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Abstract  

Arrhythmia is a highly prevalent chronic cardiac disorder in senior citizens and is related to the high severity 

including cardiovascular accidents, heart failure and myocardial ischemia. It is essential to instantly identify and 

categorize arrhythmia rhythms from Electrocardiogram (ECG) signals. From this viewpoint, a Multi-Scale Fusion-

Convolutional Neural Network (MSF-CNN) was developed, which uses multi-scale features from the ECG signal 

for identifying arrhythmia classes. But, it needs a vast number of ECG signals and takes more time to train the 

model because of using cross-validation. As a result, this article designs a new lightweight end-to-end MSF-CNN 

with Long Short-Term Memory-Gated Recurrent Unit (LSTM-GRU) structure called an ArithNet model for 

recognizing arrhythmia automatically. In this model, two different training schemes are applied such as 

representation training and sequence residual training. At first, the ECG signal database is collected and 

preprocessed to remove the noisy signals. Then, the noiseless ECG waves are partitioned into regular (R), 

supraventricular ectopic beat (SV), ventricular ectopic beat (V), merging beat (M) and unfamiliar beat (U) based 

on the labeling from heart specialists. Such waves are given to the representation training, which extracts time-

variant salient characteristics from the ECG signals. Moreover, the sequence residual training is performed, 

which extracts the temporal characteristics using bidirectional links. Further, the obtained salient and temporal 

characteristics are fused and categorized by the softmax layer to identify arrhythmia. Finally, the experimental 

results illustrate that the ArithNet on MIT-BIH and Arrhythmia Data Set achieves an accuracy of 93.09% and 

92.84%, respectively than the other classical deep learning models for arrhythmia identification. 

Keywords: Chronic cardio disorder, Arrhythmia,ECG signal,Multi-scale fusionCNN,LSTM-GRU,Representation 

learning,Sequence residual learning 

 

1. Introduction  

Arrhythmia is an essential set of cardiovascular 

disorders, which are categorized by deliberate, rapid, 

or abnormal heartbeats [1-2]. They might happen 

alone or combined with other cardiovascular 

disorders. Additionally, a few severe arrhythmias 

might happen abruptly and result in an unexpected 

fatality, stroke, cardiac arrest, or coronary artery 

disorders [3]. Arrhythmia leads to serious health 

problems and perhaps death if not treated promptly, 

since it is the top cause of death worldwide [4]. 

Though the exact etiology of heart disorder has yet 

to be resolved, many threat aspects contribute to its 

development. A variety of risk factors add to the 

possibility of acquiring cardiovascular disorder. 

Hypertension, drinking, dyslipidemia, mellitus, 

malnutrition, family history, age, and other factors 

are among the most important [5-6]. The recognition 

and categorization of patients at risk of 

cardiovascular disease is a key challenge in the 

healthcare sector. 

In the case of cardiovascular disease recognition and 

categorization, early detection is crucial in the early 

stages of treatment, which reduces the risks 

associated with it. Cardiovascular disorders can be 

predicted using a range of blood tests and imaging 

studies [7]. Statistical data is also utilized to 

coordinate findings and predict the presence of 

sickness based on outcomes and procedures. The 

most frequent and critical diagnostic diagnostics are 
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echocardiography (echo), Magnetic Resonance 

Imaging (MRI) and Computed Tomography (CT) [8]. 

Although MRI and CT scans produce high-quality 

cardiac images, they are not used for prediction due 

to their lengthy collection time, limited availability 

and use of radiotherapy. The ECG is utilized to tackle 

this challenge since it is a graphical representation of 

the repolarization and depolarization of the 

ventricles and atria [9]. 

ECG is a quasi, low-cost and reliable diagnostic 

technique that reveals the particular variations in 

electric signal behavior over a period [10]. It is a key 

paradigm in arrhythmias recognition and prognosis. 

ECG signals have essential morphological features, 

which are typically captured by ECG assessment 

tools like echo, 24-hour Holter and smart sensor. 

