
 
 
 

700 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 44 No. 12 

December 2023 

Advancements and Challenges: A Comprehensive Review of Machine 

Learning and IoT-enabled Approaches for Fault Detection and Mitigation in 

Solar Photovoltaic Systems 

 
1.Chandrashekar.B.M., 2.Dr. Hannah Jessie Rani. R., 3.Dr. G. Ezhilarasan, 4.Dr.M.V.Panduranga Rao,5. 

Dr. Ashok Kumar P.S.,  

1Research scholar, EEE, FET-Jain (Deemed-to-be-University), Bangaluru, Karnataka, India.  

2Assistant Professor in EEE, FET, Jain (Deemed-to-be-University), Bangaluru, Karnataka, India.     

3Professor in EEE, FET Jain (Deemed-to-be-University),  Bangaluru, Karnataka, India. 

4 Professor ,CSE, FET-Jain (Deemed-to-be-University), Bangaluru, Karnataka, India. 

5Professor in CSE, ACS college of engineering, Kambihalli, Bangaluru, Karnataka, India. 

 

Abstract 

This extensive analysis explores the dynamic convergence of machine learning (ML) and the Internet of Things 

(IoT) within the domain of solar photovoltaic (PV) systems. It reveals a progression of developments, obstacles, 

and prospective goals. By examining the historical progression of solar PV technology, the text emphasises the 

critical significance of ML and the IoT in transforming approaches to fault detection and mitigation. The paper 

clarifies how ML techniques improve accuracy and flexibility, going from rule-based systems to the modern 

fusion of predictive analytics and adaptive control. The paper emphasises the critical significance of integrating 

ML and IoT methodologies, showcasing their capacity to develop robust, self-educating solar PV systems. 

Security, scalability, and interoperability challenges are analysed, with an emphasis on the necessity for resilient 

solutions that guarantee the dependability of the system. A review of prospective developments emphasises 

the following: enhancing the precision of ML algorithms, incorporating edge computing to enable real-time 

responsiveness, and guaranteeing the comprehensibility of artificial intelligence models. It is suggested that 

blockchain technology could be potentially integrated into interconnected systems to protect them. This 

investigation ultimately functions as a reference point for scholars and professionals, envisioning a forthcoming 

era in which intelligent PV systems, enabled by the integration of ML and IoT technologies, make a substantial 

contribution to the efficacy and sustainability of renewable energy. 
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1. Introduction 

L As the world grapples with the issues of climate 

change and the need for sustainable energy 

solutions, the integration of renewable energy 

sources into our power systems has become a key 

priority. Solar PV systems stand out as a possible 

option for capturing the sun's endless energy 

among these renewable sources [1]. However, 

effective utilisation and maintenance of solar PV 

systems present daunting obstacles, the most 

significant of which is the identification and 

mitigation of defects that might impair system 

performance. Traditionally, fault detection 

approaches in solar PV systems have relied on rule-

based systems and traditional control mechanisms. 

While these techniques have yielded useful insights 

into system behaviour, they frequently fall short of 

dealing with the complexity and unpredictability 

inherent in real-world operating settings [2]. The 

convergence of ML and the IoT has emerged as a 

revolutionary force in recent years, providing 

creative solutions to improve the fault detection 

and mitigation capabilities of solar PV systems. 

The search of effective defect detection and 

mitigation solutions in solar PV systems is not new. 

Traditional engineering principles-based 

procedures have long been used to assure the 

dependability and lifespan of these systems. 

However, due to the dynamic and non-linear nature 

of solar PV systems, as well as the rising scale and 

complexity of installations, a paradigm shift in how 

faults are discovered and managed is required. This 
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is where the convergence of ML and IoT 

technologies comes into play. 

1.1. Motivation for Fault Detection and 

Mitigation in Solar Photovoltaic Systems 

The reasons for improving problem detection and 

mitigation in solar PV systems are several. For 

starters, the economic consequences of system 

unavailability or underperformance are significant. 

Any variation from ideal operation leads in energy 

losses and reduced income production, which has a 

direct influence on the return on investment for 

solar PV plants. Second, errors can hasten 

equipment degradation, resulting in higher 

maintenance costs and a shorter system lifespan. 

