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Abstract. We suggest a research of authentication techniques in the Bitcoin ecosystem as a blockchain 
application in this article. First, from the standpoint of replacing the current banking system, the 
features provided by Bitcoin and its security requirements are studied. The blockchain use case of the 
Bitcoin ecosystem has current transaction authentication techniques that have been well researched 
in the literature. The topic of whether the common account and proxy notions of banking services are 
likewise feasible in Bitcoin is posed in light of this. According to many experts, there are solutions 
based on responsible subgroup multi-signature schemes and bilinear pairings. In this work, the 
aforementioned question is addressed using the aforementioned scheme. We have the chance to use 
the public key aggregation process with accountable subgroup multi-signature (ASM), which is built 
from Boneh, Lynn, and Shacham (BLS) signature schemes. This makes it possible for multiple users to 
jointly sign the same message, and only one public key is required to validate the signature. This 
method is quite easy to implement in Bitcoin and provides for significant cost savings when it comes 
to storing public keys in transaction scripts. Our methods can be applied in many other situations 
where multiple signatures are required, in addition to reducing the size of the Bitcoin blockchain. Both 
signature compression and public-key aggregation are supported by all of our constructions. 
Therefore, the verifier simply needs a brief multisignature, a brief aggregation of the public keys of the 
parties, and the message m to confirm that several parties signed a shared message m. Future scope of 
proposed research is that it could be applicable any other blockchain structure where multi- signature 
is to be used. 
 
Keywords: Accountable Subgroup, Block Chain, Bitcoin, Multi signature, Accountable Subgroup Multi 
signature. 
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1. Introduction 

 
Some of the chances that are recognized in the 
financial system are available in the present 
Bitcoin system, which is employed as a 
payment mechanism. For instance, the 
common account in a banking sys- tem is 
analogous to multi-signature, which enables 
several users to sign Bitcoin transactions. In 
this essay, studies on how to use transaction 
scripts, such as Multisignature, more 
successfully and efficiently are addressed. 
Consider a scenario where n parties generate 
key pairs for a signature system separately. 

Sometime later all n parties want to sign the 
same message m. A multi-signature scheme 
[14, 18] is a protocol that enables the n signers 
to jointly  generate a short signature σ on m  so 
that σ convinces a verifier that all n parties 
signed m. Specifically, the verification 
algorithm is given as input then public keys, 
the message m, and the multi-signature σ. The 
algorithm either accepts or re- jects σ. The 
multi-signature σ should be short; its length 
should be in- dependent of the number of 
signers n. We define this concept more 
precisely in the next section, where we also 
present the standard security model for such 
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schemes [18]. Secure multi-signatures have 
been constructed from Schnorr signatures(e.g. 
[3]), from BLS  signatures (e.g. [4]), and from 
many other schemes as discussed in Section 
2.A more general concept called an aggregate 
signature scheme [6] lets  each of the parties 
sign a different message, but all these 
signatures can be aggregated into a single 
short signature σ. This brief signature should 
once again persuade the validator that each 
signer has signed the intended message. 
Applications to Bitcoin Multi-signatures and 
aggregate signatures can be used to shrink the 
size of the Bitcoin blockchain [19]. In recent 
work, Maxwell, Poelstra, Seurin, and Wuille 
[18] suggest using multi-signatures to shrink 
the transaction data  associated with Bitcoin 
Multi-signature addresses. Conceptually, a 
Multi-signature address is the hash of n public 
keys pk1, .., pkn along with some number t ∈ 

{1, ..., n} called a threshold (see [22, 17] for 
details). When spending money from this 
address, one must generate a transaction that 
has all n public keys (pk1, pk2, …, pkn). It then 

adds this transaction to the blockchain, 
followed by t valid signatures obtained from t 
of the n public keys. The transaction data 
serves as the message being signed  inall t 
signatures. In reality, multi-signature 
addresses frequently utilize t= n, requiring 
signatures from each of the n public keys for 
each trans- action. A multi-signature strategy 
can be used in this situation to com- press all n 
signatures into a single short signature. As a 
result, there are fewer transactions overall and 
less information is published to the blockchain. 
It should be noted that compressing the 
signatures does not save much space because 
we still need to write all n public keys to the 
blockchain. Maxwell et al.[17], building on the 
work on Bellare and Neven [3], construct a 
Schnorr-based multi-signature scheme that 
also supports public key aggregation; the 
verifier only needs a short aggregate public 
key instead of an explicit list of all n public 
keys. This method results in an n-of-n. The 
data recorded to the blockchain in a spending 
transaction is this single short aggregated 
public key, a single short compressed 
signature, and the message. Multi-signature 
addresses are simply the hash of the short 
aggregate public key. This information is 
adequate to persuade the verifier that the 
transaction was signed by each of the n 
signers. By a factor of n, it reduces the volume 