Also, they are broadly utilized in the examination of 

heart activity [11]. Nowadays, arrhythmias are 

treated by the physical analysis of the ECG data. To 

recognize arrhythmias using ECG data without 

human intervention, forecasting tools should 

examine the structural features of ECG waves and 

the relationship among heartbeats. By using such 

relationships, the irregular heartbeats are identified 

and their categories are determined [12]. The 

Association for the Advancement of Medical 

Instrumentation (AAMI) [13] classifies ECG data into 

5 types: R, SV, V, M and U. All ECG data have a distinct 

inference and need various desired therapy under 

various cardiac activity states. 

Recently, visual examination depending on 

cardiologists is an essential diagnostic standard [14]. 

It takes a large number of skilled professionals to 

accurately detect the kind of signal, which not only 

tends to a difference between subjective assessment 

and the real condition but also takes a significant 

amount of time and power. So, it is critical for 

cardiologists to automatically recognize irregular 

cardiac rhythms before medical therapy. 

During the earlier centuries, ECG signal detection 

and categorization have become a well-established 

technology that may successfully aid physicians in 

clinical diagnosis. Classical template matching 

approaches are used in the appropriate automated 

classification systems. Such approaches have 

established significant advances; however, the 

sophisticated feature mining procedure requires a 

significant amount of computational power [15]. 

Deep learning has been a popular object detection 

approach these days [16-17]. It is a complete training 

strategy, which did not need a time-consuming 

mining procedure. From this perspective, Dang et al. 

[18] developed multiple CNN frameworks such as a 

basic-CNN and 2 MSF-CNN structures, which 

substitute extra handcrafted attribute mining, 

assortment and categorization by classical machine 

learning models for arrhythmia recognition. Initially, 

multi-scale input signals were designed to enhance 

the generality of the framework through mining 

multi-scale wave characteristics. After that, the data 

preprocessing was performed based on the 

denoising and segmentation methods to remove the 

power-line interferences and segregate the pre-

processed signal into 5 different waves. Also, data 

augmentation was applied to balance the data 

distribution by creating novel samples similar to the 

actual data for learning the CNN. Moreover, a strong 

MSF-CNN-based attribute mining was constructed to 

obtain the characteristics from ECG data and find the 

probability of 5 different ECG signal classes (i.e., R, 

SV, V, M and U). Based on the predicted signals, the 

arrhythmia is identified and diagnosed. On the other 

hand, CNN typically necessities a huge amount of 

data and time for the learning stage due to the use 

of cross-validation. So, this article aims to alleviate 

the difficulty of the cross-validation process and to 

increase the efficiency of identifying arrhythmia 

timely. 

In this paper, ArithNet, a new lightweight end-to-end 

MSF-CNN-LSTM-GRU model is designed with 2 

distinct training strategies, namely representation 

training and sequence residual training for 

recognizing arrhythmia from ECG signal. The key 

contribution is to design an automatic end-to-end 

categorization of arrhythmia disorder from ECG 

signals by the lightweight MSF-CNN-LSTM-GRU 

architecture. It can capture salient characteristics 

directly from ECG signals with the smallest learning 

variables and memory. The representation training 

involves dynamic characteristic miner, frequency 

characteristic miner and pattern miner to jointly 

capture time-invariant salient characteristics from 

the ECG signals. 

Also, the sequence residual training comprises 

bidirectional links and is utilized to capture temporal 

characteristics. Both salient and temporal 

characteristics are then concatenated and fed to the 

softmax classifier to identify arrhythmia on five 
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different ECG signals. This novel ArithNet model can 

prevent the complexity of cross-validation tasks and 

increase the accuracy of arrhythmia identification 

rapidly. 

The remainder of this manuscript is arranged as the 

following: Section II presents the different works 

associated with the arrhythmia identification and 

categorization models. Section III explains the 

ArithNet model whereas Section IV displays its 

validity. Section V outlines the entire study and 

discusses the upcoming enhancement. 