Furthermore, in grid-connected systems, 

malfunctions can have a domino impact on the 

overall stability and dependability of the electrical 

grid. 

The environmental effect of inadequate solar PV 

system performance must also be considered. Solar 

energy's fundamental attractiveness is its green 

and sustainable character, and any inefficiency in 

utilising this energy source reduces the total 

environmental advantages. As the globe shifts 

towards renewable energy adoption as a method of 

combating climate change, maintaining the optimal 

operation of solar PV installations becomes critical. 

1.2. Importance of Machine Learning and IoT 

Integration 

The incorporation of ML and IoT technologies into 

problem detection and mitigation tactics provides 

solar PV systems with a new degree of intelligence 

and flexibility. ML, with its capacity to recognise 

patterns and anticipate outcomes from data, 

represents a shift from rule-based techniques. It 

enables the creation of models capable of learning 

and adapting to the ever-changing circumstances of 

solar PV systems, making them more resilient in 

detecting and mitigating errors [3]. At the same 

time, the IoTs has transformed the way we acquire 

and handle data from solar PV systems. A lot of real-

time data is now available due to the growth of 

sensors and communication devices installed in PV 

systems. When used correctly, this data offers the 

input required for ML algorithms to make educated 

judgements and predictions. The combination of 

these two technologies has the potential to usher 

in a new age of smart and self-adaptive solar PV 

systems [4]. 

Historically, deterministic algorithms and rule-

based systems were widely used in defect detection 

in solar PV systems. While these approaches 

provide useful insights, they are unable to account 

for the inherent unpredictability and complexity of 

solar energy output. Early techniques to defect 

detection were frequently threshold-based, with 

departures from anticipated performance 

triggering alerts. These techniques, however, were 

insufficient for capturing subtle and dynamic fault 

conditions [5]. Researchers have investigated 

increasingly complex methods in recent decades, 

such as model-based approaches and enhanced 

control tactics. While these systems displayed 

better fault detection accuracy, they frequently 

encountered computational complexity and 

scalability problems. Furthermore, they have 

difficulty adapting to the different and dynamic 

working circumstances of solar PV systems in the 

field. 

Traditional techniques' inadequacies highlight the 

need for a paradigm shift in fault detection and 

mitigation solutions. ML, with its capacity to extract 

meaningful patterns from massive datasets, and 

the IoTs, which enables real-time data capture and 

transmission, have emerged as game-changing 

technologies with the potential to successfully 

overcome these constraints. 

1.3. Scope of the Review 

The main goal of this paper is to give a thorough 

analysis of the present status of ML and IoT 

applications in identifying defects and mitigation in 

solar PV systems. It hopes to illustrate the strengths 

and limits of diverse approaches, highlight 

successful case studies, and identify new trends and 

difficulties by synthesising current work. The scope 

is broad, ranging from the fundamental principles 

of ML and IoT integration to the actual use of these 

technologies in real-world solar PV installations. In 

the following parts, we will look at the history of 

solar PV systems, the evolution of defect detection 

algorithms, and cutting-edge ML applications in 

solar energy. We will also investigate the 

integration of IoT technologies for improved 

monitoring and control, laying the groundwork for 

further talks on the field's integrated 

methodologies, applications, difficulties, and future 

perspectives. 
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This study is intended to be a useful resource for 

academics, practitioners, and policymakers working 

at the convergence of renewable energy and 

advanced technology. As we begin this journey, the 

complex interaction between ML and the IoTs, 

suggesting a paradigm shift in how we handle the 

difficulties of fault detection and mitigation in solar 

PV systems. 

 

2. Literature Review 

This thorough review's literature analysis takes the 

reader on an intellectual journey across the broad 

and dynamic terrain of ML and IoT applications in 

fault detection and mitigation within solar PV 

systems. We weave the vast tapestry of academic 

contributions that form the foundation of our 

understanding in this part, showing the important 

research routes, seminal publications, and 

contemporary viewpoints that characterise this 

multidisciplinary area. 