of data written to the blockchain. This 
primitive is referred to as a multi- signature 
technique with public key aggregation by 
Maxwell et al. Two rounds of communication 
between the signing parties are required by 
their signature protocol, and they demonstrate 
the security of their method by making one 
additional discrete-log assumption (as 
assumption introduced in [2]). Recent research 
[10] has revealed that the security proof is 
flawed and that security cannot be 
demonstrated under this premise. The 
question of whether their approach can be 
demonstrated secure under other assumptions 
or in a general group model is still un- 
resolved. 
 
Applications to Blockchain:  
 
One form of data structure is the block- chain. 
It has the ability to store data and establish 
links between objects. The cryptographic, or 
mathematical, hash algorithm SHA-256 is 
employed to connect the blocks. Let's consider 
three numbers of blocks informally (Block-X, 
Block-Y, Block-Z). Using the same method, the 
entire Block-hash X's value is saved in the 
Block-Y, and the entire Block-hash Y's value is 
stored in the Block-Z. Block-X is connected to 
Block-Y in this manner, and Block-Y is 
connected to Block-Z. Block- Y, which stores 
the hash of Block-X, will also change if Block-X 
is changed in any way that affects the hash 
value of Block-X. 
 
Similar to how Block-Y is impacted by changes 
in Block-Z. When there are many blocks, 
changing must be done from the first modified 
block to the last one, and in some hashing 
circumstances, this operation may be very 
impossible. On this restriction, the Bitcoin 
ecosystem is built. The blocks contain 
information about "transactions," which are 
acts of transferring money between parties 
using Bitcoin. Utilizing the immutable data 
structure characteristic. The Bitcoin ecosystem 
guaran- tees consumers the preservation of 
their valuables. But there is still a problem, and 
that is transaction authentication. An amount 
of a transaction may be spent or transferred by 
the real owner before it is stored safely. 
Digital signature, another cryptographic 
technique, is used to verify transactions. 
Contrary to conventional usage, ownership of a  
digital item in Bitcoin is not established by the 
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owner signing it; rather, the prior owner must 
sign it and store the new owner's public key in 
it. The example of the paper check can be used 
to demonstrate this. When using the paper 
check payment method, the owner of the funds 
is the per- son whose name is placed in the 
"Pay to the order of" field, not the signer. 
To spend money using the Bitcoin system, the 
owner must provide a valid signature that was 
created using a private key that matched the 
public key that was used in the prior 
transaction. This strategy offers two 
advantages: privacy and decentralized 
authentication. Privacy of Bitcoin ownership is 
offered as a result of the fact that no one is 
aware of whose public key is used for a certain 
transaction.  Additionally, since a certificate 
authority is not required, Bitcoin transactions 
are de- centralized. The Bitcoin system is the 
only source of assurance. That transaction 
signing and validation procedure is reliable 
and effective. 
 
There are numerous transaction 
authentication standards in the Bitcoin 
ecosystem. P2PK (Pay To Public Key), P2PKH 
(Pay To Public Key Hash), and multi-signature 
are a few of them. 
Multi-signature is used for dual ownership of 
Bitcoin amounts or for extra security 
requirements by adding a second 
authentication element, such as a Bitcoin 
wallet, in the event that one or more private 
keys are stolen. A complex framework 
underlies multi-signature. It is thorough- ly 
explained in Section 3.5. From this point, 
"Accountable Subgroup Multi-Signature 
(ASM)" is a possible improvement for Bitcoin's 
need for multiple signatures. Instead of having 
to keep all of the public keys in Multi-
signature, ASM allows the signer's public key 
to be sufficient to store in the transaction. A lot 
of data and computational savings are 
provided by this. Additionally, the ASM's 
responsibility attribute offers another. This 
characteristic makes all group members 
accountable for the agreements made by a 
subgroup. By doing this, the chance that other 
group members will reject the transactions 
carried out by the sub- group of users is 
completely avoided. The BLS  (Boneh-Lynn- 
Shacham) signature scheme [7], which is based 
on bilinear pairings, is used to build the 
recommended ASM schema in [5]. Key 
Aggregation and Group Setup are two 

