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Abstract 

The continuous economic growth and resulting infrastructural and technological development have drawn attention to 

asset management. The tied up high capital in equipment and resources has driven organizations to seek for more 

effective maintenance strategies to asset management problems. The maintenance process involves a combination of 

preventive and corrective actions that aim to retain or restore a system to its operating condition. It is a complex and 

critical process, particularly for manufacturing firms. The cost of maintenance can account for a significant portion, 

ranging from 15 to 70% of total production costs [1]. The objective of optimal maintenance strategies is to ensure 

optimal system reliability, availability, and safety performance while minimizing maintenance costs [2]. In the literature, 

two main types of maintenance techniques are discussed: time-based maintenance (TBM) and condition-based 

maintenance (CBM) [3,4]. TBM relies on the age of the system and statistical information about its lifetime to make 

preventive maintenance decisions [5,6]. However, this approach does not take into account the realistic operating 

conditions of the system over time. On the other hand, CBM is an advanced maintenance technique that considers 

diagnostic and prognostic information about the system's condition over time. It has gained popularity in the literature 

and is now recognized as an interesting approach for maintenance optimization [7,8,9,10]. Extensive research has been 

conducted on both TBM and CBM strategies, resulting in a large number of strategies that have been investigated, 

developed, and successfully applied to monocomponent systems. For example, some strategies utilize the current 

equipment condition, such as the deterioration level [11, 12, 13], while others consider the future equipment health 

state for making maintenance decisions [14,15,16]. These approaches have proven effective in optimizing maintenance 

processes, so in this article we will evaluate the influence of the relative weight of the cost variability on the Performance 

and Robustness of Condition-Based Maintenance Strategies CBM and Time-Based Maintenance Strategies TBM. 
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1. Introduction 

The escalating significance of asset management is 

underscored by the sustained economic expansion and 

technological advancements. In response to capital 

being tied up in equipment, organizations are actively 

pursuing more efficient maintenance strategies to 

tackle the challenges associated with asset 

management. The efficacy of these strategies is 

frequently gauged through key objectives, including 

but not limited to Performance and Robustness. Once 

the criterion is chosen, the maintenance strategy must 

be evaluated. There are many evaluation methods in 

the literature. This research endeavors to introduce the 

most commonly employed stochastic assessment 

techniques, with a detailed overview available in [17]. 

All methods are presented considering the asymptotic 

average cost criterion, although they are applicable to 

other criteria. The relative weight of the cost variability 

can be varied among these evaluation methods, which 

plays a very interesting role in increasing the 

performance and robustness of the Condition-Based 

Maintenance Strategies and Time-Based Maintenance 

Strategies that will be evaluated. 

Analytical evaluation of the performance criterion of a 

maintenance strategy is essentially based on the 

regeneration and semi-regeneration properties of the 

maintained system evolution process [18]. When 

maintenance models are sufficiently simple (monotone 

degradation, static decision rules, periodic inspection, 

perfect replacement, minimal repair, etc.), it is possible 

to identify renewal instants (or regeneration instants), 

that is, instants at which the system is exactly in the 

same state (and with the same laws governing its 

evolution) with a probability of 1 after a finite time. 

Renewal instants generally correspond to the dates of 

equipment renewal (preventively or correctly). If the 
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duration of the intervention for the renewal is 

negligible, and if the system is actually new at the initial 

instant, we will speak of a simple renewal process for 

the renewal dates [19]. In this case, the regeneration 

property of the renewal process can be used to 

calculate the asymptotic average cost C∞ [20,21]. In 

particular, C∞ is equal to the ratio of the expected cost 

per renewal cycle to the average cycle length. Its 

formula is widely used in the literature to optimize 

maintenance costs [22,23].One can also refer to the 

articles [24,25] for the application of the formula of the 

asymptotic average cost C∞ in maintenance 

optimization. Some maintenance models evaluated by 

Monte Carlo simulation are found in [26,27]. 

In this paper, we focus on the construction of models 

to evaluate the performance of maintenance 

strategies. This requires determining performance 

criteria and their evaluation methods. The economic 

criterion is the most widely used to optimize the 

performance of maintenance strategies [28,29]. We 

first present the different cost criteria available in the 

literature, and then the methods for evaluating them. 

Finally, we show the chosen criterion and the 

evaluation methods applied in this paper, and more 

specifically, we will evaluate the influence of the 

relative weight of the cost variability on the 

Performance and Robustness of Condition-Based 

Maintenance Strategies and Time-Based Maintenance 

Strategies. Finally, in Section VI, we conclude our 

findings, emphasizing the value of our research in 

providing insights into the Performance and 

Robustness of TBM and CBM strategies. 

2. Degradation and Failure Model 

This paper introduces the scalar random variable 𝑋𝑡 to 

represent the system's degradation level at any given 

time t ≥ 0. In the absence of maintenance interventions, 

𝑋𝑡 exhibits an increasing trend, starting from 𝑋0 = 0. 

