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Abstract 

The stability of a fully developed plume of compositionally buoyant fluid, of finite width, enclosed between 

two vertical boundaries and rising in a less buoyant infinite fluid is investigated. The plume and the outside 

fluid have the same thermal diffusivity,  , material diffusivity, m , and kinematic viscosity, v . The linear 

stability problem is governed by four dimensionless parameters : the (Grashoff) Reynolds number , R

( UL v=
, where U  and L  are typical velocity and characteristic length  , respectively, the Prandtl number 

,    
( )v k=

, the Schmidt number , 
( )c mS  =

 , and the dimensionless thickness of the Cartesian 

plume, 0x
. The stability analysis is examined in the case 1R . It is found that the presence of diffusion of 

material introduces an extra term, 2d
, in the expression for the growth rate. The term 2d

 is found to be 

negative except in a small region of the wavenumber space where it is positive. The influence of 2d
 on the 

stability is examined to find that although material diffusion decreases the values of growth rate, the plume 

remains unstable for all values of the parameters of the dynamical system. Material diffusion is also found to 

affect the wavenumbers of the unstable mode; 3-dimensional modes can be transformed into 2-dimensional 

modes or vice versa by the presence of material diffusion. 

 

Keywords: Compositional plume; material diffusion; stability. 

 

1. Introduction 

The mathematical modeling of the dynamics of 

fluid alloys in the presence of pressure and heat is 

relevant to geophysical [1-5, 10-17, 21-22,26-

32,39,43], industrial [9, 18,20,24,34-38,40,42] and 

environmental [19,23,25,33] applications. 

Consequently, these varied interests have led to 

theoretical and experimental studies on various 

aspects of the fluid dynamics of fluid alloys. Here 

we will study the linear stability of a compositional 

plume, which is a directional flow of a column of 

fluid through a surrounding infinite fluid of 

different composition. 

Iron casting is one of the important industrial 

applications where compositional plumes may 

appear [2-5,10-17,22, 34-38]. In iron castings, 

plumes appear in the form of thin black markings 

that represent imperfections in the cast because 

they are devoid of solute. Their appearance 

signifies a weakness in the iron bars. The need to 

investigate the nature of these plumes motivated 

a number of theoretical and experimental studies 

starting with Copley et al. [9]. Copely et al. (1970) 

designed an experiment using a mixed solution of 

ammonium chloride in water (30-wt% NH4CL-H2O). 

The solution was placed on a cooled surface. The 

cool surface lowered the temperature of the 

solution at the bottom of the container until it 

reached the melting temperature of NH4CL, which 

is more than that of water, and ammonium 

chloride crystals appeared at the bottom of the 

container. This process continued, producing more 

crystals, and a layer of mixed solid and fluid, which 

is mainly water, formed. This layer is known as a 

mushy layer [2-5, 10-17] . The crystals in the 

mushy layer formed dendrites. The mushy layer 

thickened as the process continued further and 

the dendrites at the bottom of the mushy layer 

joined to form a solid layer. When the layer 

reached a certain thickness, the light fluid in the 

mushy layer was seen to escape through channels 

called chimneys and through the overlying melt in 
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thin filaments, now referred to as compositional 

plumes.   

The dynamics of the mushy layer has been studied 

experimentally and theoretically [1-3, 10-17,6-9]. 

Worster [41-43] made a detailed study on the 

stability of the mushy layer and found that 

instability exists at the mushy layer-melt interface 

and can take one of two forms. One form has small 

directions of the finger type and occurs in a 

boundary layer on the melt-mush interface while 

the other form has larger dimensions and extends 

to both mushy layer and melt. It is this latter form 

of instability that is believed to lead to 

compositional plumes. Moffatt [30] proposed that 

the mushy layer become unstable, and the rising 

plumes can break up into blobs of light fluid. 

The first comprehensive study of the stability of 

the compositional plume was carried out by 

Eltayeb and Loper [15] to show that it is unstable. 

This study dealt with the simple case of a single 

vertical interface, across which the concentration 

of light component is discontinuous. This case 

represents a plume of infinite thickness. They 

extended their study to include the finite width of 

the plume, in which the plume takes the form of a 

channel between two vertical planes, the so-called 

Cartesian plume (Eltayeb and Loper [16]) and the 

more realistic plume form of a circular cylinder 

(Eltayeb and Loper [17]). All these studies assumed 

that the compositional interfaces are sharp 

because they neglected material diffusion, m . 

These studies showed that a single plume is 

unstable for all values of the (Grashoff) Reynolds 

number R  and Prandtl number    defined by 

, ,
UL

R



 

= =
     (1) 

where U and L  are characteristic velocity and 

length-scale, respectively, and  and   v  are 

thermal diffusivity and kinematic viscosity, 

respectively.  