additional processes in the ASM schema 
compared to standard signature systems. The 
key aggregation stage generates the 
aggregated public key. The membership keys 
collected from each member's public and 
secure key are generated for each group 
member during group setup. As a result, the 
accountability is given since the membership 
keys are required at the Signing stage. 
 
1.1. Outline of the Paper 
The remainder of the essay is structured as 
follows. The associated works are addressed in 
section 2. The notion of blockchain is explained 
in Section 3 along with some preliminary 
topics. The Bitcoin ecosystem, a case study of 
blockchain, is also briefly examined up to the 
transactions stage in Section 3, with an eye 
toward how its transaction authentication 
methods function. Multi-signatures with key 
aggregation from pairings are discussed in 
section 4. Section 5 provides a detailed 
explanation of the responsible subgroup multi-
signature method, which is suggested as an 
alternative to Bitcoin multi-signature. Finally, 
section 6 contains the conclusions. 
 

2. Related Work 
Even if Multi-signature can reduce the 
signature value, holding all public keys still 
occupies a significant portion of transaction 
size in the Bitcoin ecosystem. Multi-signatures 
have been worked on different mathematical 
bases e.g. on RSA [14, 23], discrete logarithm 
problem [17, 21]. To reduce transaction sizes, 
the aggregating public-key algorithm has been 
clearly handled only in [17] and [5] the 
“public-key aggregation” is named firstly in the 
work of Maxwell [17]. According to [17], in 
signing stage, there is a need for two tour of 
transmission between all signers. But one 
round of transmission can be enough by [3]. 
With the name of “Accountable subgroup 
multi-signatures (ASM)”, this approach was 
firstly worked by Micali, Ohta and Reyzin [18] 
take it to the next level via adding key 
aggregation and using parings further. Multi-
signatures have been studied extensively 
based on  RSA [14]. Defending against rogue 
public-key attacks has always been a primary 
concern in the context of multi-signature 
schemes based on discrete-log and pairings 
[18, 3, 2, 26] and is the main reason for the 
added complexity in discrete-log-based 
multisignature systems. Aggregate signatures 
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[6, 1] are a closely related concept where 
signatures by different signers on different 
messages can be compressed together. 
Sequential aggregate signatures [16, 8] are a 
variant where signers take turns adding their 
own signature onto the aggregate. The concept 
of public key aggregation in addition to 
signature compression has not been explicitly 
discussed in the plain public key model until 
[20] and this work. 
 
3. Preliminaries 
In this section, we go over a few tools that are 
helpful for our plan. We outline the key 
methods used in our design and illustrate the 
definitions of security features through an 
interactive game. 
 
3.1. Blockchain 
The blockchain is an ordered, linked list of 
blocks that functions as a data structure. Each 
block links back to the one before it in a chain. 
Be- cause the connected blocks form a chain in 
this fashion, we refer to the technology as 
blockchain. The blockchain data can be kept in 
a data- base or in a file similar to a plain text 
file. A left-to-right stack of blocks, with the first 
block serving as the base of the chain, can be 
compared to the blockchain. In the language of 
blockchain, "top" (or "tip") refers to the most 
recent block, and "height" refers to the number 
of blocks from the first block. 
 
Each block in a blockchain is identified by its 
hash value, which is produced using the SHA-
256 cryptographic hashing technique and 
placed in the block's header. In addition, each 
block contains a reference to  its parent block 
and the parent block hash in the block header. 
A chain that starts with the first block is 
created by using hash values to link each block 
to its predecessor. It is conceivable for there to 
be many blocks with the same parent's hash 
value. For instance, a block may have more 
than one kid. There can only be one parent 
block due to the single parent hash value field. 
 
