
Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1041

A Study on Multi signature for Blockchains

Gulab Das
Department of Mathematics, Govt. N. PG College of Science, Raipur, Chhattisgarh, India.

B.P. Tripathi

Department of Mathematics, Govt. N. PG College of Science, Raipur, Chhattisgarh, India.

Swati Verma
Department of Mathematics, School of Science, OP Jindal University, Raigarh, Chhattisgarh, India.

Anurag Verma

Department of Mathematics, Govt. N. PG College of Science, Raipur, Chhattisgarh, India.

Abstract. We suggest a research of authentication techniques in the Bitcoin ecosystem as a blockchain
application in this article. First, from the standpoint of replacing the current banking system, the
features provided by Bitcoin and its security requirements are studied. The blockchain use case of the
Bitcoin ecosystem has current transaction authentication techniques that have been well researched
in the literature. The topic of whether the common account and proxy notions of banking services are
likewise feasible in Bitcoin is posed in light of this. According to many experts, there are solutions
based on responsible subgroup multi-signature schemes and bilinear pairings. In this work, the
aforementioned question is addressed using the aforementioned scheme. We have the chance to use
the public key aggregation process with accountable subgroup multi-signature (ASM), which is built
from Boneh, Lynn, and Shacham (BLS) signature schemes. This makes it possible for multiple users to
jointly sign the same message, and only one public key is required to validate the signature. This
method is quite easy to implement in Bitcoin and provides for significant cost savings when it comes
to storing public keys in transaction scripts. Our methods can be applied in many other situations
where multiple signatures are required, in addition to reducing the size of the Bitcoin blockchain. Both
signature compression and public-key aggregation are supported by all of our constructions.
Therefore, the verifier simply needs a brief multisignature, a brief aggregation of the public keys of the
parties, and the message m to confirm that several parties signed a shared message m. Future scope of
proposed research is that it could be applicable any other blockchain structure where multi- signature
is to be used.

Keywords: Accountable Subgroup, Block Chain, Bitcoin, Multi signature, Accountable Subgroup Multi
signature.

 Received: 07.05.2023 Revised: 12.09.2023 Accepted: 15.11.2023

1. Introduction

Some of the chances that are recognized in the
financial system are available in the present
Bitcoin system, which is employed as a
payment mechanism. For instance, the
common account in a banking sys- tem is
analogous to multi-signature, which enables
several users to sign Bitcoin transactions. In
this essay, studies on how to use transaction
scripts, such as Multisignature, more
successfully and efficiently are addressed.
Consider a scenario where n parties generate
key pairs for a signature system separately.

Sometime later all n parties want to sign the
same message m. A multi-signature scheme
[14, 18] is a protocol that enables the n signers
to jointly generate a short signature σ on m so
that σ convinces a verifier that all n parties
signed m. Specifically, the verification
algorithm is given as input then public keys,
the message m, and the multi-signature σ. The
algorithm either accepts or re- jects σ. The
multi-signature σ should be short; its length
should be in- dependent of the number of
signers n. We define this concept more
precisely in the next section, where we also
present the standard security model for such

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1042

schemes [18]. Secure multi-signatures have
been constructed from Schnorr signatures(e.g.
[3]), from BLS signatures (e.g. [4]), and from
many other schemes as discussed in Section
2.A more general concept called an aggregate
signature scheme [6] lets each of the parties
sign a different message, but all these
signatures can be aggregated into a single
short signature σ. This brief signature should
once again persuade the validator that each
signer has signed the intended message.
Applications to Bitcoin Multi-signatures and
aggregate signatures can be used to shrink the
size of the Bitcoin blockchain [19]. In recent
work, Maxwell, Poelstra, Seurin, and Wuille
[18] suggest using multi-signatures to shrink
the transaction data associated with Bitcoin
Multi-signature addresses. Conceptually, a
Multi-signature address is the hash of n public
keys pk1, .., pkn along with some number t ∈