Motivated by geophysical applications, Eltayeb and 

Hamza [12] studied the linear stability of 

compositional plumes in the presence of rotation 

to find that rotation destabilizes the plume. 

Classen et al. [8] investigated the dynamics of 

plumes under the influence of rotation 

experimentally to find that the plumes are 

unstable. Eltayeb et al. [13-14] examined the 

stability of Cartesian plumes in the presence of a 

uniform magnetic field to find that the magnetic 

field can destabilize the plume slightly. They also 

found that magnetic diffusion can enhance 

instability of the plume. The both effect of 

magnetic field and rotation on compositional 

plumes was investigated by Eltayeb [10-11] to 

conclude that the growth rate of the instability 

was controlled by the action of rotation. However, 

all these studies on compositional plumes 

considered that the compositional plume rises 

vertically in unbounded domains of fluid. The 

theoretical studies by Al Mashrafi and Eltayeb [2] 

examined the influence of the two vertical 

boundaries on the stability of the plumes in the 

absence of rotation and magnetic fields. They 

found that the presence of two fixed vertical 

boundaries affects the stability of the plume, but 

the plumes remain unstable. They extended their 

studies by including the vertical rotation (Al 

Mashrafi and Eltayeb [3]) to find that the plume 

remains unstable. However, all these studies 

neglected the material diffusion. 

Since diffusion is generally stabilizing, it is of 

interest to investigate the influence of material 

diffusion on the stability of the plume in order to 

see whether the plume can be stabilized. In 

section 2, we formulate the problem. The system 

of the model is governed by the same equations 

used by Eltayeb and Loper [16] except for the 

presence of material diffusion in the equation of 

the concentration of light material. This introduces 

a new dimensionless number, cS
 , as a measure of 

material diffusion. In section 3, we derive the 

perturbation equations and solve the resulting 

eigenvalue problem for the growth rate 2
 of the 

system. It is found that material diffusion adds an 

extra term, 2c dS 
, to the growth rate. In section 

4, we investigate the properties of 2d
 and its 

influence on the growth rate 2
 to find that 

material diffusion tends to stabilize the plume. In 

section 5, we present some concluding remarks.  

2. Formulation of the problem  

We assume a two-material incompressible fluid of 

infinite extent. The concentration of the light 
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material in the fluid is C , and the temperature of 

the fluid is T . The two fluids have the same 

thermal diffusivity ,  , kinematic viscosity, , and 

material diffusion, m . 

This system is governed by the equations of 

motion, continuity, heat, concentration, and state.  

These equations are  

00

2 ˆ( . ) ,p g
t

   
 

+  =− + −  

u
u u u z 

 
(2) 

. 0 ,= u
               

(3) 

2.
T

T T ,
t




+ =


u  
             

(4) 

2. ,m

C
C C

t



+ =


u  

              
(5) 

( ) ( )0 0

0

1 ,T T C C


 


= − − − −

             
(6) 

where  u  is the velocity vector,  g the uniform 

acceleration of gravity, 
p

 the pressure, t  the 

time, ẑ  is the upward unit vector, 
( ), 

 are 

the coefficients of thermal and compositional  

expansions , 


 the density, 
( )0 0 0, ,T C

the 

constant reference values, where we have 

considered that the fluid is Boussinesq.  

The system (2)-(6) allows a hydrostatic state in 

which the fluid is stably stratified by a temperature 

with uniform temperature gradient, 


. 

 To write the system (2) - (6) in dimensionless 

form, we take the scale of length as the salt finger 

length scale, defined by 
1

4

,L
g

 



 
=  
               (7) 

and the amplitude of concentration of light 

material, C  , as the unit of the concentration. We 

further take U  as a unit of velocity by  

1

2

,
g

U C





 
=  

               
(8) 

and 
C 

 , L U  and 
( )

1
3 4

0 C g    
 

as units of temperature, time and pressure, 

respectively.  