The hash value of the current block is impacted 
since the previous block's hash is recorded in 
the block header. This implies that the hash 
value of the child also changes if the 
predecessor's hash value does.  Any change to 
the parent block's value will result in a change 
to the predecessor's hash. Since the 
predecessor's hash value has changed, the 

successor's prior block link must also be 
updated. Additionally, this causes the 
successor's hash to change, which calls for a 
change in the link of the two-next successor, 
which in turn causes it to change in or- der, 
and so on. Because of the cascade effect, it is 
impossible to change a block with numerous 
descendants without also changing all 
descend- ants blocks. This needs huge 
computational power, so being a long chain of 
blocks gives us the irreversibility property of 
the blockchain, that is one of the most 
important properties of blockchains security 
[24]. 
 
3.2. Bitcoin 
Blockchain is used in Bitcoin, which is the most 
popular use in this field. The information 
regarding the amount of Bitcoin sent from one 
person to another is contained in blocks, which 
are used to store Bitcoin transactions. By itself, 
Bitcoin constitutes a cryptocurrency 
ecosystem. It offers numerous opportunities to 
use money in ways we have never thought 
about. Let's use the analogy between Bitcoin 
transactions and bank checks as an example. 
The recipient identification, or beneficiary in 
banking terms, that is listed on "Pay to the 
order of," is done using the bitcoin address. 
The checks don't need to be for a specific 
account; they might be written in the name of a 
company, an institution, a corporation, or even 
in cash. 
 
3.3. Payment To Public Key (P2PK) 
Pay-to-public-key is a less complex way to 
send money using bitcoin than other methods. 
A script for pay-to-public-key locking is 
handled as follows: 
 
<Public key of A>OPCHECKSIG OP − CHECKSIG 
is an ECDSA signature verification procedure 
to check whether the signature of a user A is 
valid for a given public key in a transaction 
locking script. The     unlocking script is a 
simple signature: (Signature by Private Key of 
A) The combined script, to be validated, is: 
(Signature by Private  Key of A) (Public Key of 
A) OP-CHECKSIG It is computationally hard to 
obtain the private key from the public key in 
an acceptable time period. So the public key is 
safely used as an address for receiving Bitcoin 
payments. In P2PK script 
template, public keys are called P2PK 
addresses. But nowadays, to ensure better 
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security P2PK addresses are left in place to 
P2PKH addresses [24,25]. 
 
3.4 Pay to Public Key Hash (P2KH) 
The most common type of transaction script in 
the Bitcoin network is P2PKH script template. 
It’s locking script contains a public key hash 
instead of a plain public key as a Bitcoin 
address. Therefore, the public key must be 
presented to unlock amount of Bitcoin and also 
a digital signature created by the 
corresponding private key. 
 
To illustrate P2PKH script template with an 
example, let Alice pay to Bob’s Cafe. Alice made 
a payment of 0.015 Bitcoin to the Bitcoin ad- 
dress of the cafe. The locking script of 
transaction output would be like: OP-DUP  OP-
HASH160  (Cafe  Public  Key  Hash)  OP-EQUAL   
OP- 
CHECKSIG Cafe Public Key Hash is the Bitcoin 
address of the cafe. The unlocking script 
corresponding to the locking script is: (Cafe 
Signature) (Cafe Public Key) The validation 
script is as given below (Cafe Signature) (Cafe 
Public Key) OP-DUP OP-HASH160 (Cafe  Public 
Key Hash) OP-EQUAL OP-CHECKSIG This 
combined script’s execution results TRUE if the 
unlocking script matches the conditions set by 
the locking script. In particular, the result will 
be TRUE if the unlock- ing script has a valid 
signature generated by the cafe’s private key 
that corresponds to the public key hash set as a 
hypothec [24,25]. 
 
 
3.5 Multisignature (M-of-N Multi-
Signature) 
In a multi-signature script template, at least M 
of the N public keys that are recorded in the 
locking script must match the associated 
signatures in order to release the hypothec. 
This is often referred to as an M-of-N scheme, 
where N is the overall key count and M is the 
minimum number of valid signatures. In order 
to construct a transaction that is valid to spend 
a certain amount of bitcoin, a 2-of-3 
multisignature requires that three public keys 
are specified as signers group, at least two of 
which must be used to create signatures. 
Standard multi-signature scripts may have 
various restrictions, such as the ability to use a 
group of signers with a maximum of 15 
participants and only 15 published public keys. 
 