{1, ..., n} called a threshold (see [22, 17] for
details). When spending money from this
address, one must generate a transaction that
has all n public keys (pk1, pk2, …, pkn). It then

adds this transaction to the blockchain,
followed by t valid signatures obtained from t
of the n public keys. The transaction data
serves as the message being signed inall t
signatures. In reality, multi-signature
addresses frequently utilize t= n, requiring
signatures from each of the n public keys for
each trans- action. A multi-signature strategy
can be used in this situation to com- press all n
signatures into a single short signature. As a
result, there are fewer transactions overall and
less information is published to the blockchain.
It should be noted that compressing the
signatures does not save much space because
we still need to write all n public keys to the
blockchain. Maxwell et al.[17], building on the
work on Bellare and Neven [3], construct a
Schnorr-based multi-signature scheme that
also supports public key aggregation; the
verifier only needs a short aggregate public
key instead of an explicit list of all n public
keys. This method results in an n-of-n. The
data recorded to the blockchain in a spending
transaction is this single short aggregated
public key, a single short compressed
signature, and the message. Multi-signature
addresses are simply the hash of the short
aggregate public key. This information is
adequate to persuade the verifier that the
transaction was signed by each of the n
signers. By a factor of n, it reduces the volume

of data written to the blockchain. This
primitive is referred to as a multi- signature
technique with public key aggregation by
Maxwell et al. Two rounds of communication
between the signing parties are required by
their signature protocol, and they demonstrate
the security of their method by making one
additional discrete-log assumption (as
assumption introduced in [2]). Recent research
[10] has revealed that the security proof is
flawed and that security cannot be
demonstrated under this premise. The
question of whether their approach can be
demonstrated secure under other assumptions
or in a general group model is still un-
resolved.

Applications to Blockchain:

One form of data structure is the block- chain.
It has the ability to store data and establish
links between objects. The cryptographic, or
mathematical, hash algorithm SHA-256 is
employed to connect the blocks. Let's consider
three numbers of blocks informally (Block-X,
Block-Y, Block-Z). Using the same method, the
entire Block-hash X's value is saved in the
Block-Y, and the entire Block-hash Y's value is
stored in the Block-Z. Block-X is connected to
Block-Y in this manner, and Block-Y is
connected to Block-Z. Block- Y, which stores
the hash of Block-X, will also change if Block-X
is changed in any way that affects the hash
value of Block-X.

Similar to how Block-Y is impacted by changes
in Block-Z. When there are many blocks,
changing must be done from the first modified
block to the last one, and in some hashing
circumstances, this operation may be very
impossible. On this restriction, the Bitcoin
ecosystem is built. The blocks contain
information about "transactions," which are
acts of transferring money between parties
using Bitcoin. Utilizing the immutable data
structure characteristic. The Bitcoin ecosystem
guaran- tees consumers the preservation of
their valuables. But there is still a problem, and
that is transaction authentication. An amount
of a transaction may be spent or transferred by
the real owner before it is stored safely.
Digital signature, another cryptographic
technique, is used to verify transactions.
Contrary to conventional usage, ownership of a
digital item in Bitcoin is not established by the

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1043

owner signing it; rather, the prior owner must
sign it and store the new owner's public key in
it. The example of the paper check can be used
to demonstrate this. When using the paper
check payment method, the owner of the funds
is the per- son whose name is placed in the
"Pay to the order of" field, not the signer.
To spend money using the Bitcoin system, the
owner must provide a valid signature that was
created using a private key that matched the
public key that was used in the prior
transaction. This strategy offers two
advantages: privacy and decentralized
authentication. Privacy of Bitcoin ownership is
offered as a result of the fact that no one is
aware of whose public key is used for a certain
transaction. Additionally, since a certificate
authority is not required, Bitcoin transactions
are de- centralized. The Bitcoin system is the
only source of assurance. That transaction
signing and validation procedure is reliable
and effective.

There are numerous transaction
authentication standards in the Bitcoin
ecosystem. P2PK (Pay To Public Key), P2PKH
(Pay To Public Key Hash), and multi-signature
are a few of them.
Multi-signature is used for dual ownership of
Bitcoin amounts or for extra security
requirements by adding a second
authentication element, such as a Bitcoin
wallet, in the event that one or more private
keys are stolen. A complex framework
underlies multi-signature. It is thorough- ly
explained in Section 3.5. From this point,
"Accountable Subgroup Multi-Signature
(ASM)" is a possible improvement for Bitcoin's
need for multiple signatures. Instead of having
to keep all of the public keys in Multi-
signature, ASM allows the signer's public key
to be sufficient to store in the transaction. A lot
of data and computational savings are
provided by this. Additionally, the ASM's
responsibility attribute offers another. This
characteristic makes all group members
accountable for the agreements made by a
subgroup. By doing this, the chance that other
group members will reject the transactions
carried out by the sub- group of users is
completely avoided. The BLS (Boneh-Lynn-
Shacham) signature scheme [7], which is based
on bilinear pairings, is used to build the
recommended ASM schema in [5]. Key
Aggregation and Group Setup are two

