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Abstract 

Monte Carlo methods allow for the introduction of a statistical approach to risk in financial decision. These methods 

utilize probabilistic simulations and pseudo random numbers, the precision of these methods is assessed by the size of 

confidence interval of the estimator’s variance. We explore variance reduction methods such as the control variables 

method and the antithetic variables method, highlighting their significance in enhancing the accuracy of Monte Carlo 

methods through simulation in financial option pricing through specific examples, with a focus on the European option 

and the Asian option. 
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1. Introduction 

Option pricing is a fundamental concept in financial 

mathematics that plays a crucial role in the world of 

finance. It involves determining the fair value of an 

option, which is a financial derivative that gives the 

holder the right, but not the obligation, to buy or sell an 

underlying asset at a predetermined price (strike price) 

within a specified time period (time of option 

expiration). 

Within the realm of options, there exist various types, 

among which Asian options and European options hold 

significant importance as distinct categories, each 

possessing its distinctive attributes and considerations 

when it comes to pricing. 

The key concept that holds utmost importance for our 

purpose is the representation of derivative prices as 

expected values, as this forms the underlying principle 

for the implementation of Monte Carlo simulations. We 

assume that there is no arbitrage opportunity. 

2. Monte Carlo Method 

Let π be a probability distribution on (ℝ𝑑, 𝔅(ℝ𝑑)) and 

𝑓 a measurable function on this space, such that 

∫ |
ℝ𝑑 𝑓(x)| d π(x) ˂ ∞. 

Denote, 

𝐼 𝜋 (𝑓): = ∫ 𝑓(𝑥)𝑑 𝜋(𝑥).
ℝ𝑑  

Let (𝑋𝑛)𝑛≥1be a sequence of d-dimensional random 

variables in (𝛺, 𝒯, 𝘗) with probability distribution π . 

We have 

E[fᴏ𝑋𝑛] = ∫ 𝑓ᴏ𝑋𝑛(𝜔) 𝑑𝘗(𝜔) = ∫ 𝑓(𝑥)𝑑𝜋(𝑥) =
ℝ𝑑𝛺

𝐼𝜋(𝑓). 

Thus, the sample mean 𝑓ᴏ𝑋𝑛is an unbiased estimator 

of 

𝐼𝜋(𝑓), 

𝐼𝜋,𝑁(𝑓) = 𝑓(𝑋1) + 𝑓(𝑋2) + ⋯ + 𝑓(𝑋𝑁).          (𝟏) 

Convergence is ensured by the theorem of Strrong law 

of large numbers (SLLN): 

Theorem 1.[2] Let 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁  be independent 

and uniformly distributed (i.i.d) integrable random 

variables with mean μ, then 

𝐼𝜋,𝑁(𝑓) ⇾ 𝐼𝜋(𝑓). 

Under stronger assumptions, the Monte Carlo method 

provides an interval that contains the approximation of 

the integral with a given probability. 

It is the confidence interval. In order to define this 

interval, assume 

∫ |𝑓(𝑥)|2𝑑𝜋(𝑥)˂∞,
ℝ𝑑

 

denote 

𝜎𝜋
2(𝑓) ≔ ∫ |𝑓(𝑥)|2𝑑𝜋(𝑥) −

ℝ𝑑
(∫ 𝑓(𝑥)𝑑𝜋(𝑥)

ℝ𝑑
)

2

 

Then each random real variable 𝑓ᴏ𝑋𝑛 is square 

integrable and 

𝐸[(𝑓ᴏ𝑋𝑛)2] = ∫ (𝑓ᴏ𝑋𝑛(𝜔))
2

𝑑𝘗(𝜔)
𝛺

= ∫ |𝑓(𝑥)|2𝑑𝜋(𝑥)
ℝ𝑑

, 
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hence 

𝑉𝑎𝑟(𝑓ᴏ𝑋𝑛) = 𝜎𝜋
2(𝑓). 

The sample variance of 𝑓ᴏ𝑋𝑛 is an unbiased estimator 

of 𝜎𝜋
2(𝑓). We set 

𝜎̃𝜋,𝑁
2 (𝑓) ≔

1

𝑁 − 1
(∑(𝑓ᴏ𝑋𝑛)2

𝑁

𝑛=1

− 𝑁𝐼𝜋,𝑁
2

(𝑓)). 

The convergence rate of Monte Carlo method can be 

assessed by the central limit theorem (CLT): 

Theorem 2. Let 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁 be i.i.d integrable 

random variables with mean μ and variance 𝜎2, then 

∑ 𝑋𝑖 − 𝑁𝜇
𝑁
𝑖=1

√𝑁𝜎

𝐷
→ 𝒩(0,1). 

Then we have, 

1

√𝑁
(∑ (𝑓ᴏ𝑋𝑛) − 𝐸[∑ (𝑓ᴏ𝑋𝑛)𝑁

𝑛=1 ]
𝐷
→ 𝒩(0, 𝜎𝜋

2(𝑓))𝑁
𝑛=1 ), 

1

√𝑁
(∑(𝑓ᴏ𝑋𝑛) − 𝑁𝐼 𝜋 (𝑓)

𝐷
→ 𝒩(0, 𝜎𝜋

2(𝑓))

𝑁

𝑛=1

), 

√𝑁 (𝐼𝜋,𝑁(𝑓) − 𝐼 𝜋 (𝑓))
𝐷
→ 𝒩(0, 𝜎𝜋

2(𝑓)), 

then 

lim
𝑁⇾∞

(|𝐼𝜋,𝑁(𝑓) − 𝐼 𝜋 (𝑓)| ≤
𝜎𝜋(𝑓).𝑎

√𝑁
) = 2𝜙(𝑎) − 1, for 

𝑎 > 0, 

the interval 

[𝐼𝜋,𝑁(𝑓) −
𝜎𝜋(𝑓). 𝑎

√𝑁
, 𝐼𝜋,𝑁(𝑓) +

𝜎𝜋(𝑓). 𝑎

√𝑁
] 

Is named the confidence interval at level 2𝜙(𝑎) − 1. In 

fact, the variance 𝜎𝜋
2(𝑓) is as unknown as 𝐼 𝜋 (𝑓), that’s 

why the following proposition which is a consequence 

of CLT is practically useful. 