The maximum number can be changed in 
response to advancements in computing 
power throughout time. A locking script that 
sets an M-of-N multi-signature condition often 
takes the following form: M  Public Keys 1 and 
2 are listed below. N is the total number of 
public keys, and M is the minimum number of 
signatures needed to spend the output in the 
OP-CHECKMULTISIG command. For instance, 
the locking script in a 2-of-3 multi-signature is 
as follows: Two (Public Key A and B) 3 OP-
CHECKMULTISIG. 
The matching script for unlocking that consists 
of two signatures is OP-0 (Signature B) 
(Signature C), or another two-signature 
combination linked to the declared three 
public keys. Hence, the validation scriptis: 
OP-0 (Signature B)(Signature C) 2 (Public Key 
A) (Public Key B) (Public Key C) 3 OP-
CHECKMULTISIG. If two signatures in the un- 
locking script match the two of three public 
keys in the locking script, combined validation 
script will result TRUE [24, 25]. 
 
4 Multi-Signatures with Pairing-Based Key 
Aggregation 

 
We start by introducing our brand-new public-
key aggregation compatible pairing-based 
multi-signature approach. Asymmetric bilinear 
groups are those in which one of the two 
groups has a more compact representation. 
Public keys and signatures must reside in 
different groups in order to use the pairing-
based techniques below. It would make sense 
to utilize the more compact group for 
signatures as a single public key is used to  sign 
numerous messages for standard signatures. 
However, this may no longer be the case since 
our methods below allow for the aggregation 
of both public keys and signatures, and the 
appropriate choice of groups may now heavily 
rely on the specific application. We outline our 
plans below: 
 
Putting public keys in G2 and signatures in G1, 
but we don't specify which group has a more 
condensed representation. Keep in mind that 
there are effective hash functions that map into 
both groups [28, 29, 11]. 
 
4.1 Description of our Pairing-Based 
Scheme 
Our pairing-based multi-signature with public-
key aggregation MSP is built from the BLS 
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apkpk 

signature scheme [7]. 
The system uses the hash functions H0: {0, 

1}
*
→ G2 and H1: {0, 1}

*
 

→ Zqand is secure in the basic public key 

paradigm. 

 
Generators of Parameters: Pg(κ) sets up as a 
bilinear group (q, G1,G2, Gt, e, g1, g2) ←G(κ) by 

Pg(k) and generates keys according to par ← 
(q, G1, G2, Gt, e, g1, g2) . 

 
Key         Generation:          
 
K Ag({pk1,         ...,         pkn})       

 

 
 
 
Batch Verification: 
We point out that checking a batch of b multi-signatures is quicker than verifying each one 
individually. Consider a set of triples (mi, i, apki) for i= 1,..., b,  where apki is the combined public key 

required to validate the multi-signature ion mi. This will help you understand how. If 

each message is unique, we can check each triple as a batch using signature aggregation as described 
as follows: 
 

 
 

 
4. Accountable Subgroup Multi-Signature: 

 
Micali, Ohta, and Reyzin [18] defined an 
accountable-subgroup multisignature (ASM) 
scheme where any subset S of a group of PK, 

where PK is the set of the public keys of the 
signers, can create a valid multisignature that 
can be verified by the public keys of signers in 
the sub- set. An established access rule can be 
added to the ASM scheme to more carefully 
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decide if the subset S is permitted to sign on 
behalf of PK. For instance, the ASM technique 
obtains the threshold signature property that 
authentication can be performed by a 
minimum number of signers by specifying |S|    
‘t’ as a condition. 
ASM scheme verification initially requires a 
description of the set S of signers in the group 
PK. Verification procedure is based on a com- 
pact aggregate public key and signature [17, 5]. 
In the ASM approach, the aggregate public key 
can be created from the publicly available 
signers' public keys; nevertheless, a 
membership key that is unique to the group is 
necessary to sign messages on PK's behalf, 
please.  Through a one-time group setup, the 
group-specific membership key is created. 
 