 

2. Literature Survey 

Abdalla et al. [19] designed a deep learning scheme 

to categorize various classes of arrhythmia. First, 

the ECG database was collected and preprocessed 

to remove noise and partition the signal by 

identifying the QRS complex. After that, data 

augmentation was applied to solve the imbalanced 

database. Further, the 1D-CNN was trained to 

extract the characteristics and categorize the 

arrhythmia classes. However, it needs to utilize the 

sequential framework to categorize the arrhythmia 

efficiently. 

Yang & Wei [20] developed a novel technique 

integrated with the enhanced morphological 

characteristics to identify and categorize 

arrhythmias. Initially, the events of the ECG signals 

were identified. After that, parametric 

characteristics of ECG morphology were mined 

from the chosen ECG areas. Also, enhanced visible 

pattern characteristics were mined from the QRS 

complex morphology variations and a novel 

clustering-based feature mining scheme was 

applied. Moreover, those characteristic vectors 

were fed to the neural network, Support Vector 

Machine (SVM) and K-Nearest Neighbor (KNN) to 

categorize the arrhythmia class. But, it relies only 

on the visible patterns of the QRS complex, whereas 

changeability of other ECG waves was needed to 

increase the efficiency. 

Wang et al. [21] designed a dual fully-connected 

neural network framework for the precise 

categorization of heartbeats. First, various 

characteristics were mined from the preprocessed 

ECG signals. After that, a 2-layer classifier was 

adopted in the categorization phase, wherein all 

layers have 2 independent fully-connected neural 

networks and the threshold condition was included 

in the second layer to categorize the arrhythmia. 

But, the sensitivity and precision were less for 

arrhythmia classes. 

Chen et al. [22] developed a new Multi-information 

Fusion Convolutional Bidirectional Recurrent 

Neural Network (MF-CBRNN) to identify 

arrhythmia. It depends on the 2 parallel hybrid 

branches, which concurrently deliberate on the 

pulse-dependent data in the ECG signals and the 

slice-dependent data in the nearby parts of the 

rhythms. Morphological data were obtained from 

the specific ECG signals. Meanwhile, the nearby 

slice of the ECG beat was used to improve the 

temporal data. Then, a mixture of CNN and 

bidirectional LSTM were used in all branches to find 

the characteristics, which were merged to identify 

arrhythmia. But, the accuracy was not effective due 

to the limited amount of samples such as the 

categorization of the fusion beat type under the 

inter-patient model. 

Li et al. [23] developed a rapid and precise 

categorization scheme called an Incremental Broad 

Learning (IBL) strategy depending on the biased 

dropout method to recognize arrhythmias. Initially, 

the morphological-rhythm characteristics of the 

denoised signal were obtained and fed to the IBL 

during the ECG signal processing. After that, the 

categorization effect of the node optimization 

framework was improved by adopting the target 

deactivation technique and integrating additional 

feature improvement nodes. But, the 

generalization of this scheme was not effective, 

since it was only suitable for the MIT-BIH ECG 

corpus. 

Murugappan et al. [24] investigated the ECG 

morphological characteristics to identify the abrupt 

cardiac arrest. Initially, ECG signals were divided 

into a 1-min period and processed to determine the 

onset of ventricular fibrillation. Afterward, the 

nonlinear characteristics were captured from the R 

peak to T-end rhythms. Such characteristics were 

categorized using the SVM, subtractive fuzzy 

clustering and Neuro-fuzzy categorizer to recognize 

the abrupt cardiac arrest. But, the training samples 

were limited and there were no rich characteristics 

regarding the arrhythmia which results in imprecise 

classification. 

Li et al. [25] designed a Multi-tag attribute Selection 

scheme using ECG (MS-ECG), which devices an 
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analysis hypothesis of ECG characteristics 

depending on the kernelized fuzzy rough sets to 

select the best characteristic subgroup and adjust 

the ECG feature space. Also, a Multi-tag 

Categorization scheme of arrhythmia using ECG 

(MC-ECG) was developed based on the multi-

objective optimization scheme, which finds the 

correlations among arrhythmia disorders and 

evaluates the mapping correlation between ECG 

characteristics and arrhythmia disorders to 

categorize the multiple labels of arrhythmia. But, 

the accuracy was less because it trains only 

standard machine learning algorithms for 

categorization. 