additional processes in the ASM schema
compared to standard signature systems. The
key aggregation stage generates the
aggregated public key. The membership keys
collected from each member's public and
secure key are generated for each group
member during group setup. As a result, the
accountability is given since the membership
keys are required at the Signing stage.

1.1. Outline of the Paper
The remainder of the essay is structured as
follows. The associated works are addressed in
section 2. The notion of blockchain is explained
in Section 3 along with some preliminary
topics. The Bitcoin ecosystem, a case study of
blockchain, is also briefly examined up to the
transactions stage in Section 3, with an eye
toward how its transaction authentication
methods function. Multi-signatures with key
aggregation from pairings are discussed in
section 4. Section 5 provides a detailed
explanation of the responsible subgroup multi-
signature method, which is suggested as an
alternative to Bitcoin multi-signature. Finally,
section 6 contains the conclusions.

2. Related Work
Even if Multi-signature can reduce the
signature value, holding all public keys still
occupies a significant portion of transaction
size in the Bitcoin ecosystem. Multi-signatures
have been worked on different mathematical
bases e.g. on RSA [14, 23], discrete logarithm
problem [17, 21]. To reduce transaction sizes,
the aggregating public-key algorithm has been
clearly handled only in [17] and [5] the
“public-key aggregation” is named firstly in the
work of Maxwell [17]. According to [17], in
signing stage, there is a need for two tour of
transmission between all signers. But one
round of transmission can be enough by [3].
With the name of “Accountable subgroup
multi-signatures (ASM)”, this approach was
firstly worked by Micali, Ohta and Reyzin [18]
take it to the next level via adding key
aggregation and using parings further. Multi-
signatures have been studied extensively
based on RSA [14]. Defending against rogue
public-key attacks has always been a primary
concern in the context of multi-signature
schemes based on discrete-log and pairings
[18, 3, 2, 26] and is the main reason for the
added complexity in discrete-log-based
multisignature systems. Aggregate signatures

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1044

[6, 1] are a closely related concept where
signatures by different signers on different
messages can be compressed together.
Sequential aggregate signatures [16, 8] are a
variant where signers take turns adding their
own signature onto the aggregate. The concept
of public key aggregation in addition to
signature compression has not been explicitly
discussed in the plain public key model until
[20] and this work.

3. Preliminaries
In this section, we go over a few tools that are
helpful for our plan. We outline the key
methods used in our design and illustrate the
definitions of security features through an
interactive game.

3.1. Blockchain
The blockchain is an ordered, linked list of
blocks that functions as a data structure. Each
block links back to the one before it in a chain.
Be- cause the connected blocks form a chain in
this fashion, we refer to the technology as
blockchain. The blockchain data can be kept in
a data- base or in a file similar to a plain text
file. A left-to-right stack of blocks, with the first
block serving as the base of the chain, can be
compared to the blockchain. In the language of
blockchain, "top" (or "tip") refers to the most
recent block, and "height" refers to the number
of blocks from the first block.

Each block in a blockchain is identified by its
hash value, which is produced using the SHA-
256 cryptographic hashing technique and
placed in the block's header. In addition, each
block contains a reference to its parent block
and the parent block hash in the block header.
A chain that starts with the first block is
created by using hash values to link each block
to its predecessor. It is conceivable for there to
be many blocks with the same parent's hash
value. For instance, a block may have more
than one kid. There can only be one parent
block due to the single parent hash value field.

The hash value of the current block is impacted
since the previous block's hash is recorded in
the block header. This implies that the hash
value of the child also changes if the
predecessor's hash value does. Any change to
the parent block's value will result in a change
to the predecessor's hash. Since the
predecessor's hash value has changed, the

successor's prior block link must also be
updated. Additionally, this causes the
successor's hash to change, which calls for a
change in the link of the two-next successor,
which in turn causes it to change in or- der,
and so on. Because of the cascade effect, it is
impossible to change a block with numerous
descendants without also changing all
descend- ants blocks. This needs huge
computational power, so being a long chain of
blocks gives us the irreversibility property of
the blockchain, that is one of the most
important properties of blockchains security
[24].