2.1. Historical Development of Solar 

Photovoltaic Systems 

The history of solar PV systems is one of constant 

innovation, technical advances, and an increasing 

dedication to capturing clean and sustainable 

energy. This section examines the evolution of solar 

PV technology, from early discoveries to modern 

improvements. Understanding the historical 

backdrop provides insights into the trajectory of 

solar PV systems, laying the groundwork for a more 

in-depth discussion of defect detection and 

mitigation in subsequent parts. 

i.Early Foundations and Photovoltaic Discoveries: 

The groundwork for solar PV technology was 

created in the 19th century, with critical discoveries 

advancing our understanding of the photovoltaic 

effect. Alexandre Edmond Becquerel discovered 

the photovoltaic effect in a cell made up of metal 

electrodes in a conducting fluid in 1839, offering the 

first view of sunshine being directly converted into 

energy [6]. This revolutionary finding laid the 

theoretical framework for the use of solar energy. 

ii.Maturation of Solar PV Technology: 1950s-1990s: 

Solar PV technology gradually matured following 

1954. Solar cells progressed from single-crystal 

silicon to polycrystalline and thin-film technology, 

broadening their application range. Solar PV 

systems found niche applications in space 

exploration at this time, powering satellites and 

space probes [7]. During this time, notable 

developments included the discovery of 

amorphous silicon solar cells, which cleared the 

way for flexible and lightweight solar panels. The 

first solar photovoltaic research centres were 

established in the 1980s, boosting collaboration 

between academics and industry [8]. These 

coordinated efforts resulted in higher efficiency and 

lower prices, making solar PV more economically 

viable. 

iii.Growth and Global Adoption: 21st Century: The 

21st century was a historical era for solar PV 

systems, with phenomenal growth and broad use. 

Material science advancements, improved 

manufacturing techniques, and government 

incentives fuelled the solar industry's growth.  

China has emerged as a prominent player in solar 

panel manufacture, resulting in economies of scale 

and additional cost reduction [9]. Solar cell 

technology advancements, such as the invention of 

perovskite solar cells, opened new avenues for 

higher efficiency and flexibility. 

2.2. Evolution of Fault Detection and Mitigation 

Techniques 

Currently, the existing PV protection standards aim 

to safeguard PV arrays against three primary types 

of faults: line-line (LL), line-ground (LG), and arc 

faults. Figure 1 visually depicts the many potential 

electrical faults that may arise within the 

component of a PV system. 

 
Figure 1. Potential Electrical Faults in PV System 

[10] 

Notwithstanding these obstacles, PV arrays remain 

susceptible to a multitude of additional potential 

complications. These encompass open circuit (OC) 

faults, degradation issues, bypass diode 

breakdowns, shading faults, hotspots, and 

connection malfunctions. To ensure dependable 
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protection, numerous novel fault detection 

strategies have been proposed in recent times, in 

addition to well-established methodologies [10]. 

Additionally, it is worth noting that the 

fundamental approach of each proposed fault 

identification technique differs significantly in 

terms of conceptual variation. However, it is 

unfortunate that these methodologies have not 

been methodically classified and evaluated for their 

effectiveness in the current corpus of literature. 

Hence, it is critical to undertake a comprehensive 

inquiry to classify, evaluate, and assess the efficacy 

of these sophisticated defect detection 

methodologies. There are two primary categories 

into which fault detection and classification 

approaches can be classified: electrical-based 

methods (EBMs) and visual and thermal methods 

(VTMs) as show in Figure 2 [11]. The fault 

classification phase concludes the framework for 

defect detection and mitigation. For PV systems, 

numerous classification techniques based on 

machine learning have been developed. For 

instance, an innovative approach utilising Artificial 

Neural Networks (ANN) was introduced by 

researchers. This methodology integrates two 

discrete algorithms. The initial algorithm identifies 

six distinct fault categories through threshold 

detection. In contrast, the second algorithm detects 

short circuits within PV arrays by utilising an ANN. 

 
Figure 2. Fault Detection Techniques 

In general, defect detection and mitigation 

procedures consist of two fundamental phases: the 

selection and extraction of features, and the 

classification of faults [12]. In the preliminary stage, 

the objective is to discern the most relevant and 

adaptable characteristics from the data at hand. 