Darmawahyuni et al. [26] developed a 

generalization model of deep learning for ECG 

signal categorization in intra and inter-patients’ 

scenarios. Also, a 1D-CNN structure was adopted to 

categorize ECG signals according to the rhythm and 

beat characteristics. On the other hand, the 

preprocessing was not effective in the scenario of 

ECG signals that contain several leads, noises and 

sampling frequencies. Also, the partition of the 

different wave categories from the ECG signals was 

not conducted before the categorization. 

Mathunjwa et al. [27] designed an efficient ECG 

recurrence plot-based arrhythmia categorization 

scheme. First, the ECG time series were partitioned 

and transformed by the recurrence plot. Then, 2-

level categorization was adopted in which the 

ResNet18 structure was used in the initial level to 

identify noise and ventricular fibrillation while the 

ResNet50 was used in the second level to identify 

regular, atrial fibrillation, premature atrial 

contraction and premature ventricular 

contractions. But, the classification efficiency was 

influenced by the imbalanced data. Also, the 

memory requirement and network complexity 

were high because of color ECG scans. 

Madan et al. [28] developed a hybrid deep learning-

based model to automatically recognize and 

categorize arrhythmia from ECG signals. Initially, 

1D-ECG signals were converted into 2D Scalogram 

images using Continuous Wavelet Transformation 

(CWT) to remove the noise and capture the 

characteristics. After that, 2D-CNN and the LSTM 

network were combined to categorize arrhythmias. 

But, the computation difficulty was high because of 

using CWT. 

 

3. PROPOSED METHODOLOGY 

This part explains the ArithNet model for 

arrhythmia identification and diagnosis briefly. 

Figure 1 illustrates the schematic representation of 

this study. Initially, different ECG recordings with 

healthy and arrhythmia patients are collected from 

the available websites to construct training and test 

sets. Secondly, different preprocessing methods 

are conducted to enhance and augment the 

training ECG samples. Thirdly, those training 

samples are utilized for training the ArithNet 

classifier and the trained classifier is considered to 

categorize the test samples into various classes of 

arrhythmia disorder. 

 

 
Figure 1. Schematic Representation of ArithNet-based Arrhythmia Identification and Diagnosis System 
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3.1.  Database description 

In this study, two benchmark databases are 

considered, including: 

1. MIT-BIH arrhythmia database: It is a public 

PhysioBank corpus [29-31], which is broadly 

considered to investigate the identification and 

categorization of ECG signals. It comprises 48 half-

hour ECG recordings captured from 47 participants 

and all have 2 leads (lead II and V) created from 

various sensors. Such participants involve 19 

women aged from 23 to 89 and 26 men aged from 

32 to 89. The ECG recordings have 17 categories: 

regular sinus pulse, pacemaker pulse and 15 

categories of heart disorders (for all classes, a 

minimum of 10 signal fragments are acquired). The 

recordings were digitized at 360 pulses/sec and 11-

bit resolution/channel over a 10mV. All recordings 

were independently labeled by 2 or many 

specialists; discrepancies have been solved to get 

the machine-understandable benchmark labels for 

all heartbeats (approximately 110,000 labels) 

contained in the corpus. For the evaluation, 1000, 

10-second (3600 pulses) pieces of the ECG data 

(non-overlapping) have been arbitrarily chosen. 

The waves obtained from a single lead, i.e. the MLII 

are only utilized. 

2. Arrhythmia Data Set: It is also a public 

corpus [32-33] used to categorize the existence and 

non-existence of arrhythmia in one of the 16 

classes. It has 279 elements, 206 of which are linear 

ranged and the remaining is nominal. Class 1 is the 

normal ECG class, Classes 2 to 15 are the various 

categories of arrhythmia and Class 16 is the 

remaining uncategorized ones. 

 

3.2.  Signal preprocessing 

The real raw ECG signals from the acquired 

databases are processed by different methods 

including denoising, signal partition and 

augmentation [18] to create the new databases. 

