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Abstract 

In this study, we present a numerical investigation into the average local current density, which describes the density 

propagation of a matter wave characterized by energy 𝜀 and wave vector 𝑘 in a long-range disordered optical potential. 

Our approach begins with the application of the Bethe-Salpeter equation to calculate the static current density, denoted 

as 𝑗(𝑝), in the weak localization regime. This analysis helps us, to know how to pass from classical diffusion to quantum 

diffusion. The numerical results reveal a significant wave packet spectrum in the current density, demonstrating the 

impact of numerous counter-propagating amplitudes generated by multiple diffusion induced interferences. The 

solution of the Bethe-Salpeter equation, denoted as 𝐹(𝑝, 𝜀), takes into account the quantum interferences that are 

responsible for the complete suppression of transport. At last, we examine the constant diffusion 𝐷(𝜀) at finite disorder 

strength to find the Anderson localisation transition. 
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1. Introduction 

The transport properties of a quantum particle in an 

optical disordered system are intrinsically determined 

by the interference of multiple scattering paths, which 

can lead to Anderson localization [1–4]. It was found 

that the quantum particle then remains localized 

around its initial position to leads to a total suppression 

of transport, consequently the diffusion is cancelling 

the transport and the conductivity strictly vanishes [5, 

6]. Theoretical and numerical works have allowed the 

experimental observation of the Anderson transition 

with coherent matter waves in a disordered optical 

potential [7, 8]. In dimension three, the first experiment 

was carried out with a Bose-Einstein condensate [9], 

and it was shown in a fermionic gas [10]. The problem 

posed by the experimenters is that this localization is 

easily disturbed by the effects of decoherence or of the 

interaction between particles. Ultra-cold atom systems 

offer new services to investigate these problems. As a 

result, there are actually a large number of suggestions 

for knowing the position of a transition threshold. 

Various studies are still in progress on this theme which 

trigger several experiments and open up many 

perspectives on the effect between disorder and 

interactions [11–15]. 

The choice on the random optical potential for cold 

atoms was motivated in 2005 giving the first 

publication in the field of Bose-Einstein condensates  

 

[16]. The random potential to which atoms are exposed 

comes from the dipole force of the light-matter 

interaction [17]. This property gives it the particularity 

to controlling an experiment [18]. As well, the 

advantage to using the random optical potential is 

firstly the experimental flexibility to modify its 

characteristics parameters, on the other hand, to the 

exact knowledge of the statistical properties of these 

potentials [19–23]. The most interesting in the 

statistical properties of transport is the return 

probability to a given point at which two types of 

localization give rise[24]: a weak localization comes 

from the fact that the probability of the wave to return 

to its initial position is possible through loop paths, 

therefore interference effects come into play. Each 

loop can be traversed in one direction or in the other, 

which generates two multiple scattering paths along 

which exactly the same phase accumulates in 

successive scattering events. This coherent effect is 

valid for any specific realization of the disordered 

potential and thus survives the average of the 

disorders. Moreover, these two paths being in phase, 

this gives rise to constructive interference of the matter 

wave, which improves its probability of return. This 

effect leads a diffusive transport for which the diffusion 

coefficient is reduced. In the case where the disorder is 

strong, the propagation of a coherent wave is stopped 
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after a certain time in any dimension 𝑑, this means that 

the diffusion coefficient equal to zero: 𝐷(𝜀). The return 

probability decreases exponentially from a certain 

point in space with a characteristic length called the 

localization length.[25]. 

The remainder of the paper is organized as follows. In 

section 2 the fundamental concepts of quantum 

transport for matter waves in disordered media and 

present the Bethe-Salpeter equation as well as its 

associated eigenfunction. Furthermore, we present an 

analytical expression which characterizes the quantum 

corrections linked to the localization of the diffusion 

constant, in particular in the case of isotropic diffusion. 

Section 3 is devoted to the numerical simulation. We 

calculate of the current density of the cold atoms at 

long time (Ω → 0) and large distance (𝑞 → ∞), the 

eigenfunction of the Bethe-Salpeter equation and 

diffusion constant. Our conclusions are drawn in 

section 4we note that the detailed calculations are 

already done in ref [26,27]. 