3. Variance Reduction Techniques 

We explore techniques that aim to enhance the 

effectiveness of Monte Carlo simulation through the 

reduction of variance of simulation estimates. There 

are several techniques available for variance reduction, 

including importance sampling [4], control variates, 

partition of the region [5], stratified sampling, Latin 

hypercube sampling [4], moment matching methods, 

antithetic variates and quasi-Monte Carlo methods [1]. 

Each technique has its strengths and weaknesses, and 

the choice of which technique to use depends on the 

specific problem and the characteristics of the data. We 

discuss control variates and antithetic variates 

methods, and we illustrate them with examples. 

Let π be a probability distribution on (ℝ𝑑, 𝔅(ℝ𝑑)) and 

𝑓 a measurable function on this space, such that 

∫ (𝑓(𝑥))2
ℝ𝑑  d π(x) ˂ ∞. 

Denote 

𝐼 𝜋 (𝑓): = ∫ 𝑓(𝑥)𝑑 𝜋(𝑥)
ℝ𝑑  and 𝜎𝜋

2(𝑓) ≔

∫ (𝑓(𝑥))
2

𝑑𝜋(𝑥) −
ℝ𝑑 (∫ 𝑓(𝑥)𝑑𝜋(𝑥)

ℝ𝑑 )
2

 . 

Let (𝑋𝑛)𝑛≥1 be a sequence of d-dimensional random 

variables, distributed with respect to π. 

We have shown in last section that, for every 𝑛 ≥ 1 we 

have 

𝐸[𝑓ᴏ𝑋𝑛] = 𝐼 𝜋 (𝑓) and 𝑉𝑎𝑟(𝑓ᴏ𝑋𝑛) = 𝜎𝜋
2(𝑓), 

And for all 𝑎 > 0, 

lim
𝑁⇾∞

(|
1

𝑁
∑ 𝑓ᴏ𝑋𝑛

𝑁

𝑛=1

− 𝐼 𝜋 (𝑓)| ≤
𝜎𝜋(𝑓). 𝑎

√𝑁
)

= 2𝜙(𝑎) − 1. 

In the purpose of reducing the length of the confidence 

interval 

[
1

𝑁
∑ 𝑓ᴏ𝑋𝑛

𝑁

𝑛=1

−
𝜎𝜋(𝑓). 𝑎

√𝑁
,

1

𝑁
∑ 𝑓ᴏ𝑋𝑛

𝑁

𝑛=1

+
𝜎𝜋(𝑓). 𝑎

√𝑁
], 

we reduce the variance of the random variable whose 

expected value is being estimated using the Monte 

Carlo method. 

➢ Antithetic Variates 

The basic idea behind this technique is to take 

advantage of the fact that certain pairs of random 

variables have negative correlations with each other 

[5]. which means, when one variable is high the other 

tends to be law. By generating pairs of random 

variables that are negatively correlated , we can use 

them to estimate the expected value of a function with 

less variance than we would get from using the simple 

Monte Carlo method. 

Assume that the probability distribution π is symmetric 

about 𝑥0 ∈ ℝ𝑑, then 

∀𝑥 ∈ ℝ𝑑;  𝜋(𝑥) = 𝜋(2𝑥0 − 𝑥). 

And let 𝑋 be a d-dimensional random variable, 

distributed with respect to π. 

Denote 
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𝑉 ≔ 𝑓(𝑋) and 𝑉𝑎 ≔
1

2
(𝑓(𝑋) + 𝑓(2𝑥0 − 𝑋)), 

then we have 

𝐸[𝑉] = 𝐼 𝜋 (𝑓) and 𝑣𝑎𝑟(𝑉) = 𝜎𝜋
2(𝑓). 

And 

𝐸[𝑉] =
1

2
𝐸[𝑓(𝑋)] +

1

2
𝐸[𝑓(2𝑥0 − 𝑋)] 

=
1

2
𝐸[𝑓(𝑋)] +

1

2
∫ 𝑓(

ℝ𝑑
2𝑥0 − 𝑥)𝑑𝜋(𝑥) 

=
1

2
𝐸[𝑓(𝑋)] +

1

2
∫ 𝑓(

ℝ𝑑
𝑦)𝑑𝜋(2𝑥0 − 𝑦) 

=
1

2
𝐸[𝑓(𝑋)] +

1

2
∫ 𝑓(

ℝ𝑑
𝑦)𝑑𝜋(𝑦) 

= 𝐸[𝑓(𝑋)] = 𝐸[𝑉]. 