First, denoising is performed by applying median 

and low-pass filtering techniques to remove noise 

and disturbances, respectively triggered by patient 

respiration or movement. Then, the noise-free ECG 

waves are split into 5 distinct groups: R, SV, V, M 

and U based on the labeling by cardiologists [18]. 

The signal partition includes 251 examples 

(collection X) and 361 examples (collection Y). The 

real unprocessed ECG recordings are denoised and 

split into a group of rhythms located on the R-peak, 

excluding the initial and final heartbeats. All pulses 

are made up of 251 examples (60 ahead of the R-

peak and 190 behind the R-peak), with a combined 

P-, Q-, R-, S- and T-peak. Such recordings having 251 

samples are called collection X. Similarly, the real 

raw recordings with denoising are split into 361 

heartbeat samples (120 ahead of the R-peak and 

240 behind the R-peak). Those recordings with 361 

samples are called collection Y. 

Moreover, data augmentation methods such as 

time-shift and noise augmentation methods are 

applied to balance the different groups of ECG 

recordings by creating new signals in similar groups 

[18]. It must be observed that this process creates 

new samples in addition to actual samples, which 

are applied only to the learning task. During testing, 

the real samples are leveraged without 

augmentation [18]. 

 

3.3 Fundamentals of deep learning structure 

CNN: 

The typical structure of CNNs has 6 units: the 

convolutional (CNV) unit, Pooling Unit (PU), 

Rectified Linear Unit (ReLU), batch regularization, 

Fully Connected (FC) and softmax unit [18]. All CNV 

layers have many convolution operations and every 

variable is adjusted via the back-propagation 

strategy. The major task of this CNV function is to 

transform the given signals to the hidden unit 

attribute region; therefore, various characteristics 

are mined from the given recordings. The PU 

intends to minimize the number of feature maps 

based on max and mean-pooling functions. The 

ReLU activation executes nonlinear transformation 

from the result of the CNV unit. Then, batch 

regularization is used to regularize the results of the 

pooling layer, which supports the network learning 

converges quicker when its inputs are whitened. 

The FC layer executes the weighted amount of the 

characteristics from the preceding units and the 

attribute region is transformed to the basic 

indicator region using the linear conversion. Finally, 

the softmax function is applied to map several 

scalars to a probability distribution, which is the 

class of a given input signal (i.e., R, SV, V, M and U). 

Additionally, a residual training module is adopted 

in the 1D signal investigation to recognize shortcut 

links, which provides all layers fit a residual 
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mapping rather than requiring all staked units to 

immediately fit a targeted original mapping [18]. 

The residual training module is split into identity 

mapping and residual mapping. Table 1 summarizes 

the final configuration of the CNN structure. 

 

Table 1. Configuration of Hyperparameters for CNN 

Hyperparameters Range 

Batch range 256 

Training rate 0.001 

Number of epochs 35 

Activation function ReLU 

Optimizer Adam 

Loss factor Cross-entropy 

 

LSTM-GRU: 

In the LSTM-GRU structure, the LSTM is initially 

applied to solve the vanishing gradient issue in the 

back-propagation. It comprises 3 gates such as 

input (𝑖𝑡), forget (𝑓𝑡) and output (𝑜𝑡) gates, 

whereas the GRU comprises 2 gates such as update 

gate (𝑢𝑡) and reset gate (𝑟𝑡). The result of the LSTM 

is given to the GRU. Let 𝜎 is the sigmoid function, 

𝑤𝑥  is the weight for the corresponding gate 𝑥, ℎ𝑡−1 

is the result of the preceding LSTM unit at time 𝑡 −

1, 𝑥𝑡 is the input at present time 𝑡, 𝑏𝑥  is the bias for 

the corresponding gate 𝑥, 𝐶𝑡 is the memory (cell 

outcome) at 𝑡, 𝐶̃𝑡 is the nominee (cell input) for 

storage at 𝑡. 