Principal Component Analysis (PCA) is widely used 

as the prevalent approach for feature extraction. 

However, in specific instances involving nonlinear 

systems, PCA demonstrates less-than-ideal defect 

classification performance, which is primarily 

attributable to its underlying assumption of 

linearity [13]. 

At present, a significant proportion of PV systems 

integrate a monitoring infrastructure that sustains 

an ongoing database with abundant historical data 

[14]. Artificial Intelligence (AI) techniques rely on 

data, and the current abundance of large datasets 

in PV systems has led to a surge in research 

activities in this domain. Approaches and 

algorithms based on ML are recommended [15]. 

These methodologies entail training the model with 

historical data to predict and classify faults. A 

convolutional neural network (CNN) is utilised in 

reference [16] to address the challenge of defective 

classification with the intention of improving the 

adaptability and dependability of the analysis of 

images of aerial PV modules. In [17], an ensemble 

learning technique known as Random Forest (RF) is 

suggested for the identification and correction of 

faults in PV arrays. The objective is to identify and 

categorize faults in PV arrays by integrating various 

learning algorithms, thereby attaining an enhanced 

diagnostic performance. 

 

3. Machine Learning Techniques in Fault 

Detection 

The integration of ML methodologies into solar PV 

fault detection has brought about a significant 

paradigm shift in the approach taken to detect and 

resolve anomalies. This segment offers a 

comprehensive examination of diverse machine 

learning algorithms, classified as supervised or 

unsupervised learning methods, including 

reinforcement learning. It emphasises the 

functions, advantages, and practical 

implementations of these algorithms in improving 

the dependability and efficiency of solar 

photovoltaic installations. 

The researchers conducted a comparative analysis 

in [18] to assess the anomaly detection capabilities 

of three ML models. By employing data collected 

from operational PV power plants in India, the 

objective of this analysis was to establish 

correlations among a range of plant internal and 

external parameters. The results of the research 

demonstrated that the “auto-encoder and long 

short-term memory” (AE-LSTM) combination 

demonstrated efficient capabilities in detecting 

anomalies and differentiating healthy signals. An 
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alternative approach to fault diagnosis in PV 

modules, separate from signal processing, was 

presented in the references [19, 20]. The authors 

suggested fault classification using infrared 

thermography images (IRT) as the foundation. 

Recent research by the authors includes the 

presentation of an automated fault detection 

methodology. This methodology entails the 

utilisation of supervised machine learning in 

conjunction with the examination of texture 

features. The suggested approach utilises fuzzy 

edge detection to determine the orientation of 

modules displaying anomalies and IRT to identify 

anomalies in PVM. The identification of defects and 

categorization of four distinct patterns (Block, 

Patchwork, Single, and String) linked to defective 

modules using IR images were accomplished by the 

researchers in reference [21] using deep neural 

networks (DNN) and SVM. The study did not 

undertake a more comprehensive categorization of 

distinct PV degradation modes, including but not 

limited to chipping, shadowing, and stains, despite 

achieving an approximate 89% accuracy rate in 

classifying the four defect categories. The efficacy 

of employing CNN in conjunction with IR images to 

identify anomalies in PV panels has been 

established. However, further investigation is 

required to determine whether these ML methods 

can be utilised to classify different varieties of 

anomalies. 

An increasing number of PV systems are currently 

being incorporated with monitoring systems, 

resulting in the production of considerable volumes 

of data, which are widely known as "Big Data" [22]. 

The necessity for the implementation of advanced 

data mining methods has been emphasised by the 

prevalence of big data in PV systems. These 

methods are of the utmost importance in precisely 

detecting faults and improving the overall 

effectiveness of the system. A novel framework for 

defect detection was introduced in reference [23], 

which utilised an intelligent approach. The 

integration of a probabilistic neural network (PNN), 

a non-linear ML  technique useful for unsupervised 

as well as supervised learning tasks, was crucial to 

this framework. The principal aim of the endeavour 

was to discern and categorise defects, dividing 

them into discernible fault categories. The datasets 

utilised for analysis comprised examples from both 

typical PV operations and PV functioning under 

default conditions, with a particular focus on the 

winter season. 