Similarly, 

𝑣𝑎𝑟(𝑓(2𝑥0 − 𝑋)) = 𝑣𝑎𝑟(𝑓(𝑋)), hence 

𝑣𝑎𝑟(𝑉𝑎) =
1

4
𝑣𝑎𝑟(𝑓(𝑋)) +

1

2
𝐶𝑜𝑣(𝑓(𝑋), 𝑓(2𝑥0 − 𝑋))

+
1

4
𝑣𝑎𝑟(𝑓(𝑋))

=
1

2
𝑣𝑎𝑟(𝑓(𝑋))

+
1

2
𝐶𝑜𝑣(𝑓(𝑋), 𝑓(2𝑥0 − 𝑋)).    (𝟐) 

It follows from the Cauchy-Shwarz’s inequality that 

𝐶𝑜𝑣(𝑓(𝑋), 𝑓(2𝑥0 − 𝑋))

≤ √𝑣𝑎𝑟(𝑓(𝑋))√𝑣𝑎𝑟(𝑓(2𝑥0 − 𝑋))

= 𝑣𝑎𝑟(𝑓(𝑋)), 

Thus 

𝑣𝑎𝑟(𝑉𝑎) ≤  𝑣𝑎𝑟(𝑓(𝑋)) = 𝑣𝑎𝑟(𝑉) = 𝜎𝜋
2(𝑓). 

 

Proposition 1. Let 𝐴1, 𝐴2, … , 𝐴𝑑 be subsets of ℝ, 

𝑋1, 𝑋2, … , 𝑋𝑑  independent random real variables, such 

that each random variable 𝑋𝑖  takes values in 𝐴𝑖 . 

Let 𝐵 = 𝐴1 × 𝐴2 × … × 𝐴𝑑 and ℎ: 𝐵 ⇾ ℝ, 𝑘: 𝐵 ⇾ ℝ. 

Assume that it exists 𝐼 ⊂ {1,2, … , 𝑑} such that 

o ℎ and 𝑘 are increasing functions with 

respect to each variable 𝑋𝑖, where 𝑖 ∈

𝐼, 

o ℎ and 𝑘 are decreasing functions with 

respect to each variable 𝑋𝑖, where 𝑖 ∈

 𝐼𝑐 . 

If ℎ(𝑋1, 𝑋2, … , 𝑋𝑑) and k(𝑋1, 𝑋2, … , 𝑋𝑑) are square 

integrable functions, then 

𝐶𝑜𝑣(ℎ(𝑋1, 𝑋2, … , 𝑋𝑑), k(𝑋1, 𝑋2, … , 𝑋𝑑)) ≥ 0. 

Proof: The proof follows the same pattern as the 

previous one; we just need to multiply the functions by 

-1 when 𝑖 ∈  𝐼𝑐. 

Proposition 2. Let 𝑔 be a probability density function 

over ℝ𝑑, equals to zero except for 𝐴 ∈  𝔅(ℝ𝑑), 

symmetric about 𝑥0 ∈ ℝ𝑑. Let 𝑓: 𝐴 ⇾ ℝ, monotone 

with respect to each variable and let 𝑋 be a d-

dimensional random variable of pdf 𝑔. 

Denote 

𝑉 ≔ 𝑓(𝑋) and 𝑊 ≔ 𝑓(2𝑥0 − 𝑋), 

then 

𝑐𝑜𝑣(𝑉, 𝑊) ≤ 0. 

Corollary 1. Let 𝑓: [0,1]𝑑 ⇾ ℝ, be a monotone function 

with respect to each variable such that 

∫ |𝑓(𝑥)|2 < ∞,
[0,1]𝑑

 

Let 𝑈~𝒰[0,1]𝑑 . Denote 

𝑉 ≔ 𝑓(𝑈) and 𝑉𝑎 ≔
1

2
(𝑓(𝑈) + 𝑓(1 − 𝑈)), then 

𝑣𝑎𝑟(𝑉𝑎) ≤
1

2
𝑣𝑎𝑟(𝑉). 

Proof: Since the uniform distribution 𝒰[0,1]𝑑  is 

symmetric about 𝑥0 = (
1

2
,

1

2
, … ,

1

2
), the proof is 

straightforward from the proposition 3 and the identity 

(2). 

Corollary 2. Let 𝑓: ℝ𝑑 ⇾ ℝ, be a monotone function 

with respect to each variable such that 

∫ |𝑓(𝑥)|2𝑒−‖𝑥‖2
2
𝑑𝑥 < ∞,

ℝ𝑑
 

Let 𝑋~𝒩(0, 𝐼𝑑), denote 

𝑉 ≔ 𝑓(𝑋) and 𝑉𝑎 ≔
1

2
(𝑓(𝑋) + 𝑓(−𝑋)), then 

𝑣𝑎𝑟(𝑉𝑎) ≤
1

2
𝑣𝑎𝑟(𝑉). 

Proof: Since the normal distribution 𝒩(0, 𝐼𝑑) is 

symmetric about 𝑥0 = (0,0, … ,0), the proof is 

straightforward from the proposition 3 and the identity 

(2). 

➢ Control Variates 
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In this technique, instead of estimating a parameter 

directly, the difference between the problem of 

interest and some analytical models is concerned. 

The underlying principle of this method is to introduce 

a correlated secondary variable called the control 

variate, which is associated with the main variable of 

interest, in order to reduce the variance and enhance 

the accuracy of the simulation results. 

A random variable 𝐶 is a control variate for 𝑉, if it is 

correlated with 𝑉 and if its expectation 𝜇𝑐 is known. 

The control variate 𝐶 is used to construct an estimator 

for 𝜇 = 𝐸[𝑉] that has a smaller variance than 𝑉. 

For any α∈ℝ, define 

𝑉𝑎 ≔ 𝑉 − 𝛼(𝐶 − 𝜇𝐶). 

Then 

𝐸[𝑉𝑎] = 𝐸[𝑉] − 𝛼(𝐶 − 𝜇𝐶) = 𝐸[𝑉], 

hence 𝑉𝛼 is an unbiased estimator for μ. 