The LSTM has 3 gates (𝑖𝑡 , 𝑓𝑡 and 𝑜𝑡). GRU has 2 gates 

(𝑢𝑡 and 𝑟𝑡). The hidden units of LSTM-GRU are 𝐶̃𝑡, 

ℎ̃𝑡 and ℎ𝑡. The weights of LSTM are 𝑤𝑖 , 𝑤𝑓 , 𝑤𝑜  and 

𝑤𝑐. The weights of GRU are 𝑤𝑢, 𝑤𝑟 , 𝑤𝑜 and 𝑤𝐶𝑡
. 

LSTM-GRU has biases 𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜 and 𝑏𝑐. Also, 𝑡𝑎𝑛ℎ is 

the hyperbolic tangent function and the scalar 

products of 2 vectors are defined by ∘.  

If 𝑥𝑡 is fed to the input layer, then it is multiplied by 

𝑤𝑖  and ℎ𝑡−1 is multiplied by 𝑤𝑖 , which is further 

included with 𝑏𝑖. The ℎ𝑡−1 keeps the data of 

preceding layers 𝑡 − 1. It provides the sigmoid 

operation and transforms range from 0 to 1, as well 

as, modifies the cell condition. 

 

𝑖𝑡 = 𝜎(𝑤𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  

                 

(1) 

𝑓𝑡 = 𝜎(𝑤𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  

                 

(2) 

𝑜𝑡 = 𝜎(𝑤𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  

                 

(3) 

Eqns. (4) & (5) define how to create the outcome 

from 0 to 1 by the sigmoid activation factor. 𝐶̃𝑡 and 

𝐶𝑡 are utilized to confirm what data is preserved in 

storage and what data is neglected. 𝐶̃𝑡 is multiplied 

using 𝑡𝑎𝑛ℎ and confirms which range is highly 

important. 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  

                              

(4) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡   

                               

(5) 

Eqns. (6) and (7) define that 𝐶𝑡  is fed to the initial 

unit of the GRU (𝑢𝑡) in which 𝑢𝑡 and ℎ𝑡−1 are 

multiplied by a weight and the resultant data is 

passed to 𝑟𝑡. 

𝑢𝑡 = 𝜎(𝑤𝑢 ∙ [𝐶𝑡] + 𝑤𝑢 ∙ [ℎ𝑡−1])  

                               

(6) 

𝑟𝑡 = 𝜎(𝑤𝑟 ∙ [𝐶𝑡] + 𝑤𝑟 ∙ [ℎ𝑡−1])  

                               

(7) 

Eqns. (8)-(10) defines that ℎ𝑡 decides data be 

stored. The stored data is further given to the 

output unit. This unit has 𝑡𝑎𝑛ℎ as an activation 

function, which is utilized to capture time-invariant 

and temporal characteristics. Adam is applied as a 

fine-tuner and the Mean Squared Error (MSE) is an 

error factor. 

ℎ𝑡 = 𝑢𝑡 ∘ ℎ𝑡−1 + (1 − 𝑢𝑡) ∘ ℎ̃𝑡  

                               

(8) 
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ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝐶𝑡
+ 𝑟𝑡 ∘ 𝑤𝐶𝑡

[ℎ𝑡−1])  

                               

(9) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(ℎ𝑡)   

               

(10) 

Table 2 provides the absolute setting of the LSTM-

GRU structure. 

 

Table 2. Configuration of hyperparameters for LSTM-GRU 

Hyperparameters Range 

Batch range 256 

Training rate 0.001 

Number of epochs 35 

Number of hidden units 4 

Hidden neurons 128 

Dropout percentage 0.5 

Activation factor 𝑡𝑎𝑛ℎ 

Outcome neuron 1 

Outcome unit activation factor Linear 

Fine-tuner Adam 

Error factor MSE 

 

3.4 Design of ArithNet for arrhythmia 

identification 

After preprocessing, both ECG signal collections X 

and Y are fed to the ArithNet classifier to identify 

arrhythmia samples. The key concept of the 

ArithNet is to create a robust feature mining for 

capturing characteristics from ECG recordings. This 

network can simply adapt to various databases by 

transfer learning strategy. The structure of the 

ArithNet as depicted in Figure 2 majorly relies on 

the CNN-LSTM-GRU structure. It has 3 parallel CNV 

modules for representation training, whereas 7 

CNV layers, 2 residual learning modules, 2 max-

pooling layers, single global mean pooling, 2 LSTM-

GRU modules, 2 FC layers and one softmax layer for 

sequence residual training. 
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Figure 2. Overview structure of proposed ArithNet model 

