms [7], such as association rules, 

classification, clustering, decision trees, and other 

approaches employed to extract concealed 

knowledge from large datasets.   Valuable knowledge 

becomes ephemeral if not stored [8], [32].   

Currently, apps that generate patterns operate on a 

disposable basis.  Patterns that are generated can fall 

into two categories: 'simple' or 'complex' [9]. It is 

important to note that the nature of these patterns is 

not permanent [10].  The suggested system presents 

two approaches to guarantee the long-term storage 

of all patterns: storing patterns in a pattern database 

and storing patterns in the pattern warehouse. 

A. Architecture 

Figure 5 illustrates the operational mechanism of the 

Pattern Storage System (PSS) using a layered design.   

This figure illustrates the methodology for 

guaranteeing the enduring existence of all patterns.   

The architecture is divided into four separate layers:   

The system consists of four layers: the Input Data 
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Layer, the Processing/Data Mining Layer, the PSS 

Layer, and the Application Layer. 

 

 

 
Figure 5. Layered Architecture for Pattern Storage System 

 

1. Input Data Layer: 

This layer provides all necessary info to the layer 

above it.   Raw or unprocessed data is used as an 

input for different data mining techniques and can be 

found in databases, data warehouses, and files.   The 

main purpose of this layer is to guarantee the 

availability of all essential data for the next stage. The 

accuracy of the outcomes relies on the quality of the 

dataset and the correctness of the data mining 

algorithm. 

 

2. Processing / Data Mining Layer 

Data mining is the process of obtaining valuable 

information from large databases, data warehouses, 

and files.   Popular data mining techniques 

encompass classification, association rule mining, 

clustering, and decision trees.   Every technique 

produces a variety of patterns depending on the 

algorithms employed and the specifications of the 

customer.   The Processing Layer receives extensive 

datasets from the Input Data Layer, applies several 

data mining algorithms to analyse them, and 

produces patterns according to customer 

requirements. 

 

3. Pattern Storage System (PSS) Layer 

After the production of patterns and the fulfilment 

of client requirements, the inherently unstable 

nature of patterns results in their automatic 

obliteration.   Therefore, if another customer has the 

same request for the same dataset, there is no 

provision to use patterns that were developed 

before.   The entire process of generating patterns 

must be repeated, which places an unnecessary 

demand on the processing unit.   To resolve this 

issue, it is necessary to ensure that all created 

patterns are stored permanently.   The created 

patterns can be classified as either static or dynamic.   

The Pattern Storage System (PSS) offers two kinds, 

specifically Storing Patterns in NoSQL Databases and 

Pattern Warehouses, to guarantee the long-term 

existence of patterns.  

a) Store Patterns in NoSQL Database: 

Variable patterns experience modifications as the 

input dataset is refreshed with the most recent 

values.   The variable patterns are stored in 

databases for the convenience of updating them 

whenever updates are made.   NoSQL databases are 

a suitable choice for assuring the survival of all 

patterns in data mining findings, as they can 
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accommodate the lack of a defined structure.  

b) Store Patterns in Pattern Warehouse: 

The pattern warehouse functions as a storage 

facility for established patterns.   The patterns 

produced by different data mining techniques are 

kept in the pattern warehouse for later examination.   

The inclusion of a particular pattern in the pattern 

warehouse is contingent upon its similarity to 

existing patterns, and the patterns are categorised 

and stored according to their respective types.  

 

4. Application layer: 

Like the view component in the 

Model-View-Controller (MVC) architecture, this layer 

is linked to one or more applications.   It has the 

capability to immediately obtain suitable outcomes 

from the Data Mining layer, bypassing the PSS 

System, as well as from the Pattern Database and the 

Pattern Warehouse. 

B. Pattern Warehouse 

The pattern warehouse facilitates the long-term 

storing of patterns.   Invariant patterns, derived from 

past data, remain unaltered under particular 

circumstances.   The pattern warehouse provides the 

ability to store comparable patterns in close 

proximity.   Furthermore, it offers segregated 

compartments for the outcomes of different data 

mining methodologies. 