A comprehensive analysis of the current body of 

literature indicates that machine learning 

algorithms, specifically CNN and ANN, are the 

prevailing methods employed for defect detection 

and classification in PV systems. The performance 

of these models is significantly influenced by PV 

imagery, which includes EL (Electroluminescence), 

RGB, and IR images, in addition to PV-specific 

attributes, which function as inputs. The depicted 

configuration can be found in Figure 3. Table 1 

provides the comparative analysis of ML techniques 

applied to PV fault detection and classification. 

 
Figure 3. PV System Fault Detection and 

Classification Architecture [24] 

 

Table 1. Comparative Analysis of ML Techniques 

Referenc
e 

Techniqu
e 

Objective’s Remarks 

[20] Ensembl
e 
algorith
m 

Fault 
detection 
and 
classificatio
n 

Only 
specific 
categorie
s of faults 
are taken 
into 
account 

[21] DNN Fault 
detection 

Insufficie
nt 
precision. 

[23] PNN Fault 
detection 
and 
classificatio
n 

Inadequat
e training 
and 
testing 
data 

[25] ANN Fault 
detection 
and 
classificatio
n 

Extensive 
training 
duration 
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[26] PCA Fault 
detection 
and 
classificatio
n 

Only 
specific 
categorie
s of faults 
are taken 
into 
account 

 

3.1. Challenges and Considerations in 

Machine Learning for Fault Detection 

Although ML techniques provide substantial 

progress in fault detection, there are various 

challenges and factors that warrant careful 

consideration. 

i.Data Quality and Quantity: The efficacy of ML 

models is significantly influenced by both the 

calibre and volume of operational data. The model's 

capacity to generalise to a wide range of defect 

scenarios could be compromised by unreliable or 

conflicting data [27]. 

ii.Model Interpretability: Trust and decision-making 

depend on the comprehension of how and why a 

model generates predictions. Maintaining the 

interpretability of ML models for fault detection 

remains a persistent obstacle [28]. 

iii.Real-time Processing: Due to the real-time 

operation of solar PV systems, fault detection 

mechanisms must be prompt and effective. 

Processing speed and power are crucial factors to 

take into account when deploying machine learning 

models for real-time fault detection [29]. 

 

4. IoT-enabled Monitoring and Control 

The advent of real-time monitoring, adaptive 

control, and increased efficiency in solar PV systems 

has been facilitated by the incorporation of the IoT. 

This section delves into the complex relationship 

between IoT technologies and solar PV 

installations. It clarifies the ways in which cyber-

physical systems, sensor networks, data 

acquisition, and communication protocols all 

contribute to improved monitoring and control 

capabilities. 

The IoTs enables the interchange of information 

and communication between a wide variety of 

devices, systems, and services. Recently, IoT 

applications for remote sensing and the monitoring 

of PV systems have been investigated [30]. This 

investigation is motivated by the need for enhanced 

defect diagnostics and prognostics within the 

industry. In a previous study [31], the identification 

of sensor malfunctions in grid connected PV 

systems was addressed. The authors additionally 

proposed in that study the ideal placement of 

current and voltage sensors to reduce the financial 

burden caused by the addition of unnecessary 

sensory devices. As per the findings stated in the 

source [32], an advanced IoTs system achieves 

automation and adaptability through the 

application of artificial intelligence methodologies. 

The three primary tiers of the IoT framework are 

the application layer, the network layer, and the 

perception or object layer. When considering large-

scale photovoltaic (PV) installations that consist of 

multiple inverters, sensors, and protective devices, 

one can adopt a more economical approach by 

integrating all communication capabilities into a 

single hardware unit [33], rather than utilising 

numerous separate communication devices. As a 

result, the use of high-speed communication 

technologies facilitates real-time monitoring and 

control, which is crucial for the efficient 

management of distributed renewable generation 

systems. The experimental configuration consists of 

a multitude of sensors that are specifically 

engineered to quantify a wide range of parameters. 