The degradation increment between two time points t 

and s (t ≤ s), denoted as 𝑋𝑠 − 𝑋𝑡, is independent of 

degradation levels before t. Any monotonic stochastic 

process from the Lévy family [30] can be employed to 

model the system's degradation evolution. 

This paper adopts the well-established homogeneous 

Gamma process to model system degradation [31]. The 

Gamma process is characterized by shape parameter α 

and scale parameter β [32]. This choice is supported by 

extensive practical applications and its mathematical 

tractability [33]. Therefore, for t ≤ s, the degradation 

increment 𝑋𝑠 − 𝑋𝑡 follows a Gamma distribution with a 

probability density function. 
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incomplete Gamma function. 

 And "1{·}" denotes the indicator function, which 

evaluates to 1 if the argument is true and 0 otherwise.  

To define system failure, we consider the random 

failure time of the system Lτ , which can be expressed 

as:  
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Where L represents the critical threshold. 

The density function of Lτ  at time t≥0 is given by: 
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   is known as digamma function and can 

be expressed as: 
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3. Maintenance Strategies and Cost Models 

This Section introduces the two main maintenance 

strategies, Block Replacement (BR) and Periodic 

Inspection and Replacement (PIR), and outlines the 

assumptions associated with the maintained system. 

A. Maintenance Assumptions  

The system in focus employs two maintenance 

alternatives: Preventive Replacement (PR) and 

Corrective Replacement (CR). Replacement involves 

either physical replacement or a comprehensive repair, 



 
 
 

95 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 45 No. 1 

January 2024 

restoring the system to a condition equivalent to being 

brand new. However, in practice, PR and CR activities 

may have unequal costs. CR, often unexpected and 

potentially causing environmental harm, generally 

incurs higher costs than PR [34]. Even when employing 

the same maintenance activities, the system may 

accumulate different costs due to the intricacy of 

maintenance on a more deteriorated system. 

Let 𝐶(𝑋𝑡) and 𝐶𝑐(𝑋𝑡) denote PR and CR costs at time t, 

respectively. These costs increase with the degradation 

level Xt and adhere to the relationship 0 < 𝐶𝑖 < 𝐶(𝑋𝑡) < 

𝐶𝑐(𝑋𝑡), where 𝐶𝑖 represents the cost of inspection. 

Furthermore, since replacement occurs at discrete 

times (inspection time in the PIR strategy and calendar 

time bloc T for BR strategy), downtime occurs after a 

failure. An additional cost is incurred from the moment 

of failure until the next replacement time at a constant 

cost rate 𝐶𝑑 > 0. 

In our scenario, we treat 𝐶(𝑋𝑡)and 𝐶𝑐(𝑋𝑡)  as fixed 

parameters. This approach allows us to delve into the 

impact of the relative weighting of cost variability on 

both the Performance and Robustness of Condition-

Based Maintenance Strategies and Time-Based 

Maintenance Strategies. 

B. Maintenance Strategies 

1) Block replacement strategy (BR): In This 

strategy,The decision-making process is simple, 

based on a time block T. The system is replaced at 

regular intervals of kT, where k is any positive 

integer. The replacement occurs proactively if the 

system is still operational at that time (XkT < L), or 

reactively if it malfunctions (XkT ≥ L). 

2) Periodic Inspection and Replacement strategy (PIR): 

The PIR (Periodic Inspection Replacement) strategy 

involves regularly inspecting a system at fixed intervals, 

regardless of its condition or age. Inspection times are 

denoted as Tk = kδ, where k is a positive integer and δ 

is the inter-inspection time interval. 

During inspections, the system's degradation level, XTk, 

is assessed. Based on this observed degradation level, a 

decision is made: 

• If XTk ≥ L, the system is considered to have failed 

and is replaced correctively (CR) with a new one at 

time Tk. 

• If M ≤ XTk < L, the system is still functioning but is 

deemed too degraded and should be preventively 

replaced (PR) with a new one at time Tk. 

• If XTk < M, the system is considered healthy, and no 

action is taken at Tk. 

4. Maintenance Cost Model 

The long-run expected maintenance cost rate criterion 

is a widely used method for assessing the effectiveness 

of maintenance strategies [35]. It considers the average 

maintenance cost per unit of time over an extended 

period. This criterion is defined as follows [36]: 
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Where S is the length of a renewal cycle, C(S) is the total 

maintenance cost incurred over the cycle S.  