3.2. Bitcoin
Blockchain is used in Bitcoin, which is the most
popular use in this field. The information
regarding the amount of Bitcoin sent from one
person to another is contained in blocks, which
are used to store Bitcoin transactions. By itself,
Bitcoin constitutes a cryptocurrency
ecosystem. It offers numerous opportunities to
use money in ways we have never thought
about. Let's use the analogy between Bitcoin
transactions and bank checks as an example.
The recipient identification, or beneficiary in
banking terms, that is listed on "Pay to the
order of," is done using the bitcoin address.
The checks don't need to be for a specific
account; they might be written in the name of a
company, an institution, a corporation, or even
in cash.

3.3. Payment To Public Key (P2PK)
Pay-to-public-key is a less complex way to
send money using bitcoin than other methods.
A script for pay-to-public-key locking is
handled as follows:

<Public key of A>OPCHECKSIG OP − CHECKSIG
is an ECDSA signature verification procedure
to check whether the signature of a user A is
valid for a given public key in a transaction
locking script. The unlocking script is a
simple signature: (Signature by Private Key of
A) The combined script, to be validated, is:
(Signature by Private Key of A) (Public Key of
A) OP-CHECKSIG It is computationally hard to
obtain the private key from the public key in
an acceptable time period. So the public key is
safely used as an address for receiving Bitcoin
payments. In P2PK script
template, public keys are called P2PK
addresses. But nowadays, to ensure better

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1045

security P2PK addresses are left in place to
P2PKH addresses [24,25].

3.4 Pay to Public Key Hash (P2KH)
The most common type of transaction script in
the Bitcoin network is P2PKH script template.
It’s locking script contains a public key hash
instead of a plain public key as a Bitcoin
address. Therefore, the public key must be
presented to unlock amount of Bitcoin and also
a digital signature created by the
corresponding private key.

To illustrate P2PKH script template with an
example, let Alice pay to Bob’s Cafe. Alice made
a payment of 0.015 Bitcoin to the Bitcoin ad-
dress of the cafe. The locking script of
transaction output would be like: OP-DUP OP-
HASH160 (Cafe Public Key Hash) OP-EQUAL
OP-
CHECKSIG Cafe Public Key Hash is the Bitcoin
address of the cafe. The unlocking script
corresponding to the locking script is: (Cafe
Signature) (Cafe Public Key) The validation
script is as given below (Cafe Signature) (Cafe
Public Key) OP-DUP OP-HASH160 (Cafe Public
Key Hash) OP-EQUAL OP-CHECKSIG This
combined script’s execution results TRUE if the
unlocking script matches the conditions set by
the locking script. In particular, the result will
be TRUE if the unlock- ing script has a valid
signature generated by the cafe’s private key
that corresponds to the public key hash set as a
hypothec [24,25].

3.5 Multisignature (M-of-N Multi-
Signature)
In a multi-signature script template, at least M
of the N public keys that are recorded in the
locking script must match the associated
signatures in order to release the hypothec.
This is often referred to as an M-of-N scheme,
where N is the overall key count and M is the
minimum number of valid signatures. In order
to construct a transaction that is valid to spend
a certain amount of bitcoin, a 2-of-3
multisignature requires that three public keys
are specified as signers group, at least two of
which must be used to create signatures.
Standard multi-signature scripts may have
various restrictions, such as the ability to use a
group of signers with a maximum of 15
participants and only 15 published public keys.

The maximum number can be changed in
response to advancements in computing
power throughout time. A locking script that
sets an M-of-N multi-signature condition often
takes the following form: M Public Keys 1 and
2 are listed below. N is the total number of
public keys, and M is the minimum number of
signatures needed to spend the output in the
OP-CHECKMULTISIG command. For instance,
the locking script in a 2-of-3 multi-signature is
as follows: Two (Public Key A and B) 3 OP-
CHECKMULTISIG.
The matching script for unlocking that consists
of two signatures is OP-0 (Signature B)
(Signature C), or another two-signature
combination linked to the declared three
public keys. Hence, the validation scriptis:
OP-0 (Signature B)(Signature C) 2 (Public Key
A) (Public Key B) (Public Key C) 3 OP-
CHECKMULTISIG. If two signatures in the un-
locking script match the two of three public
keys in the locking script, combined validation
script will result TRUE [24, 25].