We have 

𝑣𝑎𝑟(𝑉𝛼) = 𝑣𝑎𝑟(𝑉) + 𝛼2𝑣𝑎𝑟(𝐶 − 𝜇𝐶)

− 2𝛼𝑐𝑜𝑣(𝑉, 𝐶 − 𝜇𝐶)

= 𝛼2𝑣𝑎𝑟(𝐶) − 2𝛼𝑐𝑜𝑣(𝑉, 𝐶)

+ 𝑣𝑎𝑟(𝑉), 

Which is a second-degree polynomial about α, with a 

positive leading coefficient 𝑣𝑎𝑟(𝐶) > 0, then the 

parabola opens upwards and it has a unique minimum 

for 

𝛼 = 𝛼∗ ≔
𝑐𝑜𝑣(𝑉, 𝐶)

𝑣𝑎𝑟(𝐶)
. 

Then 

𝑣𝑎𝑟(𝑉𝛼∗) = 𝑣𝑎𝑟 (𝑉 −
𝑐𝑜𝑣(𝑉, 𝐶)

𝑣𝑎𝑟(𝐶)
(𝐶 − 𝜇𝐶)

= 𝑣𝑎𝑟(𝑉)

+ (
𝑐𝑜𝑣(𝑉, 𝐶)

𝑣𝑎𝑟(𝐶)
)

2

𝑣𝑎𝑟(𝐶 − 𝜇𝐶)

− 2
𝑐𝑜𝑣(𝑉, 𝐶)

𝑣𝑎𝑟(𝐶)
𝑐𝑜𝑣(𝑉, 𝐶 − 𝜇𝐶)

= 𝑣𝑎𝑟(𝑉) −
𝑐𝑜𝑣(𝑉, 𝐶)2

𝑣𝑎𝑟(𝐶)

= 𝑣𝑎𝑟(𝑉)(1 − 𝜌𝑉,𝐶
2 ) ≤ 𝑣𝑎𝑟(𝑉), 

Where 𝜌𝑉,𝐶  is the correlation coefficient between 𝑉 

4. European Option 

A European option is a specific type of options contract 

(either a call or put option) that imposes limitations on 

its exercise until the predetermined expiration date[3]. 

In simpler terms, once an investor acquires a European 

option, even if the price of the underlying security 

moves favorably (such as a rise in stock price for call 

options or a decline in stock price for put options), the 

investor is unable to capitalize on this movement by 

exercising the option before the expiration date. 

However, European options remain highly relevant and 

widely traded in financial markets. 

There are two types of European options; 

1. Call option: Holders of such contracts have the 

ability to buy a predetermined quantity of the 

underlying asset at the expiration date at a 

predetermined price. 

• If  at the expiration 𝑇, the price 𝑆𝑇 of the asset is 

lower than the strike price 𝐾, the option holder 

has no incentive to exercise it. 

• If the price 𝑆𝑇 is higher than 𝐾, exercising the 

option allows the holder to realize a profit equal 

to 𝑆𝑇 − 𝐾: they buy the asset at the strike price 

𝐾 and sell it on the market at the price 𝑆𝑇.  

Therefore, at expiration 𝑇, the value of the call 

option is given by 

(𝑆𝑇 − 𝐾)+ = 𝑚𝑎𝑥(𝑆𝑇 − 𝐾, 0). 

2. Put option: Investors have the option to sell a 

predetermined quantity of the underlying asset at 

the strike price on the expiration date. 

• If at the expiration date 𝑇, the price 𝑆𝑇 of the 

asset is higher than the strike price𝐾, the option 

holder has no incentive to exercise it. 

• If the price 𝑆𝑇  is lower than𝐾, exercising the 

option allows the holder to realize a profit equal 

to 𝑆𝑇 − 𝐾  : they buy the asset on the market at 

the price 𝑆𝑇  and sell it at the strike price𝐾. 

Therefore, at expiration, the value of the put 

option is given by 

(𝐾 − 𝑆𝑇)+ = 𝑚𝑎𝑥(𝐾 − 𝑆𝑇 , 0). 

We assume that it is possible to borrow or invest money 

in the market at a constant interest rate 𝑟, known as 

the risk-free interest rate. 

Let 𝑆𝑡
0 be the price of the risk-free asset at time 𝑡, its 

price at a later time 𝑡′ > 𝑡 is given by 

𝑆𝑡
0𝑒𝑟(𝑡′−𝑡). 
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Let 𝐶𝑡 denote the price of the call option and 𝑃𝑡 denote 

the price of the put option at time 𝑡 < 𝑇. 

o Suppose 

𝐶𝑡 − 𝑃𝑡 > 𝑆𝑡 − 𝐾𝑒−𝑟(𝑇−𝑡), 

at time 𝑡, we can buy the asset at the market price 𝑆𝑡 

and a put 𝑃𝑡 and sell a call option 𝐶𝑡: the profit is 

𝐶𝑡 − 𝑆𝑡 − 𝑃𝑡 , 

• If this amount is positive, we invest it at the rate 

𝑟; 

• if it is negative, we borrow it at the rate 𝑟. 

• At time 𝑇, this amount becomes (𝐶𝑡 − 𝑆𝑡 −

𝑃𝑡)𝑒𝑟(𝑇−𝑡). 

• If 𝑆𝑇 > 𝐾, the call option is exercised by the 

holder, we sell the asset and obtain 𝐾, resulting 

in a wealth equal to 

𝐾 + (𝐶𝑡 − 𝑆𝑡 − 𝑃𝑡)𝑒𝑟(𝑇−𝑡) > 0. 