We eliminate 


 from (2) using (6) and write the 

dimensionless equations as  

( )0 0

2 ˆ( . ) ,
z

R p T T C C z
t C

  
+  =− + + + − + −     

u
u u u 

    
(9) 

. 0 ,= u
              

(10) 

2.
T

R T T ,
t


 

+ =  
u  

             
(11) 

2. ,c

C
R S C C

t

 
+ =  

u  

             
(12) 

where R is Grashoff (Reynolds) number,  is 

Prandtl number, and cS
is Schmidt number: 

1
3 4

3 3 5
, , .c

m

g UL
R C S

  
 

     

   
= = = =   

        
(13) 

We consider a Cartesian coordinate system 

( , , )O x y z
in which Ox , 

Oy
are horizontal and 

Oz is vertically upwards. We consider that the 

general solution of the equations (9) - (12) can be 

written in the form  
†ˆ( , , , ) ( , , , ) ,x y z t w (x) z x y z t= + +0u u       

(14) 
†

0( , , , ) ( , , , ) ,C x y z t C C(x) C x y z t= + +
  

(15) 
†( , , , ) ( , , , ) ,hp x y z t p p(x) p x y z t= + +

  
(16) 

†( , , , ) ( , , , ) ,hT x y z t T T(x) T x y z t= + +
   

(17) 

such that the variables 
,h hT p

 have hydrostatic 

contribution and given by 
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0
0

( )
,h

z z
T T

R

−
= +

             
(18) 

( ) ( )
2

0 0

0 .
2

h

z z z z
p p

RC 

− −
= − +

           
(19) 

The variables  , ,w(x) C(x) p(x), T(x)  are 

basic state variables dependent only on a 

horizontal length, x ,  and the variables  
† † † †, , ,C p Tu  indicate a perturbation of the 

amplitude 1   .(see figure 1).   

The boundary conditions of this physical system 

are that all variables of the system are finite away 

from the plume interfaces, the heat and 

momentum fluxes are continuous across the 

interfaces, and the interface between the plumes 

and surrounding fluid is a material surface. 

Substituting the equations (14) - (17) into the 

system (9) - (12) , and neglecting the terms 

independent of   gives the following basic state 

equations 

2

2
ˆ ˆ 0 ,

d p d w
x C T z

dx dx

 
− + + + = 

   (20) 

2

2
( ) ,

d T
w x

dx
=

                                 (21) 

2

2
0 ,

d C

dx
=

                  (22) 

and equation (10) is automatically satisfied.  

Equation (20) gives 
0

dp

dx
=

. Using the boundary 

conditions, we found that 
( ) 0p x =

 and 
( )C x

 

has the general form  

( ) .C x Ax B= +
       (23) 

    In the present study, we take a concentration 

profile of the so-called top-hat profile  

0

0

1 ,
.

0 ,

x x
C

x x

 
= 

      (24) 

This defines a column of thickness 02x
 and 

concentration 1 rising in an infinite fluid of 

concentration 0.  

Combining the z − component of equation (20) 

and equation (21) gives the following second-order 

ordinary differential equation  

2

2
i i ,

d F
F C

dx
− =

        (25) 

where  

( ) ( ) ( )i .F x T x w x= −
      (26) 

This equation is solved subject to the conditions 

that F and 

dF

dx  are continuous across the 

interfaces, and F  is finite away from the 

interfaces.   

3. The stability analysis    

The solution of the basic state equations (25) and 

(26), was obtained by Eltayeb and Loper (1991) as 

( ) ( ) ( ) ( ) 
1

( ) exp sin exp sin ,
2

w x K K K K+ + − −= − − −
     

(27) 

( ) ( ) ( ) ( ) ( ) 1
( ) exp cos 1 sgn exp cos 1 ,

2
T x K K K K K+ + − − −

 = − − − − −    
(28) 

where   

0
.

2

x x
K 

 
=  
 
               

(29) 

The flow (27) and the concentration (24) define a 

plume enclosed by the two planes 0x x= 
 rising 

in an infinite fluid. We intend here to investigate 

the stability of such a plume.  

 
Figure 1.  The geometry of the system drawn here 

for  xo = 1.0  and showing a typical plume flow,  

( )w x
, and associated  temperature , ( )T x  

profile. 

Now to obtain the perturbation equations, we 

subtract the system (20)-(22) from perturbation 

equations (9)-(12) after substituting the 

expressions (14)-(17). Then neglecting the terms of 
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order 
2  to get the linearized perturbation 

equations 

( ) ( )
†

† † † 2 † † †ˆ ˆ ˆ. ,R w p T C
t


 

+  +  = − +  + + 
 

u
z . u u z u z

  
(30) 

†. 0 ,=u               
(31) 

† †
† † 2 †ˆ. ,

T T
R w T T

t z


  
+ + + =  

  
.u u z

      
(32) 

† †
† 2 †. .c

C C
R S w C C

t z

  
+ + =  

  
u 

        
(33) 

The system (30)-(33) is solved subject to the 

boundary conditions that all perturbation variables 

decay to zero away from the interfaces, all 

variables except the concentration are continuous 

across the interfaces, the momentum flux and the 

heat flux are continuous across the interfaces , and 

the interfaces between the two fluids are material 

surfaces.   