 

P = { P1, P2, P3, …. Pn}  // P is pattern 

D = {D1,D2,D3,….,Dn}   // D is a data input 

P = PSS (D) 

If D is Historical / not change time to time then 

Patterns are fixed then pattern P will be stored in the 

Pattern Warehouse. 

 

C. Pattern Database 

The pattern database serves to temporarily store 

patterns, which may undergo changes over time due 

to alterations or updates in the source datasets. The 

proposed system allows for the storage of variable 

(frequently changing) patterns in the pattern 

database using a NoSQL database such as MongoDB. 

The choice of the specific NoSQL database is 

contingent upon the type of patterns being handled. 

For instance, in the case of association rules 

generating associated items and quantities, such as 

"Milk-Butter-Toast->15," the pattern name 

"Milk-Butter-Toast" and the resulting quantity of 15 

are stored. Here, the pattern name functions as the 

"Key," and the quantity serves as the "Value." 

Therefore, a Key-value pair NoSQL Database or a 

Document Oriented NoSQL database would be 

suitable for storing the aforementioned patterns.  

 

P = { p1, p2, p2, …. Pn}   nth number of patterns 

D = {D1,D2,D3,….,Dn}  // D is a data input 

P = Algorithm (D) 

 

If D is not historical / change from time to time 

then Patterns P are variable then store in the Pattern 

Database. 

D. Advantages of PSS 

PPS offers several advantages, such as a significant 

decrease of over 80% in processing time, which 

depends on the number of patterns stored in the 

database. It also requires minimal internal space for 

generating new frequent patterns, reduces 

algorithmic complexity, ensures secure storage for all 

generated patterns, and enables rapid computation 

of results.  

E. Database Selection for Storage System 

The association rule algorithm produces diverse 

frequent patterns, necessitating the use of a NoSQL 

database for storing due to the lack of a predefined 

pattern structure.   Unlike relational databases, 

NoSQL databases are the preferable choice for 

managing input in any format and sequence due to 

their ability to accommodate data input without 

requiring a predefined format.  

F. Disadvantages / Drawbacks of SQL Databases 

SQL databases have restrictions in terms of data 

type support, necessitating the use of predetermined 

data input formats and sequences.   Moreover, their 

ability to scale is lower compared to NoSQL 

databases, particularly when dealing with huge input 

datasets.   SQL database performance decreases as 

the volume of input data grows, while NoSQL 

databases are not impacted by the size of the input 

dataset, ensuring efficient database operations. 

G. MongoDB NoSQL Database 

The objective of the proposed system is to reduce 

algorithmic complexity, decrease processing time for 

large input datasets, and minimise needless internal 

memory consumption.   It accomplishes this by 

employing two primary approaches: firstly, by 

retaining previously generated patterns in a durable 

storage system (NoSQL Database), and secondly, by 
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updating previously stored patterns using the 

MAP-REDUCE technique as needed.   The table below 

presents a comparative analysis of MySQL, 

MongoDB, and other NoSQL databases.

 

Table 8 Comparison of MySQL, MongoDB and Other NoSQL databases [25] 

Parameters MySQL Other NoSQL DB MongoDB 

ACID Property Yes No Yes 

Rich and flexible data model No 

Partial- 

Only simple data structures 

support the flexibility of 

schema. 

Yes 

Schema governance Yes No Yes 

 Powerful aggregations, expressive joins, graphs 

queries, faceted search 
Yes No Yes 

Native, Idiomatic language drivers No No Yes 

Horizontal scale-out No 
Partial: Controls on data 

locality not available 
Yes 

BI and Analytics ready Yes No Yes 

Enterprise-grade security, reliable management tools Yes No Yes 

Cloud Service (Database as a service)  Yes No Yes 

IV. Pattern Storage in NoSQL Database 

A. Architecture 

The following architecture shows a building blogs 

of the proposed model. The proposed model accepts 

input data from various data sources as mentioned in 

the diagram, minimum support and minimum 

confidence. 