These parameters include internal combustion 

engine (AC) current and DC voltage, solar 

irradiance, DC-current and current from PV strings 

and arrays, air temperature, cell or module 

temperature, wind speed, relative humidity, and 

cloud cover [34]. To guarantee accuracy and 

dependability in measurements, it is critical that the 

sensors undergo rigorous calibration and 

conditioning in strict adherence to globally 

recognised standards. A depiction of an intelligent 

photovoltaic (PV) monitoring system utilizing 

Internet of Things (IoT) technology is illustrated in 

Figure 4. 

 
Figure 4. IoT Based PV system [34] 
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A remote monitoring system and control unit for PV 

plants were created in reference [35]. This system 

enables preventive maintenance, historical analysis 

of PV plant performance, real-time monitoring, and 

fault diagnosis using the extreme learning 

technique. Additionally, a webpage for a PV 

monitoring centre has been established, allowing 

the transmission of warning notifications to users 

via email in the event of a PV array fault. A data-

logging system that was recently devised for the 

purpose of monitoring PV systems via mobile and 

web interfaces was introduced with reference to 

[36]. As per the developers, the cost of this 

monitoring system is significantly diminished in 

comparison to currently available commercial 

alternatives, thereby facilitating accurate remote 

monitoring at an economically viable price. In 

reference [37], a fault detection and identification 

system for intelligent PV applications was 

developed. The prototype that was created, which 

included a simple identification algorithm, was 

subjected to experimental validation. The 

outcomes showcased the efficacy of the system in 

detecting a range of malfunctions, such as open-

circuits, dust accumulation, short-circuits, and 

shading effects. 

The application of IoTs technology for the remote 

monitoring of PV systems has become prevalent in 

residential environments, specifically for PV 

installations on a modest scale. These systems 

frequently exhibit reduced expenses in comparison 

to their commercially available alternatives. 

However, there may be some degree of constraint 

on their efficacy. In addition, it should be noted that 

commercially available monitoring systems, despite 

their higher cost, struggle to fulfil the varied needs 

of consumers worldwide. 

4.1. Challenges and Considerations in IoT-

enabled Monitoring and Control 

The incorporation of the IoTs into solar PV system 

monitoring and control presents a variety of 

advantages, but also substantial obstacles and 

factors to be taken into account. Comprehension 

and resolution of these obstacles are vital for the 

effective deployment and long-term viability of 

solar installations enabled by the Internet of Things. 

i.Data Security and Privacy: Data transmission and 

storage may be susceptible to potential 

vulnerabilities due to the interconnected nature of 

IoT devices. The implementation of robust 

encryption, secure authentication mechanisms, 

and the adoption of security protocols that adhere 

to industry standards are critical in order to protect 

sensitive data and guarantee privacy [38]. 

ii.Device Authentication: IoT device unauthorised 

access presents a security risk. Ensuring the security 

of access credentials, implementing robust device 

authentication mechanisms, and employing secure 

key management are critical preventive measures 

against unauthorised access [39]. 

iii.Managing Data Volume: The proliferation of 

interconnected devices produces enormous 

volumes of data that may present difficulties in 

terms of management and processing. Scalability 

can be managed with the assistance of scalable 

architecture implementation, periphery computing 

solution integration, and data transmission 

optimisation [40]. 

iv.Diverse Devices and Protocols: Diverse 

manufacturers produce IoT devices, each 

employing a unique set of communication 

protocols. Interoperability is improved by adopting 

standardised communication protocols, such as 

MQTT or CoAP, and ensuring device compatibility 

through adherence to common standards [41]. 

v.Integration with Existing Systems: It can be difficult 

to integrate IoT systems with pre-existing 

infrastructure. Integration is facilitated by 

employing middleware solutions, integrating open 

APIs, and performing exhaustive compatibility 

assessments throughout the system design process 

[42]. 

 

5. Combined Approaches: Case Studies and 

Successful Implementations 

The integration of ML and the IoTs represents a 

breakthrough collaboration in solar PV systems, 

surpassing conventional approaches to monitoring 

and control. This segment delves into the seamless 

integration of ML algorithms with IoTs 

technologies, elucidating the complex mechanisms 

that drive solar PV installation optimisation, fault 

detection, and adaptive control to unprecedented 

levels. 