4 Multi-Signatures with Pairing-Based Key
Aggregation

We start by introducing our brand-new public-
key aggregation compatible pairing-based
multi-signature approach. Asymmetric bilinear
groups are those in which one of the two
groups has a more compact representation.
Public keys and signatures must reside in
different groups in order to use the pairing-
based techniques below. It would make sense
to utilize the more compact group for
signatures as a single public key is used to sign
numerous messages for standard signatures.
However, this may no longer be the case since
our methods below allow for the aggregation
of both public keys and signatures, and the
appropriate choice of groups may now heavily
rely on the specific application. We outline our
plans below:

Putting public keys in G2 and signatures in G1,
but we don't specify which group has a more
condensed representation. Keep in mind that
there are effective hash functions that map into
both groups [28, 29, 11].

4.1 Description of our Pairing-Based
Scheme
Our pairing-based multi-signature with public-
key aggregation MSP is built from the BLS

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1046

apkpk

signature scheme [7].
The system uses the hash functions H0: {0,

1}
*
→ G2 and H1: {0, 1}

*

→ Zqand is secure in the basic public key

paradigm.

Generators of Parameters: Pg(κ) sets up as a
bilinear group (q, G1,G2, Gt, e, g1, g2) ←G(κ) by

Pg(k) and generates keys according to par ←
(q, G1, G2, Gt, e, g1, g2) .

Key Generation:

K Ag({pk1, ..., pkn})

Batch Verification:
We point out that checking a batch of b multi-signatures is quicker than verifying each one
individually. Consider a set of triples (mi, i, apki) for i= 1,..., b, where apki is the combined public key

required to validate the multi-signature ion mi. This will help you understand how. If

each message is unique, we can check each triple as a batch using signature aggregation as described
as follows:

4. Accountable Subgroup Multi-Signature:

Micali, Ohta, and Reyzin [18] defined an
accountable-subgroup multisignature (ASM)
scheme where any subset S of a group of PK,

where PK is the set of the public keys of the
signers, can create a valid multisignature that
can be verified by the public keys of signers in
the sub- set. An established access rule can be
added to the ASM scheme to more carefully

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1047

decide if the subset S is permitted to sign on
behalf of PK. For instance, the ASM technique
obtains the threshold signature property that
authentication can be performed by a
minimum number of signers by specifying |S|
‘t’ as a condition.
ASM scheme verification initially requires a
description of the set S of signers in the group
PK. Verification procedure is based on a com-
pact aggregate public key and signature [17, 5].
In the ASM approach, the aggregate public key
can be created from the publicly available
signers' public keys; nevertheless, a
membership key that is unique to the group is
necessary to sign messages on PK's behalf,
please. Through a one-time group setup, the
group-specific membership key is created.

5.1. Bilinear Groups and Pairing Based
Cryptography

Let ζ be a bilinear group generator that takes

as an input a security parameter 1
k

and
outputs the descriptions of multiplicative
groups Λ = (q, G1, G2, Gt, e, g1, g2) where G1,

G2 are groups of prime order q, and Gt be

another cyclic group of order q written
multiplicatively, a bilinear map e : G1 × G2 →

Gt , and g1 and g2 are generators of the groups

G1 and G2, respectively. For later use, it is

denoted that Λ = (q, G1, G2, Gt, e). If the

bilinear map e is a paring, it has the following
properties [9]:

Bi-linearity
For all a, b ∈ F*q , for all P ∈ G1, Q ∈ G2 : e(Pa ,

Qb) = e(P, Q) ab

Non-degeneracy
e≠1

Computability
There exists an efficient algorithm to compute
e. As a usage example of bilinear pairings and
to construct ASM [5] lets look BLS [7]
signature scheme. In addition to bilinear
paring requirements, H0 : M → G1 is a hash

function. BLS works as:
• Key generation: Select a sk ← Zq randomly

and return (pk, sk)where

pk ← g sk∈ G
2 2

• Sign(sk, m): Return σ ← H0(m) sk∈G1.