 

 
Figure 6. Proposed model for Pattern Storage System 
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The database, file and data warehouse are a 

storage media for all row datasets. Data mining 

Engine is the brain of the pattern storage system 

which accepts input data and generates patterns. 

Pattern database is a storage unit of the proposed 

model. Initially, data is fed into the FPM algorithm, 

which generates patterns based on the input 

parameters. The input parameters are the Name of 

the file, minimum support, minimum confidence, etc. 

The generated patterns will be preserved or store in 

a MongoDB NoSQL Database using a pattern storage 

system with a unique pattern id. Section IV. B shows 

how pattern id will be generated? 

 

B. Mathematical Representation of PID 

PID = Index for patterns 

FN = Name of the file 

MS = Minimum Support 

MC = Minimum Confidence 

FD = From Date 

TD = To Date 

PID = FN + MS + MC + FD + TD 

Name of the file, minimum support, and minimum 

confidence, From-Date, To-Date are the parameters 

to understand the existence of already generated 

patterns. 

C. Algorithm of the proposed model 

Algorithm 1: Pattern Storage in Pattern Database 

Input: Supermarket data which consist of date, time, customer id, and all grocery items with quantity and price 

Output: Patterns (association rules) generated and preserve in pattern database. 

1: Start 

2: Pid = Fn + Ms + Mc + Fd + Td // Pid required to store result in NoSQL Database 

3: I = { i1,i2,i3,....,in}    //Input data items 

4: T= {t1,t2,t3,....,tn}   //Transactions 

5: P={p1,p2,p3,….,pn}  //Resultant Patterns 

6: tPid = find(Pid); 

7: IF tPid ≠ Pid THEN   

8: P = Algorithm(I,Ms,Mc);  //Generate patterns by Apriori, Eclat, FP-Growth etc 

9: D = store(P,Pid);   //Store patterns in Database (D) where Key=Pid, value=Patterns P 

10: ELSE 

11: 

12: 

Fetch patterns from the database where id = Pid 

End 

 

As shown in Algorithm 1, the pattern ID functions 

as a unique identifier for all freshly generated 

patterns.   The construction of this ID involves the 

amalgamation of the file name, minimum support, 

minimum confidence, and the from date and to date.   

In Algorithm 1, 'I' represents the input datasets, 'T' 

represents all transactions, and 'P' defines the set of 

patterns.   The purpose of the 'find(Pid)' function is to 

validate the existence of the provided 'Pid' in the 

NoSQL database by taking it as an input parameter.   

If the pattern ID is not present in the NoSQL 

database, it signifies that the pattern corresponding 

to the given parameters has not been created.   Here, 

the system invokes a suitable algorithm to create the 

patterns and then saves them in the NoSQL database, 

along with their respective pattern ID.   Conversely, if 

the pattern ID exists in the NoSQL database, the 

system directly obtains all patterns linked to that 

specific pattern ID. 

V. Results and Discussion 

The input dataset for this research consists of 

supermarket data that includes information such as 

the date, time, customer ID, and the amounts and 

prices of all grocery goods. This dataset is quite 

valuable for extracting correlations between two or 

more components.   The suggested architecture aims 

to save association rules (patterns) in the pattern 

database, reducing duplicate processing on datasets 

where the patterns have already been developed and 

are accessible in the pattern storage system. 

A. Time required for storage 

The following table shows the execution time 

needed for an algorithm to generate patterns. It 

depends on the size of input data given to an 

algorithm. Various researchers have performed 

multiple experiments to evaluate the efficiency of 
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Frequent Pattern Mining (FPM) algorithms in terms 

of execution time and memory usage when mining 

frequent item sets from a data set.  

Table 9 to 15 display time required to execute an 

algorithm and store the pattern database patterns 

and total execution time. Table value shows that the 

execution time for an algorithm is different for 

different support and confidence and time required 

to store patterns in pattern database is also different 

for different support and confidence. 