5.1. Bilinear Groups and Pairing Based 
Cryptography 
 
Let ζ be a bilinear group generator that takes 

as an input a security parameter 1
k 

and 
outputs the descriptions of multiplicative 
groups Λ = (q, G1, G2, Gt, e, g1, g2) where G1, 

G2 are groups of prime order q, and Gt be 

another cyclic group of order q written 
multiplicatively, a bilinear map e : G1 × G2 → 

Gt , and g1 and g2 are generators of the groups 

G1 and G2, respectively. For later use, it is 

denoted that Λ = (q, G1, G2, Gt, e). If the 

bilinear map e is a paring, it has the following 
properties [9]: 
 
Bi-linearity 
For all a, b ∈ F*q , for all P ∈ G1, Q ∈ G2 : e(Pa , 

Qb ) = e(P, Q)  ab 

 
Non-degeneracy 
e≠1 
 
Computability 
There exists an efficient algorithm to compute 
e. As a usage example of bilinear pairings and 
to construct ASM [5] lets look BLS [7] 
signature scheme. In addition to bilinear 
paring requirements, H0 : M → G1 is a hash 

function. BLS works as: 
• Key generation: Select a sk ← Zq randomly 

and return (pk, sk)where 

pk ← g sk∈ G 
2 2 

• Sign(sk, m): Return σ ← H0(m) sk∈G1. 

• Verify(pk, m, σ): If e(σ, g2) = e(H0, pk) return 

“true”, else“false”. 
 
In BLS schema, there also can be a simple 
signature aggregation. Given (pki, mi, σi) for i = 

1, ..., n, σ1, ..., σn ∈ G1 can be converted by 

aggregating them like: σ ← σ1, ..., σn ∈ G1. To 

verify the aggregated signature σ ∈ G1: e(σ, g2) 

= e(H0(m1), pk1), ..., e(H0(mn), pkn). All (pki, 

mi) for i = 1, ..., n are needed to verify. As a 

trick, if all messages are chosen the same (m1 
= ... = mn), verification is downgraded on only 

two pairings: e(σ, g2) = e(H0, pk1, ..., pkn). 

Hence, the aggregated public key concept is 
born apk := pk1,...,pkn  ∈ G2. 

 
The Rogue Public-Key Attack. 
 
The signature aggregation in BLS is not so 
secure, it needs to be improved. See Section 
5.3. To illustrate its weakness, let’s look at the 
at- tack scenario: “an attacker registers a rogue 

public key pk2  = g2
α  .pk     

−1 

∈ G2, where pk1 ∈ G2 is a public key of some 

unsuspecting user Bob, and α ← Zq is chosen 

by the attacker. The attacker can then claim 
that both he and Bob signed some message m 
∈ M by presenting the aggregate signature σ = 

H0(m)α. This signature verifies as an 

aggregate of  two signatures, one from pk1 and 

one from pk2, because e(σ, g2) = e(H0(m)
α

, 

g2) = e(H0(m), g2
α) = e(H0(m),pk1.pk2). 

Hence, this σ satisfies. In effect, the attacker 
committed Bob to the message m, without Bob 
ever signing m.”[5] 
 
 
5.2. Construction of ASM Scheme 
 
As first defined in [3], an ASM schema which is 
based on Schnorr sig- nature [27] consists of 
the algorithms: parameter generation (Pg), key 
generation (Kg), group setup (G Setup), Sign, 
key aggregation (KAg), and verification (Vf). 
The notation par ← Pg is for common 
parameters generation, (pk, sk) ← Kg(par) is 
for key generation, mk ← G Setup(sk, PK) is for 
generating membership key where PK = pk1, 
..., pkn is a group of signers. Let each signer in 

PK be assigned a computable index i ∈ {1, ..., 
|PK|}, for example the index of pk in a sorted. 
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list of PK. A subgroup S ⊆ {1, ..., |PK|} signs a 
message m with the interactive algorithm σ ← 
Sign(par, PK, S, sk, mk, m). Getting the public 
keys of PK, key aggregation algorithm 
generates the aggregated public key apk [7]. 
The algorithm Vf(par, apk, S, m, σ) verifies the 
signature[5]. 
 
With this construction strengthened with BLS 
schema [7], ASM scheme needs all signers, 
during group setup, join to multi-signatures  
on the aggregate public key and the index of 
every signer, such that the i-th signer in PK has 
a “membership key” which is a multi-signature 
on (apk, i). In other words, an accountable-
subgroup multi-signature consists of the 
aggregation of the individual signers.  
 
signatures  and their membership keys and the 
aggregate public key of the subgroup S. To 
verify a signed message by a subgroup S, it can 
be checked that the signature is a valid 
aggregate signature where the aggregate 
public key of the subgroup signed the message 
and the membership keys corresponding to S 
[5]. 