• If 𝑆𝑇 ≤ 𝐾, we exercise the put option and sell 

the asset, obtaining 𝐾, resulting in a wealth 

equal to 

𝐾 + (𝐶𝑡 − 𝑆𝑡 − 𝑃𝑡)𝑒𝑟(𝑇−𝑡) > 0. 

In both cases, there exists an arbitrage opportunity, 

which is 

excluded by assumption. 

o Suppose 𝐶𝑡 − 𝑃𝑡 < 𝑆𝑡 − 𝐾𝑒−𝑟(𝑇−𝑡), 

At time 𝑡, we can buy a call option 𝐶𝑡 and sell the asset 

at the market price 𝑆𝑡 and a put option 𝑃𝑡; the profit is 

𝑆𝑡 + 𝑃𝑡 − 𝐶𝑡 , 

• If this amount is positive, we invest it at the rate 

𝑟; 

• If it is negative, we borrow it at the rate 𝑟. 

At time 𝑇, this amount becomes 

(𝑆𝑡 + 𝑃𝑡 − 𝐶𝑡)𝑒𝑟(𝑇−𝑡). 

• If  𝑆𝑇 ≥ 𝐾, we exercise the call option and buy 

the asset at price , resulting in a wealth equal to 

(𝑆𝑡 + 𝑃𝑡 − 𝐶𝑡)𝑒𝑟(𝑇−𝑡) − 𝐾 > 0; 

• If 𝑆𝑇 < 𝐾 , the put option is exercised by the 

holder, we buy the asset at price $K$, resulting 

in a wealth equal to 

(𝑆𝑡 + 𝑃𝑡 − 𝐶𝑡)𝑒𝑟(𝑇−𝑡) − 𝐾 > 0 

In both cases, there exists an arbitrage opportunity, 

which is excluded by assumption. 

Consequently, we have the parity relationship; 

𝐶𝑡 − 𝑃𝑡 = 𝑆𝑡 − 𝐾𝑒−𝑟(𝑇−𝑡) 

In the classical modeling of financial markets, the price 

𝑆𝑡 of a stock at time 𝑡 is given by: 

𝑆𝑡 = 𝑆0𝑒𝑥𝑝 ((𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝐵𝑡), 

Where 𝑆0: the initial stock price, μ: the drift rate, σ: the 

volatility and {𝐵𝑡: 𝑡 ≥ 0}is a standard Brownian motion. 

Thus, the price 𝑆𝑡 is a log-normal random variable. 

Ը𝒩 (ln 𝑆0 + (𝜇 −
𝜎2

2
) 𝑡, 𝜎2𝑡). 

Its expectation is: 

𝐸[𝑆𝑡] = 𝑒𝑥𝑝 (ln 𝑆0 + (𝜇 −
𝜎2

2
) 𝑡 +

𝜎2

2
𝑡) = 𝑆0𝑒𝜇𝑡 . 

Its variance is 

𝑉𝑎𝑟(𝑆𝑡) = (𝑒𝜎2
− 1)(𝐸[𝑆𝑡])2 = 𝑆0

2𝑒2𝜇𝑡(𝑒𝜎2𝑡−1)
. 

We consider a risk-neutral world where 𝜇 = 𝑟. The 

black-Scholes formula is commonly used to calculate 

the theoretical price of a European option. 

The price of the call option at the initial time is given by 

𝐸[𝐶0] = 𝑒−𝑟𝑇𝐸[(𝑆𝑇 − 𝐾)+] 

= 𝑒−𝑟𝑇𝐸[(𝑆𝑇1𝑆𝑇>𝐾)] − 𝐾𝑒−𝑟𝑇𝐸[1𝑆𝑇>𝐾]   (3) 

= 𝑒−𝑟𝑇𝐸[(𝑆𝑇1𝑆𝑇>𝐾)] − 𝐾𝑒−𝑟𝑇𝘗(𝑆𝑇 > 𝐾).  (𝟒) 

But we have 

𝘗(𝑆𝑇 > 𝐾) = 𝘗 (𝑆0𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) 𝑇 + 𝜎𝐵𝑇) > 𝐾) 

=  𝘗 (
𝑆0

𝐾
> 𝑒𝑥𝑝 (− (𝑟 −

𝜎2

2
) 𝑇 − 𝜎𝐵𝑇)) 

=  𝘗 (𝑙𝑛 (
𝑆0

𝐾
) >) − (𝑟 −

𝜎2

2
) 𝑇 − 𝜎𝐵𝑇  

=𝖯(
𝑙𝑛(

𝑆0
𝐾

)+(𝑟−
𝜎2

2
)𝑇

𝜎
> −𝐵𝑇) 

= 𝖯(
𝑙𝑛(

𝑆0
𝐾

)+(𝑟−
𝜎2

2
)𝑇−𝜎2𝑇

𝜎√𝑇
> −

𝐵𝑇

√𝑇
) 

= 𝘗(−𝑊 < 𝑑1 − 𝜎√𝑇) 
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Where 𝑊 ≔
𝐵𝑇

√𝑇
~𝒩(0,1) and 𝑑1 ≔

𝑙𝑛(
𝑆0
𝐾

)+(𝑟−
𝜎2

2
)𝑇−𝜎2𝑇

𝜎√𝑇
. 