 

Table 9 Time require for execution and storage for 10 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 0.006913 0.0065011 0.0134141 

0.1 0.5 0.046891928 0.036593199 0.083503962 

0.3 0.5 0.006407976 0.001573801 0.007990837 

0.2 0.6 0.006868839 0.005994081 0.012897015 

0.1 0.6 0.010102034 0.036376953 0.046500921 

0.3 0.6 0.008606911 0.001837969 0.010458946 

 

Table 10 Time require for execution and storage for 100 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 0.010266 0.007652 0.017918 

0.1 0.5 0.01058507 0.033909798 0.044523001 

0.3 0.5 0.007591963 0.001481056 0.0090909 

0.2 0.6 0.009322166 0.005419016 0.014793158 

0.1 0.6 0.032276869 0.032276869 0.042598009 

0.3 0.6 0.007725 0.001298189 0.009031057 

 

Table 11 Time require for execution and storage for 1000 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 0.015124 0.005512 0.020636 

0.1 0.5 0.026736975 0.031322956 0.05811286 

0.3 0.5 0.01424408 0.001650095 0.015913963 

0.2 0.6 0.015249014 0.004982948 0.020246983 

0.1 0.6 0.026834965 0.036405087 0.063281059 

0.3 0.6 0.014594078 0.001335859 0.015939951 

 

Table 12 Time require for execution and storage for 10000 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 0.22868 0.004312 0.232992 

0.1 0.5 0.30761385 0.036018133 0.343665838 

0.3 0.5 0.083166122 0.001574993 0.084755182 

0.2 0.6 0.095443964 0.00454998 0.100008965 

0.1 0.6 0.198750019 0.034356117 0.233121157 
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0.3 0.6 0.085319996 0.001767874 0.087103844 

 

Table 13 Time require for execution and storage for 100000 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 1.656647 0.005782 1.662429 

0.1 0.5 2.071568966 0.035224915 2.106809855 

0.3 0.5 0.803340197 0.001611948 0.804961205 

0.2 0.6 0.943425179 0.005573988 0.949010134 

0.1 0.6 2.000555038 0.030066013 2.030660868 

0.3 0.6 0.772572041 0.001523018 0.774102926 

 

Table 14 Time require for execution and storage for 500000 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 8.074649 0.006062 8.080711 

0.1 0.5 10.57745409 0.034883022 10.61238408 

0.3 0.5 4.233985901 0.001554966 4.235555887 

0.2 0.6 5.031282902 0.00455904 5.035853863 

0.1 0.6 10.62795019 0.030773878 10.65874505 

0.3 0.6 0.010827065 0.001610994 4.051609039 

 

Table 15 Time require for execution and storage for 1000000 transactions 

Support Confidence 

Time in sec. 

for rule 

generation 

Time in sec. to 

store in 

database 

Total time in 

sec. for 

execution 

0.2 0.5 14.688235 0.004801 14.693036 

0.1 0.5 20.68601894 0.03431201 20.72034597 

0.3 0.5 8.75031805 0.001667023 8.751995087 

0.2 0.6 9.780344963 0.005496025 9.785851955 

0.1 0.6 22.16622782 0.036239147 22.20249105 

0.3 0.6 8.419794083 0.00159502 8.42140007 

 

Table 9 displays the time required for execution 

and storage for ten transactions. The limited 

transactions were purposefully chosen to test the 

proposed model's performance on a small dataset. 

It was discovered that the time required to 

compute patterns is less and comparatively the 

same with different parameters, and the time 

necessary to save generated patterns in pattern 

database is almost the same with varied support 

and confidence. For various levels of assistance and 

confidence, the total time necessary to complete 

the process ranges from 0.007990837 to 

0.083503962.  