• Verify(pk, m, σ): If e(σ, g2) = e(H0, pk) return

“true”, else“false”.

In BLS schema, there also can be a simple
signature aggregation. Given (pki, mi, σi) for i =

1, ..., n, σ1, ..., σn ∈ G1 can be converted by

aggregating them like: σ ← σ1, ..., σn ∈ G1. To

verify the aggregated signature σ ∈ G1: e(σ, g2)

= e(H0(m1), pk1), ..., e(H0(mn), pkn). All (pki,

mi) for i = 1, ..., n are needed to verify. As a

trick, if all messages are chosen the same (m1
= ... = mn), verification is downgraded on only

two pairings: e(σ, g2) = e(H0, pk1, ..., pkn).

Hence, the aggregated public key concept is
born apk := pk1,...,pkn ∈ G2.

The Rogue Public-Key Attack.

The signature aggregation in BLS is not so
secure, it needs to be improved. See Section
5.3. To illustrate its weakness, let’s look at the
at- tack scenario: “an attacker registers a rogue

public key pk2 = g2
α .pk

−1

∈ G2, where pk1 ∈ G2 is a public key of some

unsuspecting user Bob, and α ← Zq is chosen

by the attacker. The attacker can then claim
that both he and Bob signed some message m
∈ M by presenting the aggregate signature σ =

H0(m)α. This signature verifies as an

aggregate of two signatures, one from pk1 and

one from pk2, because e(σ, g2) = e(H0(m)
α

,

g2) = e(H0(m), g2
α) = e(H0(m),pk1.pk2).

Hence, this σ satisfies. In effect, the attacker
committed Bob to the message m, without Bob
ever signing m.”[5]

5.2. Construction of ASM Scheme

As first defined in [3], an ASM schema which is
based on Schnorr sig- nature [27] consists of
the algorithms: parameter generation (Pg), key
generation (Kg), group setup (G Setup), Sign,
key aggregation (KAg), and verification (Vf).
The notation par ← Pg is for common
parameters generation, (pk, sk) ← Kg(par) is
for key generation, mk ← G Setup(sk, PK) is for
generating membership key where PK = pk1,
..., pkn is a group of signers. Let each signer in

PK be assigned a computable index i ∈ {1, ...,
|PK|}, for example the index of pk in a sorted.

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1048

list of PK. A subgroup S ⊆ {1, ..., |PK|} signs a
message m with the interactive algorithm σ ←
Sign(par, PK, S, sk, mk, m). Getting the public
keys of PK, key aggregation algorithm
generates the aggregated public key apk [7].
The algorithm Vf(par, apk, S, m, σ) verifies the
signature[5].

With this construction strengthened with BLS
schema [7], ASM scheme needs all signers,
during group setup, join to multi-signatures
on the aggregate public key and the index of
every signer, such that the i-th signer in PK has
a “membership key” which is a multi-signature
on (apk, i). In other words, an accountable-
subgroup multi-signature consists of the
aggregation of the individual signers.

signatures and their membership keys and the
aggregate public key of the subgroup S. To
verify a signed message by a subgroup S, it can
be checked that the signature is a valid
aggregate signature where the aggregate
public key of the subgroup signed the message
and the membership keys corresponding to S
[5].

The scheme uses hash functions H0 : {0, 1}∗

→G1, H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗

→ G1 [28].

Parameters Generation The bilinear group is
set up by Pg(κ) function and also it returns
parameters par ← (q, G1, G2, Gt, e, g1, g2) ←
ζ(κ)

5.3. Accountable-Subgroup Scheme with
PoPs

To integrate PoPs, key structure is like y ← g2
sk, π ← H3(y) x , H3 : (0, 1)∗ → Zq as a new

hash, and pk ← (y, π), also key aggregation
differs in that the aggregate of a set of keys PK
= (y1, π1), ...,(yn, πn) in addition to the product

Y←Πny , it has the hash of public keys h ← H

(PK). i=1 to 3.