Since 𝑊 and −𝑊 have the same distribution, then 

𝘗(𝑆𝑇 > 𝐾) = 𝜙(𝑑2).     (𝟓) 

Furthermore, 

𝑒−𝑟𝑇𝐸[(𝑆𝑇1𝑆𝑇>𝐾)]

= 𝐸 [𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) 𝑇 + 𝜎√𝑇𝑊) 1𝑊>−𝑑2

]

= 𝑒−𝑟𝑇𝑆0 ∫
𝑒−

𝑥2

2

√2𝜋
𝑒

(𝑟−
𝜎2

2
)𝑇+𝜎√𝑇𝑥

∞

−𝑑2

𝑑𝑥 

= 𝑆0 ∫
1

√2𝜋
𝑒−

1
2

(𝑥−𝜎√𝑇)2
∞

−𝑑2

𝑑𝑥. 

By changing variable 𝑢 = x − σ√𝑇, 

𝑒−𝑟𝑇𝐸[(𝑆𝑇1𝑆𝑇>𝐾)] = 𝑆0 ∫
1

√2𝜋
𝑒−

1
2

𝑢2
∞

−𝑑2−𝜎√𝑇

𝑑𝑢 

= 𝑆0 ∫
1

√2𝜋
𝑒−

1
2

𝑢2
𝑑2+𝜎√𝑇

−∞

𝑑𝑢 

= 𝑆0 ∫
1

√2𝜋
𝑒−

1
2

𝑢2
𝑑1

−∞

𝑑𝑢 = 𝑆0𝜙(𝑑1).       (𝟔) 

By substituting (6) and (5) in (3), we get 

𝐸[𝐶0] = 𝑆0𝜙(𝑑1) − 𝐾𝑒−𝑟𝑇𝜙(𝑑2),     (𝟕) 

where 

𝑑1 ≔
1

𝜎√𝑇
(𝑙𝑛 (

𝑆0

𝐾
) + (𝑟 +

𝜎2

2
) 𝑇) , 𝑑2 ≔ 𝑑1 − 𝜎√𝑇 

And ϕ is the cdf of the standard normal distribution. 

The price of the put option at the initial time is given by 

𝐸[𝑃0] = 𝑒−𝑟𝑇𝐸[(𝐾 − 𝑆𝑇)+]

= 𝐾𝑒−𝑟𝑇𝐸[1𝐾>𝑆𝑇
]

− 𝑒−𝑟𝑇𝐸[𝑆𝑇1𝐾>𝑆𝑇
]

= 𝐾𝑒−𝑟𝑇𝘗(𝐾 > 𝑆𝑇)

− 𝑒−𝑟𝑇𝐸[𝑆𝑇1𝐾>𝑆𝑇
]. 

We have, 

𝑃(𝐾 > 𝑆𝑇) =P(𝐾 > 𝑆0𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) 𝑇 + 𝜎𝐵𝑇)) 

= 𝑃 (
𝐵𝑇

√𝑇
<

𝑙𝑛 (
𝑆0

𝐾
) + (𝑟 −

𝜎2

2
) 𝑇

−𝜎√𝑇
) 

= 𝑃 (
𝐵𝑇

√𝑇
<

𝑙𝑛 (
𝑆0

𝐾
) + (𝑟 +

𝜎2

2
) 𝑇 − 𝜎2𝑇

−𝜎√𝑇
)

= 𝑃(𝑊 < −𝑑1 + 𝜎√𝑇) = 𝜙(−𝑑2). 

Moreover, 

𝑒−𝑟𝑇𝐸[𝑆𝑇1𝐾>𝑆𝑇
]

= 𝐸 [𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) 𝑇 + 𝜎√𝑇𝑊) 1𝑊<−𝑑2

]

= 𝑒−𝑟𝑇𝑆0 ∫
𝑒−

𝑥2

2

√2𝜋
𝑒

(𝑟−
𝜎2

2
)𝑇+𝜎√𝑇𝑥

−𝑑2

−∞

𝑑𝑥 

𝑆0 ∫
1

√2𝜋
𝑒−

1
2

(𝑥−𝜎√𝑇)2
−𝑑2

−∞

𝑑𝑥, 

we set 𝑢 = 𝑥 − 𝜎√𝑇, 

𝑒−𝑟𝑇𝐸[𝑆𝑇1𝐾>𝑆𝑇
] = 

𝑆0 ∫
1

√2𝜋
𝑒−

1

2
𝑢2−𝑑2−𝜎√𝑇

−∞
𝑑𝑢=𝑆0𝜙(−𝑑1). 

Then, we obtain 

𝐸[𝑃0] = 𝐾𝑒−𝑟𝑇𝜙(−𝑑2) − 𝑆0𝜙(−𝑑1).         (𝟖) 

We chek the parity relationship: 

𝐸[𝐶0] − 𝐸[𝑃0] = 𝑆0 − 𝐾𝑒−𝑟𝑇 . 

Example 1. Consider 

𝑆0 r σ T K 

5 0.06 0.3 1 10 

These parameters represent an option on a financial 

asset where the current price is 5 units, the risk-free 

interest rate is 6% per year, the volatility of the asset's 

returns is 30% per year, the option has a maturity of 1 

year, and the strike price is 10 units. From (7) we get 

𝐸[𝐶0] ≈ 0.0128194 and from (8), E[P0] ≈ 4.4304648. 

We estimate 𝐸[𝐶0]  and E[P0] using a simple Monte 

Carlo method, taking 𝑁 = 10 to 𝑁 = 100000 points, 

and calculating the confidence interval limits at a 95% 

confidence level. 

The results are shown in Figure.1 for the call option and 

Figure.2 for the put option (the x-axis represents the 

number of the random variables being generated in 

logarithmic scale). 