The representation training is performed to capture 

time-invariant characteristics from all ECG 

recordings. It has 3 parallel CNN such as dynamic 

characteristic miner, frequency characteristic miner 

and pattern miner. The frequency characteristic 

miner has 4 1D CNV units and 2 max-PUs including 

the major kernel dimension of sampling rate 𝑆𝑟 × 4 

and stride dimension 𝑆𝑟/2 for the 1D CNV unit to 

obtain the occurrence elements. The successive 
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kernel and stride dimensions are selected by 

hyperparameter adjustment.  

Likewise, the pattern miner involves 4 1D CNV units 

and 2 max-PUs. But, the fine-grained CNV including 

kernel and stride dimensions assigned as 𝑆𝑟/2 and 

𝑆𝑟/16, correspondingly are utilized to find the 

emergence of different ECG waves. The successive 

kernel and stride dimensions are selected using 

hyperparameter adjustment. The incoming signals 

are redesigned into a 2D tensor and passed to the 

dynamic characteristic miner. It has 2D CNV units, 

batch regularization, max-pooling and squeeze-

expansion units. So, the results from these 3 CNNs 

are aggregated and passed to the sequence residual 

training module. 

The sequence residual training is performed to 

capture the sequential characteristics from the 

series of characteristics mined in the preceding 

module. In this training, 2 blocks of LSTM-GRU are 

applied to train sequential data that facilitates the 

encoding of history and upcoming data using 2 

separate LSTM-GRUs. A skip link is used to execute 

the residual operation and facilitate the fusion of 

temporal characteristics and earlier captured 

characteristics from the CNNs. The aggregated 

characteristics vector is then passed to the softmax 

unit, which determines the probability of five 

different ECG signal waves and identifies the 

arrhythmia disorder categories. Thus, this ArithNet 

model is trained and applied to identify and 

categorize the arrhythmia heartbeats from the test 

ECG signals. 

 

4. EXPERIMENTAL RESULT 

 

This part examines the efficacy of the ArithNet 

model by implementing it in MATLAB 2019a using 

the MIT-BIH and Arrhythmia Data Set (discussed in 

Section 3.1). As well, a comparative analysis is 

carried out to understand the improvement of the 

ArithNet model contrasted to the existing models, 

including MSF-CNN [18], MF-CBRNN [22], IBL [23], 

1D-CNN [26] and CNN-LSTM [28]. The evaluation 

metrics used to measure the success of the 

proposed and existing models include: 

• Accuracy: It is the proportion of the 

number of exact identifications of normal and 

arrhythmia cases to the overall cases analyzed. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

                           (11) 

In Eq. (11), the amount of normal beats properly 

classified normal is TP, while the amount of 

arrhythmia beats properly classified as arrhythmia 

is TN. Also, FP represents the amount of arrhythmia 

beats improperly classified as normal, whereas FN 

represents the amount of normal beats improperly 

classified as arrhythmia. 

• Precision: It is calculated by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   

               

(12) 

• Recall: It is determined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    

                             

(13) 

• F-score (𝐹): It is calculated by 

𝐹 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   

               

(14) 

4.1 Accuracy 

 
Figure 3. Comparison of accuracy 
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Figure 3 displays the accuracy (in %) realized by the 

different arrhythmia identification and 

classification models applied to 2 different 

databases. It addresses that the accuracy of the 

ArithNet model on the MIT-BIH database is 10.82% 

greater than the IBL, 8.88% superior to the 1D-CNN, 

7.37% superior to the CNN-LSTM, 4.71% superior to 

the MF-CBRNN and 3.43% greater than the MSF-

CNN models. Similarly, the accuracy of the ArithNet 

model on the Arrhythmia Data Set is 11.32% greater 

than the IBL, 9.48% greater than the 1D-CNN, 8.08% 

greater than the CNN-LSTM, 5.5% greater than the 

MF-CBRNN and 3.6% greater than the MSF-CNN 

models. This is because of capturing both time-

invariant and temporal characteristics along with 

the deep features from the ECG recordings to 

classify arrhythmia classes. 