The aggregate public key is a pair apk ← (Y,
h).The reason to use hash is, when evaluating
H2(apk, i), to consider whether i is the index of

the target signer in the set PK for which apk is
the aggregate public key. Before aggregating,
for completeness, first it may be needed to test
that: e(H3(yi, yi)) = e(πi, g2) for i = 1, ..., n. G

Setup(ski, PK = pk1, ..., pkn) calculates apk =
(Y, h) ← KAg(par, PK) and µj,i= H2(apk, j) ski to

signer j. Receiving µj,I from all other signers j

= i, signer i calculates µj,i

= H2(apk, j) ski and returns the membership

key mki← Πn
i=1µj,i. If any signer is not

malicious, it must be equal e(mki, g2) =

e(H2(apk, Y)). Signing and verification stages

are same as pure ASM scheme, except the

product of public keys y ← ΠjϵSyj instead of pk

← ΠjϵSpkj [7].

5.4. ASM integration with Bitcoin

The aggregated public key can be used in place
of a Bitcoin address to implement the ASM
scheme in Bitcoin transaction scripts. The
potential application can be demonstrated
using scripting language.

In place of Multisig's locking script (M-of-N
scheme)
M < Public Key 1 >< Public Key 2 > . . . < Public
Key N > N OP CHECKMULTISIG
and the unlocking script where OP CHECKM U
LT ISIG means Operator that checks the
signature validity
OP0 < Signature n1 > ... < Signature nM >,

where OP0 refers to an opera- tor that pushes

a blank array on the stack, the possible locking
script in ASM scheme should be like < Agg.
Public Key > OP CHECKASM where OP
CHECKASM means Operator that checks the
accountable subgroup multi-signature validity
and the unlocking script in ASM(accountable
subgroup multi- signature) OP0 < S ><

Common Signature of S > where < S > is a
short string of signers' indexes and S is the

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1049

subgroup of signers. The aggregation aspect of
the ASM system allows for size and
computation cost savings, as can be observed
from the comparison.

6. Conclusion

This paper presents two alternatives to the
transaction authentication mechanisms
currently used in blockchains, particularly in
the Bitcoin environment.

The themes of the current structure of the
blockchain concept, Bitcoin, its transaction
scripts, and the most common authentication
systems are first introduced. It is determined
that the transactions must be carried out
successfully in addition to the requirement to
safeguard the Bitcoin assets, which are so
valuable and equivalent to money and must be
held in a secure environment.

Due to its ineffectual use, Accountable
Subgroup Multi-Signature (ASM), a type of
multi-signature schema, is suggested as an
alternative to Multisig transaction script. After
first concept of ASM scheme [18], it is
improved by [7] to adding the capability of key
aggregation to the schema using the pairing
based cryptography. As a result, adding ASM
to the Bitcoin ecosystem can increase
transaction security by aggregating public keys
and reducing trans- action size and
computational effort. Future scope of proposed
re- search is that it could be applicable any
other blockchain structure where
multisignature is to be used.

References

[1] J. H. Ahn, M. Green, and S. Hohenberger.

Synchronized aggregate signatures: new
definitions, constructions and
applications. In Proceed- ings of the 17th
ACM conference on Computer and
communications security, pages 473–
484,2010.

[2] M. Bellare, C. Namprempre, D. Pointcheval,
and M. Semanko. The one more-rsa-
inversion problems and the security of
chaum’s blind sig- nature scheme. Journal
of Cryptology, 16(3),2003.

[3] M. Bellare and G. Neven. Multi-signatures
in the plain public-key model and a
general forking lemma. In Proceedings of

the 13th ACM conference on Computer
and communications security, pages 390–
399, 2006.

[4] A. Boldyreva. Threshold signatures,
multisignature and blind sig- natures
based on the gap-Diffie-Hellman-group
signature scheme. In International
Workshop on Public Key Cryptography,
pages 31–46. Springer,2003.

[5] D. Boneh, M. Drijvers, and G. Neven.
Compact multi-signatures for smaller
blockchains. In International Conference
on the Theory and Application of
Cryptology and Information Security,
pages 435–464. Springer,2018.

[6] D. Boneh, C. Gentry, B. Lynn, and H.
Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps.
In International conference on the theory
and applications of cryptographic
techniques, pages 416–432.
Springer,2003.

[7] D. Boneh, B. Lynn, and H. Shacham. Short
signatures from the weil pairing. Journal
of cryptology, 17(4):297–319,2004.

[8] K. Brogle, S. Goldberg, and L. Reyzin.
Sequential aggregate signatures with lazy
verification from trapdoor permutations.
Information and computation, 239:356–
376,2014.