To evaluate how robust maintenance strategies are, we 

suggest using a criterion called the standard deviation 

of the MCPRC and that is defined as follows: 
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Where K is a random variable, that is evaluated by the 

mean value µ= E (K) and the standard deviation. 
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To measure both the performance and robustness of 

maintenance strategies, we use a combination of two 

metrics, the formula for combining these metrics might 

look like this: 

( )        . ;                                           0.                  9C  = + 
  

The coefficient λ in equation (9) functions as a tool for 

balancing the emphasis on cost variability (robustness) 

in comparison to mean cost (performance) during 

maintenance strategy decisions. In interpretation: 

• If λ is 1 or less (λ ≤ 1), decision makers give greater 

priority to the performance of maintenance 

strategies, emphasizing the minimization of 

expected cost. 

• If λ is greater than 1 (λ > 1), decision makers 

prioritize the robustness of maintenance strategies. 

This indicates a willingness to tolerate a slightly 

higher expected cost in exchange for reducing the 

variability or uncertainty in the costs. 
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In our study, we delve the impact of the relative 

weighting of cost variability λ on both the Performance 

and Robustness of Condition-Based Maintenance 

Strategies and Time-Based Maintenance Strategies. 

5. Maintenance Strategies Comparison 

This section focuses on a comparative analysis of the 

performance and robustness of the two examined 

strategies, namely the BR and PIR strategies, across 

different setups of the relative weight parameter 𝜆. 

This examination allows us to delve the impact of the 

relative weighting of cost variability on both the 

Performance and Robustness of this two strategies BR 

and PIR. 

A. Sensitivity to the relative weight of the cost 

variability  

In evaluating maintenance programs, the relative 

weight 𝜆 reflects decision-makers' financial 

considerations and risk tolerance. A quantitative 

assessment of how 𝜆 influences the performance and 

robustness of maintenance strategies is crucial. System 

characteristics are held constant, and maintenance 

costs are fixed, while varying 𝜆 from 0 to 3.  

 

 

 

(a) σ, 𝜑𝑜𝑝𝑡 and 𝐶∞ 

 

 

(b) Topt , ∆Topt and Mopt 

Fig. 1. Varied relative weight of the cost variability 

We hold the system characteristics at 𝛼 = 𝛽 = 0.1, 𝐿 = 

29, and 𝑀𝑠 = 14, and the maintenance costs at 𝐶𝑖 = 7, 

𝐶𝑑 = 19, 𝐶𝑐 = 98, and 𝐶0 = 48. We then vary 𝜆 from 0 to 

3 in increments of 0.1, the impact on cost functions 

𝜑𝑜𝑝𝑡, 𝐶∞, 𝜎, and decision variables 𝑇𝑜𝑝𝑡, Δ𝑇𝑜𝑝𝑡, 𝑀𝑜𝑝𝑡 for 

PIR and BR strategies is observed and presented in Fig. 

1. At 𝜆 = 1.4, optimal cost criteria 𝜑𝑜𝑝𝑡 for both PIR and 

BR strategies align, indicating equivalence. Long-term 

expected cost rates 𝐶∞ and standard deviations of 

MCPRC 𝜎 show trends of increase and decrease, 

respectively, concerning 𝜆. PIR excels in performance 

but lags in robustness, emphasizing the inherent trade-

off. Overall objective functions of both strategies are 

nearly equivalent (Fig. 1a), highlighting the challenge of 

achieving high performance and robustness 

simultaneously. 

Fig. 1b reveals that 𝑀𝑜𝑝𝑡 and 𝑇𝑜𝑝𝑡 decrease with 

increasing 𝜆, while Δ𝑇 remains relatively constant. This 

underscores the crucial roles of condition-based (𝑀𝑜𝑝𝑡) 

and time-based (𝑇𝑜𝑝𝑡) aspects in balancing performance 

and robustness. 

Amplification of 𝜆 signals a deliberate focus on 

prioritizing robustness over performance. Applying the 

BR strategy results in decreased 𝑇𝑜𝑝𝑡 as 𝜆 increases, 

emphasizing the importance of minimizing downtimes. 

The PIR strategy adapts to resemble BR (∆Topt ≈ 𝑇𝑜𝑝𝑡) as 

𝜆 increases, showcasing comparable robustness. Figure 

1b depicts opposing trends in C∞ and σ, confirming the 

inherent trade-off. Despite challenges, the PIR strategy 

consistently outperforms in 𝜑𝑜𝑝𝑡, showcasing its ability 

to balance performance and robustness. 
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6. Conclusion 

Through this study, we have evaluated the influence of 

the relative weight of the cost variability on the 

Performance and Robustness of Condition-Based 

Maintenance Strategies and Time-Based Maintenance 

Strategies using a new criterion, which combines the 

long-term expected maintenance cost rate 𝐶∞, the 

standard deviation of the MCPRC 𝜎, and the relative 

weight of the cost variability 𝜆.    

 In this regard, the PIR strategy explored in this study 

presents itself as a promising option for our system in 

terms of performance and robustness, and it is better 

than the BR strategy.   
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