However, to achieve successful integration of ML 

and the IoTs in solar PV systems, a few prerequisites 

must be meticulously examined. Prior to anything 

else, it is critical to establish a resilient and 
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interconnected IoTs framework, consisting of a 

network of sensors that can gather data in real-time 

throughout the photovoltaic installation. A wide 

range of parameters, including temperature, 

irradiance, voltage, and current, ought to be 

captured by these sensors. In addition, the 

establishment of a dependable communication 

framework that employs standardised protocols is 

critical to enable smooth data transmission 

between devices and the central processing 

systems. Moreover, the implementation of edge 

computing solutions has the potential to optimise 

data analytics by decreasing latency for time-critical 

applications and augmenting processing speed and 

efficiency. For training and validation purposes, 

prior to implementing ML algorithms, an exhaustive 

and clean dataset that is representative of both 

normal and fault conditions is required. 

Furthermore, it is critical to prioritise the 

implementation of security protocols, such as 

encryption, authentication, and compliance with 

privacy standards, to ensure the confidentiality and 

integrity of data exchanged within the Internet of 

Things ecosystem. To optimise defect detection, 

adaptive control, and overall system resilience, it is 

imperative that domain experts, data scientists, and 

system engineers work together in concert to 

synchronise machine learning models with the 

unique specifications of the solar PV system. This 

synergistic and efficient integration guarantees the 

success of the project. 

5.1. Photovoltaic Agricultural Internet of 

Things 

The Photovoltaic Agricultural of IoTs signifies the 

amalgamation of IoTs implementations in the 

agricultural domain with PV technology, a form of 

renewable energy. PV technology converts solar 

energy into electrical energy, providing an 

environmentally beneficial and sustainable power 

solution. Through the integration of IoT, 

conventional farming methods are revolutionised 

through the implementation of a network of 

interconnected devices that gather, observe, and 

evaluate data to enhance agricultural procedures 

[43]. A representation of an ecosystem illustrating 

the integration of Photovoltaic Agricultural IoTs in 

smart farming is depicted in Figure 5. 

 
Figure 5. Ecosystem of Photovoltaic Agricultural 

IoTs [44]. 

Solar panels are strategically positioned throughout 

agricultural regions to produce electrical energy 

using solar radiation. Following generation, the 

generated energy is utilised to power an 

assortment of IoT devices, including sensors, 

actuators, and smart controllers. These devices 

enable the continuous monitoring of a wide range 

of agricultural parameters in real-time, 

encompassing soil moisture, temperature, 

humidity, and crop well-being. By means of the IoT 

network, the gathered data is transmitted to a 

centralised control system, enabling producers to 

implement precision agriculture techniques and 

make well-informed decisions. 

5.2. Integrated Approach for Generating 

Renewable Energy Resources 

Innovative in nature, the Hybrid Artificial 

Intelligence (AI) and IoTs model to produce 

renewable energy resources attempts to meet the 

increasing demand for sustainable energy 

solutions. By integrating AI algorithms with IoT 

technology, this model aims to optimise renewable 

energy systems and increase their efficiency. 

Within this architecture, IoT devices are deployed 

strategically across solar panels. These instruments 

gather data in real-time regarding energy 

production, consumption, and environmental 

conditions. Following that, the data is inputted into 

an AI system, which optimises resource utilisation, 

analyses patterns, and predicts energy demand 

using ML algorithms. The decision-making process 

is significantly influenced by the AI component of 

the model, which dynamically modifies energy 

production in accordance with data collected from 

IoT sensors. For example, if the AI identifies an 

upsurge in energy demand, it may direct the system 
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to augment the generation of renewable energy or 

optimise the allocation of resources [45]. Likewise, 

when energy generation is hindered by 

unfavourable weather conditions or periods of low 

demand, the AI has the capability to adjust the 

system to optimise energy storage solutions and 

minimise waste. The research paper referenced as 

[46] presents a novel predictive model that utilises 

an Adaptive Neuro-Fuzzy Inference System (ANFIS) 

and an ANN to forecast PV generation. The 

proposed forecast model is trained using historical 

data, and its results are verified and compared by 

analysing a dataset obtained from a photovoltaic 

power generation station. 