2. Model 

Considering two particles of Green function 

𝜑 𝑝,𝑝′ (𝜀, Ω, 𝑞) to describe the probability density of 

wave in a disorder potential. For a hydrodynamic 

expression, 𝜑 𝑝,𝑝′ (𝜀, Ω, 𝑞) is defined as[19,27]: 

𝜑𝑝,𝑝′ (𝜀, Ω, 𝑞)  ≡  ⟨𝑝+|𝐺(𝜀+)|𝑝′+⟩⟨𝑝−|𝐺†(𝜀−)|𝑝′−⟩̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (1) 

where where 𝐺 is the retarded Green operator, 𝜀±  =

 𝜀 ±  Ω/ 2 , 𝑝±  =  𝑝 ±  Ω /2,  𝑝 ′ ±  =  𝑝 ′ ±  Ω /2 . 

and (𝑞, Ω) are the Fourier conjugates of the space and 

time variables respectly. 

The Bethe-Salpeter equation can be reformulated as a 

quantum kinetic equation for 𝜑 𝑝,𝑝′  (𝜀, Ω, 𝑞). 

𝜑 =  𝐺̅ ⭙ 𝐺̅†  +   𝐺̅ ⭙ 𝐺̅† 𝑈 𝜑                                (2) 

The first term in Eq. (2) represents the intensity 

propagation with uncorrelated average propagators. 

The second term involves the vertex function U, which 

includes all irreducible intensity and account for all 

correlations in the density propagation. 

Conservation of quantum probability ensures the 

existence of a hydrodynamic pole for propagation. We 

expressed this as [26] 

𝜑 𝑝,𝑝′ (𝜀, Ω, 𝑞) =  
2

∑ −𝐼𝑚 𝐺𝑝(𝜀)𝑝
 

𝐿𝑝,𝜀(𝑞)𝐿
𝑝′,𝜀 

(𝑞)

−𝑖Ω+𝐷𝑞2                (3) 

∑ −𝐼𝑚 𝐺𝑝(𝜀)𝑝  is the spectral function which 

encapsulates all the information concerning the 

diffusion of particles in a disordered medium. It is 

defined as follows [19]: 

∑ −𝐼𝑚𝐺𝑝(𝜀)𝑝 =  
Ʃ𝑝(𝜀)

|(𝜀−𝜀𝑝−Ʃ(𝜀)|
2                                    (4) 

The Green function is written in term of self-energy Ʃ: 

𝐺𝑝(𝜀) = 1/(𝜀 − 𝜀𝑝 − Ʃ𝑝(𝜀)). 

Where 𝜀 =
𝑝2

2𝑚
⁄  is the kinetic energy of the atom and 

the self-energy Ʃ has the following form [28]. 

Ʃ𝑝(𝜀) =  ∑ 𝑈𝑝,𝑝′𝑝′ 𝐺𝑝(𝜀)                                            (5) 

𝐿𝑝,𝜀(𝑞) in equation 2 represents the eigenfunction of 

the Bethe-Salpeter equation related to hydrodynamic 

diffusion, while 𝐷(𝜀) represents the diffusion constant. 

We expect that as time approaches infinity (Ω → ∞) 

and distance becomes very large 𝑞 → 0, The function 

𝐿𝑝,𝜀(𝑞) follows from [19,26]: 

𝐿𝑝,𝜀(𝑞) =  −𝐼𝑚𝐺𝑝(𝜀) − 𝑖 (𝑝 . 𝑞) 𝐹(𝑝, 𝜀)                   (6) 

Where 

𝐹(𝑝, 𝜀) =  𝐼𝑚𝐺(𝜀) 2𝜏𝑝  𝐽 (𝑝, 𝜀) −  
𝜕 𝑅𝑒 𝐺𝑝(𝜀)

𝜕𝑝2 +  O(𝑞2 )     (7) 

With 𝜏𝑝 is the scattering mean-free time, It is already 

calculated in the reference.[28]: 

𝜏𝑝 =
ђ

2𝐼𝑚Ʃ𝑝(𝜀)
 

In ref [27], we obtained a detailed formulation for the 

density current 𝐽 (𝑝, 𝜀)when dealing with the potential 

of 3D laser spots generated through diffraction, a setup 

widely used in quantum gas experiments. 