Table 10 displays the time required for execution 

and storage for 100 transactions. The number of 

transactions was raised to test the proposed 

model's performance on different size datasets. It 

was discovered that the time required to compute 

patterns is less and comparatively the same with 

different parameters, and the time necessary to 

save generated patterns in pattern database is 

almost the same with varied support and 

confidence. For various levels of support and 

confidence, the total time required to complete the 

process ranges from 0.009031057 to 0.044523001. 
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Table 11 displays the time required for execution 

and storage for 1000 transactions. The number of 

transactions was raised to test the proposed 

model's performance on different size datasets. It 

has been discovered that the time required to 

compute patterns is less and comparatively the 

same with different parameters, and that the time 

necessary to save generated patterns in the pattern 

database is virtually the same with varied support 

and confidence. For various levels of support and 

confidence, the total time necessary to complete 

the process ranges from 0.015913963 to 

0.063281059.  

Table – 12 shows the time required for execution 

and storage for 10000 transactions, The limit of 

transactions increased to check the working of the 

proposed model on different size datasets. It has 

been found that time required to calculate patterns 

has slightly increased and comparatively the same 

with different parameters and time required to 

save generated patterns in pattern database is also 

nearly equal to same with different support and 

confidence. Total time required to perform entire 

process is between 0.774102926 to 2.106809855 

for different support and confidence. Table – 13 

shows the time required for execution and storage 

for 100000 transactions, The limit of transactions 

increased to check the working of the proposed 

model on different size datasets. It has been found 

that time required to calculate patterns has slightly 

increased and is comparatively same with different 

parameters and time required to save generated 

patterns in pattern database is also nearly equal to 

same with different support and confidence. Total 

time required to perform entire process is between 

0.803340197 to 2.071568966 for different support 

and confidence. Table – 14 shows the time required 

for execution and storage for 500000 transactions, 

The limit of transactions increased to check working 

of proposed model on different size datasets. It has 

found that time required to calculate patterns has 

majorly increased and comparatively same with 

different parameters and time required to save 

generated patterns in pattern database is also 

nearly equal to same with different support and 

confidence. 

The Table – 12 shows the time required for 

execution and storage for 1000000 transactions, 

The limit of transactions increased to check working 

of proposed model on different size datasets. It has 

been found that the time required to calculate 

patterns has majorly increased and is comparatively 

the same with different parameters and the time 

required to save generated patterns in pattern 

database is also nearly equal to the same with 

different support and confidence. The total time 

required to perform entire process is between 

4.235555887 to 22.20249105 for different support 

and confidence. 

After various experiments on different data sets 

and different support, confidence value, we found 

that whenever the input data size is less, then the 

execution time for pattern generation is similar to 

the time required to store in the database. But as 

soon as input data size increases, the time required 

to execute an algorithm also increases and the time 

required to store patterns in the database remains 

the same or slightly changes. This demonstrates 

that whenever amount of the data increases, the 

time required to mine the frequent item sets will 

inevitably increase. Hence it has experimentally 

proved that “Whenever input data size increases 

then the pattern generation time also increases. 

However, if pattern storage system is used to 

preserve patterns in pattern database then it will 

reduce unnecessary processing time and pattern 

retrieval can be possible within minimum time as 

compared to traditional way. 

 

VI. Conclusion 

The goal of this research is to evaluate the 

strengths and shortcomings of algorithms in 

Frequent Pattern Mining (FPM) in order to create a 

more efficient model that addresses at least one of 

the stated issues. The investigation uncovered two 

major issues within FPM. To begin, the extraction of 

latent patterns in a dataset gets increasingly 

time-consuming as data amount increases, 

resulting in high memory usage. To address this 

issue quickly, a comprehensive solution for all 

created patterns was designed and implemented, 

lowering search times for patterns that are already 

accessible in the NoSQL database. The suggested 

pattern storage system enables users to accelerate 

decision-making processes and improve overall 

system performance, potentially increasing 

business income. 

Several research issues and research fields 
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remain unanswered. The first is concerned with 

retrieving patterns from the pattern database. 

Second, it entails the finding of complicated 

patterns, such as patterns inside patterns. Third, it 

aims to discover new strategies for creating pattern 

recognition. Finally, it intends to build query 

processing and optimisation approaches that 

include access methods and algebraic features, as 

well as to establish appropriate structures for 

linking patterns and databases. Addressing these 

issues indicates a viable direction for future study in 

this field.  
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