If we use the technique of antithetic variables, we 

obtain the results shown in Figure.3 for the call option 

and Figure.4 for the put option (the x-axis represents 

the number of the random variables being generated in 

logarithmic scale). 
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Comparing the results obtained by the simple Monte 

Carlo method and the one using the antithetic variables 

technique, we observe the advantage of this technique 

for option pricing. 

 
Figure 1:European call option by the simple MC 

method. 

 
Figure 2; European put option by the simple MC 

method. 

 
Figure 3: European call option by the antithetic 

variates technique. 

 
Figure 4: European put option by the antithetic 

variates technique. 

5. Asian Option 

Asian options derive their name from their pricing 

approach, which relies on the average value of the 

underlying asset over a predetermined duration $n$. 

The length of this period varies depending on the 

specific terms of the option agreement, spanning from 

a few days to several months. The determination of the 

average price involves employing diverse techniques, 

including arithmetic or geometric averaging. 

We denote 𝑆𝑡 as the price of an asset at time 𝑡. For an 

Asian option, we compare the exercise price 𝐾 to an 

average of the asset prices before the expiration 𝑇. 

Geometric averaging: Let 𝑡𝑖 = 𝑖∆𝑡, where 

1 ≤ 𝑖 ≤ 𝑛, where ∆𝑡 =
𝑇

𝑛
. The geometric mean 

(∏ 𝑆𝑡𝑖

𝑛
𝑖=1 )

1

𝑛  is a random variable following a log normal 

distribution. 

 

The price of the Asian call option is 

𝐸[𝐶𝑔] = 𝑒−𝑟𝑇𝐸 [((∏ 𝑆𝑡𝑖

𝑛
𝑖=1 )

1

𝑛 − 𝐾)
+

]. 

We have 

∏ 𝑆𝑡𝑖

𝑛

𝑖=1

= (
𝑆𝑡𝑛

𝑆𝑡𝑛−1

) (
𝑆𝑡𝑛−1

𝑆𝑡𝑛−2

)

2

… (
𝑆𝑡3

𝑆𝑡2

)

𝑛−2

(
𝑆𝑡2

𝑆𝑡1

)

𝑛−1

𝑆𝑡1
𝑛 . 

And 

𝑆𝑡𝑛

𝑆𝑡𝑛−1

=

𝑆0𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) 𝑇 + 𝜎𝐵𝑡𝑛

)

𝑆0𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
) (𝑛 − 1)𝑇/𝑛 + 𝜎𝐵𝑡𝑛−1

)

 

=  𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
)

𝑇

𝑛
+ 𝜎√

𝑇

𝑛
𝑋1), 

Where 𝑋1 is a 𝒩(0,1) distributed random variable. 

Similarly 

𝑆𝑡𝑛−1

𝑆𝑡𝑛−2

=  𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
)

𝑇

𝑛
+ 𝜎√

𝑇

𝑛
𝑋2), 

𝑆𝑡2

𝑆𝑡1

=  𝑒𝑥𝑝 ((𝑟 −
𝜎2

2
)

𝑇

𝑛
+ 𝜎√

𝑇

𝑛
𝑋𝑛−1), 
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𝑆𝑡1
=  𝑆0 𝑒𝑥𝑝 ((𝑟 −

𝜎2

2
)

𝑇

𝑛
+ 𝜎√

𝑇

𝑛
𝑋1), 

where {𝑋𝑖}1≤𝑖≤𝑛 are independent standard normal 

distributed random variables. 

Then 

𝑙𝑛 (∏ 𝑆𝑡𝑖

𝑛

𝑖=1

)

1
𝑛

=
1

𝑛
[ln (

𝑆𝑡𝑛

𝑆𝑡𝑛−1

) + 2𝑙𝑛 (
𝑆𝑡𝑛−1

𝑆𝑡𝑛−2

) + ⋯

+ 𝑛𝑙𝑛 𝑆𝑡1
] 

= ln 𝑆0 + (𝑟 −
𝜎2

2
)

(𝑛+1)

2𝑛
𝑇 +

𝜎

𝑛
√

𝑇

𝑛
∑ 𝑖𝑋𝑖

𝑛
𝑖=1 . 

Since 𝑋𝑖~𝒩(0,1), then 

𝜎

𝑛
√

𝑇

𝑛
∑ 𝑖𝑋𝑖

𝑛
𝑖=1 ~𝒩 (0, 𝜎2 (𝑛+1)(2𝑛+1)

6𝑛2 𝑇), 

Hence 

𝜎

𝑛
√

𝑇

𝑛
∑ 𝑖𝑋𝑖

𝑛

𝑖=1

= 𝜎√
𝑇(𝑛 + 1)(2𝑛 + 1)

6𝑛2
𝑌, 

With 𝑌~𝒩(0,1). 

Furthermore 

𝑙𝑛 (∏ 𝑆𝑡𝑖

𝑛

𝑖=1

)

1
𝑛

= ln 𝑆0 + (𝑟 −
𝜎2

2
)

(𝑛 + 1)

2𝑛
𝑇

+  𝜎√
𝑇(𝑛 + 1)(2𝑛 + 1)

6𝑛2
𝑌 

= ln 𝑆0 + (𝜇̂ −
𝜎̂2

2
) 𝑇 + 𝜎̂√𝑇𝑌, 

where 

(𝜇̂ −
𝜎̂2

2
) = (𝑟 −

𝜎2

2
)

(𝑛 + 1)

2𝑛
 

and 𝜎̂ =  𝜎√
(𝑛+1)(2𝑛+1)

6𝑛2 . 