The study cited as [47] examined a variety of 

machine learning models that were designed to 

forecast the performance and energy output of a PV 

system in real time (nowcasting). In conjunction 

with data from IoTs environmental devices, this 

analysis was performed. The accuracy of output 

power predictions was explicitly evaluated by the 

authors through the utilisation of handcrafted 

features across a range of temporal contexts. 

Furthermore, they investigated deep learning 

methodologies to conduct a comparative 

assessment of the efficacy of analytic photovoltaic 

system models. In determining performance, error 

metrics and learning time were utilised. The dataset 

employed in this study consisted of empirical data 

and ambient data pertaining to energy production. 

The aforementioned information was gathered by a 

photovoltaic system that was IoT-enabled. It is 

worth mentioning that this system was developed 

as a component of the Opera Digital Platform within 

the UniVer Project, an initiative that has been in 

operation at the University of Jaén in Spain for the 

past two decades. 

5.3.Future Goals: Integration of ML and IoT 

Within the domain of solar PV systems, the 

amalgamation of ML and the IoT signifies a 

paradigm shift; forthcoming objectives revolve 

around augmenting the functionalities and practical 

implementations of these integrated 

methodologies. The goal of the convergence of ML 

and IoT is to develop solar PV systems that are 

intelligent, self-learning, and capable of defect 

mitigation and real-time adaptation. Subsequent 

advancements will centre on the optimisation of 

ML algorithms to augment predictive analytics, 

thereby facilitating more precise prognostications 

of system performance and potential malfunctions. 

Moreover, the incorporation of edge computing 

into architectures of the IoTs will enable processing 

at the periphery, which will decrease latency and 

enable more rapid responses to dynamic 

conditions. The continuous endeavour to 

incorporate explainable AI into ML models will 

guarantee transparency and interpretability, which 

are fundamental for establishing confidence in the 

decision-making procedures. In addition, the 

integration of blockchain technology has the 

potential to bolster the level of security achieved in 

data transactions conducted within interconnected 

solar PV networks. With the progression of these 

technologies, forthcoming solar PV installations are 

anticipated to be robust, versatile, and 

exceptionally efficient, thereby making a 

substantial contribution to the sustainable energy 

domain. 

6. Conclusion 

This comprehensive review navigated the intricate 

intersection of ML and the IoT in the context of 

solar PV systems, unravelling a tapestry of 

advancements, challenges, and future trajectories. 

The evolution of fault detection and mitigation 

techniques demonstrated a remarkable journey 

from traditional approaches to the symbiotic 

integration of ML algorithms and IoT technologies. 

The historical development of solar PV systems laid 

the groundwork, with ML and IoT emerging as 

powerful tools to address the inherent challenges 

of fault detection in this dynamic and critical 

domain of renewable energy. The development of 

ML techniques, such as supervised and 

unsupervised learning, resulted in a significant 

improvement in the accuracy of fault detection by 

providing the ability to predict outcomes and the 

flexibility to adjust to dynamic circumstances. 

Simultaneously, real-time data streams were 

introduced through IoT-enabled monitoring and 

control, which facilitated adaptive responses and 

created opportunities for remote management and 

predictive maintenance. The significance of 

integrated ML and IoT methodologies was 

underscored in the review. By integrating secure 

communication protocols, adaptive control, 

predictive analytics, and self-learning solar PV 

systems are envisioned for the future. 
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The challenges that were delineated emphasised 

the importance of implementing strong security 

protocols, taking scalability into account, and 

adopting a comprehensive approach to ensuring 

the dependability of the system. In anticipation of 

the future, objectives include the enhancement of 

ML algorithms to yield more precise predictions, 

the incorporation of edge computing to enable real-

time responsiveness, and the verification of AI 

models' explainability. The potential integration of 

blockchain technology into interconnected systems 

could enhance their security. Throughout this 

paradigm shift, the integration of cutting-edge 

technologies propels us towards an energy frontier 

that is both environmentally sustainable and highly 

efficient. 
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