𝐽 (𝑝, 𝜀) = 1 +  ∑
𝑝.𝑝′′

𝑝2𝑝′′  𝑈𝑝,𝑝′′|𝐺(𝜀, 𝑝′′)|2 𝐽 (𝑝′′, 𝜀)  (8) 

We work with the same disordered correlation 

potential described in reference [28]. The correlation 

function is denoted as ⟨𝑈(R)⟩ = 𝑉𝑅
2sinc2(R/ 𝜎), where 

𝑉𝑅represents the amplitude disorder and 𝜎 is the 

correlation length. When 𝑉𝑅 → ∞ and 𝜎 → 0, the 

speckle potentials are simplified to the random 

potentials of uncorrelated white noise. In Fourier 

space, this is written as follows: 

𝑈𝑝,𝑝′ = 𝑉𝑅
2  ∫ 𝑑𝑅 ∑

𝑠𝑖𝑛2(R/ σ)

(R/ σ)2
𝑒𝑖(𝑝,𝑝′).𝑅

𝑝′

 

Knowing that ∑ ≡𝑝′  ∫
𝑑𝑝′

(2𝜋)3 
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One found: 

𝐽 (𝑝, 𝜀) = 1 +  
𝑉𝑅

2

(2𝜋)3  𝐼(𝑝, 𝑝′) |𝐺(𝜀, 𝑝′)|2 𝐽 (𝑝′, 𝜀)       (9) 

where 

𝐼(𝑝, 𝑝′) =  ∫ 𝑑𝑅 ∫ 𝑑𝑝′
𝑝.𝑝′

𝑝2

𝑠𝑖𝑛2(R/ σ)

(R/ σ)2 𝑒𝑖(𝑝,𝑝′).𝑅              (10) 

Equation (9) was solved by iteration, with spline 

interpolation between 100 points. 

According to Fick's law, which establishes the 

relationship between the diffusive flux and the 

concentration gradient in the diffusive regime, the 

expression for the diffusion constant can be extracted 

as follows ref[27]: 

𝐷(𝜀) =  
1

𝜋𝜌(𝜀)

2

3
∑ 𝑝2

𝑝 𝐹(𝑝, 𝜀)                                    (11) 

The sum ∑ −𝐼𝑚𝐺𝑝(𝜀)𝑝  is connected to the density of 

states per unit volume 𝜌(𝜀) as [27]: 

∑ −𝐼𝑚𝐺𝑝(𝜀)𝑝 = πρ(ε) . πρ(ε) measures the average 

number of states in the random medium per unit of 

volume. 

when 𝑝 → ∞, we anticipate that 𝑗(𝑝) ⟶ 1. We 

anticipate that 𝑗(𝑝) equals 1, indicating a transition to 

the classical regime. 

In the next section, we will discuss the critical transition 

regime by numerically solving the previously 

mentioned Bethe-Salpeter equation. 

3. Numerical results 

In this section, we numerically examine the impact of 

quantum corrections on the transport of cold atoms. 

The numerical calculations were carried out at long 

range to investigate the position of mobility edge. We 

note that all energies are expressed in units of the 

quantum correlation energy𝜀𝜎 =  
ℏ

2𝑚𝜎2 , momenta are 

expressed 𝑎𝑠 𝑝 =  𝑘, where the de-Broglie wave 

number 𝑘 is scaled in units of 1 ∕ 𝜎 (we recall that ℏ =

1). 

We choose a constant value of the disorder amplitude 

(𝑉𝑅=0.5𝜀𝜎 ) for which the condition of a perturbative 

disorder to be valid 𝜀𝑝 ≫ 𝑉𝑅
2/𝜀𝜎[27]. 

We note that is the spectral function∑ −𝐼𝑚 𝐺𝑝(𝜀)𝑝  was 

already calculated in [26]. 