The scheme uses hash functions H0  : {0, 1}∗ 

→G1, H1  : {0, 1}∗  → Zq and H2  : {0, 1}∗ 

→ G1 [28]. 

 
Parameters Generation The bilinear group is 
set up by Pg(κ) function and also it returns 
parameters par ← (q, G1, G2, Gt, e, g1, g2) ← 
ζ(κ) 
 

 
 

5.3. Accountable-Subgroup Scheme with 
PoPs 
 
To integrate PoPs, key structure is like y ← g2 
sk, π ← H3(y) x , H3 : (0, 1)∗ → Zq as a new 

hash, and pk ← (y, π), also key aggregation 
differs  in that the aggregate of a set of keys PK 
= (y1, π1), ...,(yn, πn) in addition to the product 

Y←Πny , it has the hash of public keys h ← H 

(PK). i=1 to 3. 
 
The aggregate public key is a pair apk ← (Y, 
h).The reason to use hash is, when evaluating 
H2(apk, i), to consider whether i is the index of 

the target signer in the set PK for which apk is 
the aggregate public key. Before aggregating, 
for completeness, first it may be needed to test  
that: e(H3(yi, yi)) = e(πi, g2) for i = 1, ..., n. G 

Setup(ski, PK = pk1, ..., pkn) calculates apk = 
(Y, h) ← KAg(par, PK) and µj,i= H2(apk, j) ski to 

signer j. Receiving µj,I from all other signers j  

= i, signer i calculates µj,i 

= H2(apk, j) ski and returns the membership 

key mki← Πn  
i=1µj,i. If any signer is not 

malicious, it must be equal e(mki, g2) = 

e(H2(apk, Y )). Signing and verification stages 

are same as pure ASM scheme, except the 

product of public keys y ← ΠjϵSyj instead of pk 

← ΠjϵSpkj [7]. 

 
5.4. ASM integration with Bitcoin 
 
The aggregated public key can be used in place 
of a Bitcoin address to implement the ASM 
scheme in Bitcoin transaction scripts. The 
potential application can be demonstrated 
using scripting language. 
 
In place of Multisig's locking script (M-of-N 
scheme) 
M < Public Key 1 >< Public Key 2 > . . . < Public 
Key N > N OP CHECKMULTISIG 
and the unlocking script where OP CHECKM U 
LT ISIG means Operator that checks the 
signature validity 
OP0 < Signature n1 > ... < Signature nM >, 

where OP0 refers to an opera- tor that pushes 

a blank array on the stack, the possible locking 
script in ASM scheme should be like < Agg. 
Public Key > OP CHECKASM where OP 
CHECKASM means Operator that checks the 
accountable subgroup multi-signature validity 
and the unlocking script in ASM(accountable 
subgroup multi- signature) OP0 < S >< 

Common Signature of S > where < S > is a  
short string of signers' indexes and S is the 
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subgroup of signers. The aggregation aspect of 
the ASM system allows for size and 
computation cost savings, as can be observed 
from the comparison. 
 
6. Conclusion 
 
This paper presents two alternatives to the 
transaction authentication mechanisms 
currently used in blockchains, particularly in 
the Bitcoin environment. 
 
The themes of the current structure of the 
blockchain concept, Bitcoin, its transaction 
scripts, and the most common authentication 
systems are first introduced. It is determined 
that the transactions must be carried out 
successfully in addition to the requirement to 
safeguard the Bitcoin assets, which are so 
valuable and equivalent to money and must be 
held in a secure environment. 
 
Due to its ineffectual use, Accountable 
Subgroup Multi-Signature (ASM), a type of 
multi-signature schema, is suggested as an 
alternative to Multisig transaction script. After 
first concept of ASM scheme [18], it is 
improved by [7] to adding the capability of key 
aggregation to the schema using the pairing 
based cryptography.   As a result, adding ASM 
to the Bitcoin ecosystem can increase 
transaction security by aggregating public keys 
and reducing trans- action size and 
computational effort. Future scope of proposed 
re- search is that it could be applicable any 
other blockchain structure where 
multisignature is to be used. 
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