[9] J. Camenisch, M. Drijvers, and M.
Dubovitskaya. Practical secure delegatable
credentials with attributes and their
application to blockchain. In Proceedings
of the 2017 ACM SIGSAC Conference on
Computer and Communications Security,
pages 683–699,2017.

[10] M. Drijvers, K. Edalatnejad, B. Ford, and G.
Neven. Okamoto beats Schnorr: On the
provable security of multi-signatures.
IACR Cryptology, e-Print Arch.,
2018:417,2018.

[11] M. Fukumitsu and S. Hasegawa. An
aggregate signature with pre-
communication in the plain public key
model. In International Work- shop on
Security and Trust Management, pages 3–
19. Springer,2021.

[12] M. Fukumitsu and S. Hasegawa. An
aggregate signature with pre-
communication in the plain public key
model. In International Work- shop on
Security and Trust Management, pages 3–
19. Springer,2021.

[13] C. Gentry and Z. Ramzan. Identity-based

Journal of Harbin Engineering University Vol 44 No. 12
ISSN: 1006-7043 December 2023

1050

aggregate signatures. In International
workshop on public key cryptography,
pages 257–273. Springer,2006.

[14] K. Itakura and K. Nakamura. A public-key
cryptosystem suitable for digital
multisignature. NEC Research &
Development, (71):1–8, 1983.

[15] A. Juels. Financial Cryptography: 8th
International Conference, FC 2004, Key
West, FL, USA, February 9-12, 2004.
Revised Papers, volume 3110.
Springer,2004.

[16] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham,
and B. Waters. Sequential aggregate
signatures and multisignature without
random oracles. In Annual International
Conference on the Theory and
Applications of Cryptographic Techniques,
pages 465–485. Springer,2006.

[17] G. Maxwell, A. Poelstra, Y. Seurin, and P.
Wuille. Simple Schnorr multisignature
with applications to bitcoin. Designs,
Codes and Cryptography, 87(9):2139–
2164,2019.

[18] S. Micali, K. Ohta, and L. Reyzin.
Accountable-subgroup multisignature. In
Proceedings of the 8th ACM Conference on
Computer and Communications Security,
pages 245–254,2001.

[19] S. Nakamoto. Bitcoin: A peer-to-peer
electronic cash system. De- centralized
Business Review, page 21260,2008.

[20] J. Nick, T. Ruffing, and Y. Seurin. Musig2:
simple two-round Schnorr multi-
signatures. In Annual International
Cryptology Conference, pages 189–221.
Springer,2021.

[21] K. Ohta and T. Okamoto. Multi-signature
schemes secure against active insider
attacks. IEICE Transactions on
Fundamentals of Electronics,
Communications and Computer Sciences,
82(1):21–31,1999.

[22] B. S. Panda and C. K. Giri. Transformative
blockchain knacks for bitcoin
cryptocurrency and its impacts. The Role
of IoT and Block- chain: Techniques and
Applications, pages 237–252,2022.

[23] S. Park, S. Park, K. Kim, and D. Won. Two
efficient multisignature schemes. In
International Conference on Information
and Communications Security, pages 217–
222. Springer,1997.

[24] S. Patil and P. Puranik. Blockchain
technology. International Journal of Trend

in Scientific Research and Development,
3(4):573–574, 2019.

[25] M. Poongodi, A. Sharma, V. Vijayakumar, V.
Bhardwaj, A. P. Sharma, R. Iqbal, and R.
Kumar. Prediction of the price of
ethereum blockchain cryptocurrency in an
industrial finance system. Computers &
Electrical Engineering, 81:106527,2020.

[26] T. Ristenpart and S. Yilek. The power of
proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In
Annual International Conference on the
Theory and Applications of Crypto-
graphic Techniques, pages 228–245.
Springer,2007.

[27] C.-P. Schnorr. Efficient signature
generation by smart cards. Jour- nal of
cryptology, 4(3):161–174,1991.

[28] M. Scott. A note on group membership
tests for \g 1, \g 2 and \g t on bls pairing-
friendly curves. Cryptology e-Print
Archive,2021.

[29] T. Teruya. A note on subgroup security in
discrete logarithm- based cryptography.
IEICE Transactions on Fundamentals of
Electronics, Communications.