4.2 Precision 

 
Figure 4. Comparison of precision 

 

In Figure 4, the precision (in %) of the ArithNet 

model is compared with various arrhythmia 

identification and classification models applied to 2 

different databases. It observes that the precision 

of the ArithNet model on the MIT-BIH database is 

20.04% better than the IBL, 18% better than the 1D-

CNN, 16.39% better than the CNN-LSTM, 14.77% 

better than the MF-CBRNN and 14.06% superior to 

the MSF-CNN models. Similarly, the accuracy of the 

ArithNet classifier on the Arrhythmia Data Set is 

20.65% better than the IBL, 18.27% better than the 

1D-CNN, 15.74% better than the CNN-LSTM, 

14.02% better than the MF-CBRNN and 12.39% 

better than the MSF-CNN models due to the 

implementation of representation training and 

sequence residual training processes

. 

 

4.3 Recall 

 
Figure 5. Analysis of recall 

 

Figure 5 demonstrates the recall (in %) obtained by 

the different arrhythmia identification and 

classification models applied to 2 different 

databases. It analyzes that the recall of the ArithNet 

model on the MIT-BIH database is 13.28% larger 

than the IBL, 11.39% larger than the 1D-CNN, 9.06% 

larger than the CNN-LSTM, 7.55% larger than the 

MF-CBRNN and 5.97% larger than the MSF-CNN 

models. Similarly, the recall of the ArithNet model 

on the Arrhythmia Data Set is 15.03% larger than 

the IBL, 12.69% larger than the 1D-CNN, 10.84% 

larger than the CNN-LSTM, 7.67% larger than the 
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MF-CBRNN and 5.1% larger than the MSF-CNN 

models. This realizes 

that the ArithNet model increases the recall of 

identifying and categorizing arrhythmia classes 

compared to the other models because of 

improving the feature learning tasks. 

4.4 F-score 

Figure 6 portrays the f-score (in %) achieved by the 

different arrhythmia identification and 

classification models applied to 2 different 

databases. It indicates that the f-score of the 

ArithNet model on the MIT-BIH database is 16.58% 

higher than the IBL, 14.62% higher than the 1D-

CNN, 12.62% higher than the CNN-LSTM, 11.06% 

higher than the MF-CBRNN and 9.95% higher than 

the MSF-CNN models. Similarly, the f-score of the 

ArithNet model on the Arrhythmia Data Set is 

17.81% higher than the IBL, 15.44% higher than the 

1D-CNN, 13.26% higher than the CNN-LSTM, 

10.79% higher than the MF-CBRNN and 8.66% 

higher than the MSF-CNN models. 

 
Figure 6. Comparison of F-score 

Thus, it summarizes that the ArithNet model 

maximizes the efficiency of identifying and 

categorizing arrhythmia classes compared to all 

existing models due to the consideration of both 

representation and sequence residual training 

stages, which enhances the feature mining and 

classification. 

 

5. Conclusion 

In this study, the ArithNet model was designed 

based on the representation training and sequence 

residual training to identify arrhythmia classes from 

the ECG signals. Initially, distinct ECG recordings 

were acquired from the freely available databases 

and preprocessing methods were applied to 

eliminate the noises from the acquired ECG signals. 

After that, those signals were divided into R, SV, V, 

M and U waves according to the labels from 

cardiologists. Each signal was passed to the MSF-

CNN-LSTM-GRU structure, wherein both 

representation and sequence residual training 

processes were executed to capture time-invariant 

and temporal features efficiently. Moreover, those 

features were aggregated and learned by the 

softmax function to identify the probabilities of 

different arrhythmia classes. Further, the 

investigational results realized that the ArithNet on 

MIT-BIH and Arrhythmia databases has 93.09% and 

92.84% accuracy compared to the conventional 

arrhythmia identification models. 
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