Figure 1 shows a numerical calculation of the current 

density 𝑗(𝑝) as a function of the momentum 𝑝. We 

observe that the current density reaches its maximum 

for small momenta at 𝑝 =  0.0 1, after which it 

gradually decreases and remains constant for higher 

momentum. 

For 𝑝 =  0, the calculation gives a current density 𝑗(𝑝) 

of approximately 1.7, which then rises to 1.8 before 

decreasing beyond 𝑝 = 0.01. Examining the figure1, it 

becomes evident that the numerical simulation 

predicts a pronounced increase in current density 

around 𝑝 ∼  0.01, indicating that more atoms can 

participate in multiple scattering. The calculations show 

that the current diffusion converges to 1 when the 

momentum becomes very large. In this regime, weak 

corrections disappear and classical diffusion occurs, as 

also indicated by equation (8). 

 
Figure 1. Current density as a function of momentum 

for 𝛆 = −𝟎. 𝟒𝟒𝟕. 

In this context, our primary focus is on the behavior of 

the diffusion coefficient 𝐷(𝜀) in the presence of these 

quantum correction scattering effects, which play a 

crucial role in predicting the mobility edge. It is worth 

noting that 𝐷(𝜀)is a positive quantity; however, the 

second derivative of the Green function includes both 

negative and positive values (as seen in Figure 2). Here, 

typically, it has taken 100-200 iterations to achieve 

satisfactory convergence. 

 
Figure 2 the second derivative of the Green function 

according matter wave for 𝛆 = −𝟎. 𝟒𝟒𝟕. 
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The solution of the Bethe-Salpeter 𝐹(𝑝, 𝜀) equation in 

the coherent transport regime of matter waves (i.e. in 

the presence of quantum corrections) is shown in 

Figure 3. 

 
Figure 3. Solution of Bethe-Salpeter equation with 

𝛆 = −𝟎. 𝟒𝟒𝟕. 

In the presence of quantum corrections, the energetic 

atoms are displaced by the interference giving rise to 

an increase in the intensity of the function 𝐹(𝑝, 𝜀), 

which results in a large anisotropic moment due to their 

deviations by disorder effect. We clearly observe a 

jump at low momentum, particularly near p ≈ 0.01. This 

jump is a result of the correlations induced by optical 

disorder. 

Numerical calculations reveal that 𝐹(𝑝, 𝜀) converges to 

0, when the momentum becomes very large (𝑝 > 1), In 

such a regime, weak localization corrections disappear 

and classical diffusion takes place. 

 
Figure 4 Diffusion coefficient as function of 

momentum for ε=-0.447 

Let's delve deeper into transport properties by 

examining the diffusion coefficient. To achieve this, 

We plot the curve of 𝐷(𝜀)versus p to identify the 

transition point. The figure clearly indicates that D 

equals zero in the range of [0, 0.14]. Within this 

interval, atoms are trapped due to the quantum 

corrections induced by disorder. In this scenario, atom 

transport is influenced by interference. However, for p 

> 0.15, 𝐷(𝜀) increases with momentum, and at this 

point, the regime shifts to a diffusive phase. At 𝑝 =

0.15, the atoms undergo a transition from a localized 

phase to a diffusive phase. 

4. Conclusion 

In this paper, we have studies the propagation of a 

matter wave in a random optical disorder at long times 

and large distance. Starting from the Bethe - Salpeter 

equation to calculate numerically the current density 

𝑗(𝑝). the results show that the current density becomes 

important when quantum corrections are included. 

However, at higher pulses, the current density drops to 

1, indicating a phase shift toward the classical regime. 

We have focused on quantum properties, specifically 

considering quantum corrections resulting from 

multiple scattering. By analyzing the behavior of the 

diffusion constant in relation to the momentum of the 

atoms, we observe its disappearance from 𝑝 = 0 to 

𝑝 = 0.01, marking the absence of diffusion as initially 

anticipated by Anderson. Finally, at 𝑝 =  0.15, a 

transition takes place from a localized regime to a 

diffusive regime. 
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