𝐸[𝐶𝑔,0] = 𝑒−𝑟𝑇𝐸 [((∏ 𝑆𝑡𝑖

𝑛

𝑖=1

)

1
𝑛

− 𝐾)

+

] 

= 𝑒−𝑟𝑇𝐸 [𝑆0𝑒𝑥𝑝 ((𝜇̂ −
𝜎̂2

2
) 𝑇 + 𝜎̂√𝑇𝑌 − 𝐾)]. 

From equality (7) it follows that 

𝐸[𝐶𝑔,0] = 𝑒−𝑟𝑇 (𝑒𝜇̂𝑇𝑆0𝜙(𝑑1̂) − 𝐾𝜙(𝑑2̂)),  (9) 

where 𝜇̂ and 𝜎̂ are defined as 

𝜎̂ =
𝜎

𝑛
√

(𝑛 + 1)(2𝑛 + 1)

6
,   𝜇̂ = (𝜇 −

𝜎2

2
)

𝑛 + 1

2𝑛
+

𝜎̂2

2
, 

and 𝑑̂1 ≔
1

𝜎√𝑇̂
(𝑙𝑛 (

𝑆0

𝐾
) + (𝜇̂ +

𝜎̂2

2
) 𝑇) , 𝑑̂2 ≔ 𝑑̂1 −

𝜎̂√𝑇 

and ϕ is the cdf of the standard normal distribution. 

The price of the Asian put option is 

𝐸[𝑃𝑔,0] = 𝑒−𝑟𝑇𝐸 [(𝐾 − (∏ 𝑆𝑡𝑖

𝑛

𝑖=1

)

1
𝑛

)

+

] 

= 𝑒−𝑟𝑇𝐸 [𝐾 − 𝑆0𝑒𝑥𝑝 ((𝜇̂ −
𝜎̂2

2
) 𝑇 + 𝜎̂√𝑇𝑌)] 

From (8) it follows that 

𝐸[𝑃𝑔,0] = 𝑒−𝑟𝑇 (𝐾𝜙(−𝑑2
̂ ) − 𝑒−𝜇̂𝑇𝑆0𝜙(−𝑑1̂)).   (𝟏𝟎) 

Arithmetic averaging: Let 0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 ≤ 𝑇. 

The price of the call option is given by 𝐸[𝐶𝑎,0] =

𝑒−𝑟𝑇𝐸 [(
1

𝑛
∑ 𝑆𝑡𝑖

− 𝐾𝑛
𝑖=1 )

+
], 

the price of the put option is given by 𝐸[𝑃𝑎,0] =

𝑒−𝑟𝑇𝐸 [(𝐾 −
1

𝑛
∑ 𝑆𝑡𝑖

𝑛
𝑖=1 )

+
]. 

We do not have the exact value of the Asian option 

prices based on the arithmetic averaging, we can 

estimate it using the simple Monte Carlo method or the 

one using the control variates technique (taking the 

geometric mean as the control variable for the 

arithmetic mean). 

Example 2. Consider 

𝑆0 r σ T K n 

100 0.04 0.4 1 120 52 

These parameters represent an option on a financial 

asset where the current price is 100 units, the risk-free 

interest rate is 4% per year, the volatility of the asset's 

returns is 40% per year, the option has a maturity of 1 

year, the strike price is 120 units, and the option is 

based on an average of the asset price over 52 periods 

(e.g., weeks).\ 

Equation (9) gives 𝐸[𝐶𝑔,0] ≈ 3.2431371 and (10) gives 

𝐸[𝑃𝑔,0] ≈ 21.778575. 
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For the geometric averaging, we estimate 𝐸[𝐶𝑔,0] and 

𝐸[𝑃𝑔,0] using the Monte Carlo method, taking 𝑁 =

1000 to 𝑁 = 1000000points, and calculate the 

confidence interval limits at a 95% confidence level. The 

results are shown in Figure 5 the call option and Figure 

6 for the put option (the x-axis represents the number 

of the random variables being generated in logarithmic 

scale). 

 
Figure 5: Asian call option by the simple MC method 

using geometric averaging. 

 
Figure 6: Asian put option by the simple MC method 

using geometric averaging 

 
Figure 7: Asian call option by the simple MC method 

using arithmetic averaging. 

For the arithmetic avereging, we estimate 𝐸[𝐶𝑎,0] and 

𝐸[𝑃𝑎,0] using the Monte Carlo method, taking 𝑁 =

1000 to 𝑁 = 1000000 points, and calculate the 

confidence interval limits at a 95% confidence level. The 

results are shown in Figure 7 for the call option and 

Figure 8 for the put option (the x-axis represents the 

number of the random variables being generated in 

logarithmic scale). 

 
Figure 8: Asian put option by the simple MC method 

using arithmetic averaging. 

We compare the results obtained by the simple Monte 

Carlo method and the one using the controlc variates 

technique, we obtain the results shown in Figures 9 (call 

option) and Figure 10 (put option(the x-axis represents 

the number of the random variables being generated in 

logarithmic scale). We observe the advantage of this 

technique for evaluating both options. 

 
Figure 9: Comparison between the simple MC and the 

control variates technique for asian arithmetic call 

option. 

 
Figure 10: Comparisaon between the simple MC and 

the control variates technique for asian arithmetic 

put option. 
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6. Conclusion 

The application of Monte Carlo methods for option 

pricing was be established, we compared the two 

variance reduction methods presented in Section 1 

with the Monte Carlo method for European and Asian 

options. For the European option, we compared the 

Monte Carlo method with the antithetic variable 

method since an exact value is not available. However, 

for the Asian option, since exact values are available, 

we compared it with the control variable method as the 

antithetic variable method performs well when the 

integrated function is monotone. 
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