We consider that the interface at 0x x=
 is given 

a small harmonic disturbance of the form  

( )0 exp i ( ) . . ,x x t my nz c c= +  + − +
         

(34) 

where n  and m  are the vertical and horizontal 

wavenumbers , . .c c  refers to the complex 

conjugate, and   is given by  

ii ,r = + 
         

(35) 

such that r
 and i

 are the real and imaginary 

parts. The stability of the plume is determined by 

the sign of the real part of the growth rate, r
. 

    The disturbance (34) propagates into the 

dynamical system, and affect the interface at  

0x x= −
, and the variables of the system to 

make the perturbation. The perturbation 

equations and the boundary conditions of the 

system allow two categories of solution one of 

which is even in x and other is odd. The even 

solution is associated with the interfaces at 

0x x= 
propagating out-of-phase and hence this 

solution is referred as the varicose solution, while 

the odd solution is called the sinuous (or 

meandering) mode because the two interfaces 

propagate in-phase. Due to this parity property, 

the system is solved in the half domain, 0x   . 

The perturbation variables produced by the 

disturbance (34) have the harmonic dependence 

    ( )† † † †, , , i , , , , , i exp i ( ) . .,C T p nu nmv w C T n p t my nz c c     = − −  + − +u

        (36) 

where we have introduced the parameter  

, for the varicose mode
,

, for the sinuous mode

v

s



= 
     (37) 

in order to help us present the two categories of 

solution concisely, and the factors nm  , 
in−

, 

and 
in−

 are introduced in v


, u


and p 

for 

convenience.  

 Substituting the variables (36) in (30)-(33) gives 

the following ordinary differential equations in x  

2 0 ,
du

m v w
dx


 − + =

         
(38) 

2
2

2
,

d dp
a u R u

dx dx


   

− − =  
           
(39) 

2
2

2
,

d
a v p R v

dx

    
− − =  

           
(40) 

2
2 2

2
i ,

d dw
a w T C n p R w n u

dx dx

         
− + + + =  −   

      
(41) 

2
2

2
i ,

d dT
a T w R T n u

dx dx

    


   

− − =  −   
       

(42) 
2

2

2
i ,c

d dC
a C R S C n u

dx dx

      
− =  −   

      
(43) 

where  

2 2 2 , i ( ) ,a m n n w x
 

= +  =  −
    

(44) 

subject to the independent boundary conditions 

 and 0 as ,u , v , w ,T ,C , p x
     

→ →   
(45) 

0, , , , , and are continuous across ,
dT

u w T p C x x
dx



    

=
     

(46) 
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( ) ( ) ( ) ( )0 0 0 0 01 , i ( ) ,c

dw dw dC dC
x x x x n R S u x

dx dx dx dx

  
+ − + −− = − − =

    
(47) 

0 0i ( ) i ( ) ,nu x nw x − = −
           

(48) 

(i) (0) (0) (0) (0) (0) (0) 0

.

(ii) (0) (0) (0) (0) (0) (0) 0

v v v v v
v

s
s s s s s

dv dw dT dC dp
u

dx dx dx dx dx

du
v w T C p

dx


= = = = = = 




= = = = = = 


               

(49) 

Following Eltayeb and Loper (1994) , we assume 

the perturbation variables of the system and the 

growth rate ,   , are written as expansions of the 

small parameter 
( )1R

: 

( ) ( ) 1

0 1

, , , , , , , ,r r

r r

r r

f x y z t f x y z t R R 
 

−

= =

=  =  

           

(50) 

where 
( ), , ,f x y z t

 indicates the perturbation 

variable u


, v


, w


, p 

, T


, and C


.  

Substituting  the variables (50) into the equations 

(38)-(43)  and the relevant boundary conditions 

(45)-(49) , and equating the coefficients of 
rR ( r

= 0 , 1 , 2 , ….) to zero to get systems of ordinary 

differential equations which can be solved to find 

the the growth rate. The two systems for 0r =  

and 1r =  are sufficient to find the stability of the 

interface.    

 When 0r =  , the system consists of the 

equations  

20
0 0 0 ,

du
m v w

dx


 − + =

       (51) 

2
2 0

02
0 ,

dpd
a u

dx dx


 

− − = 
        (52) 

2
2

0 02
0 ,

d
a v p

dx

  
− − = 

        (53) 
2

2 2

0 0 0 02
0 ,

d
a w T C n p

dx

    
− + + + = 

        (54) 

2
2

0 02
0 ,

d
a T w

dx

  
− − = 

          (55) 

2
2

02
0 ,

d
a C

dx

 
− = 

          (56) 

and the independent boundary conditions 

0 0 0 0 0 0, , , , , and 0 as ,u v w C T p x      → →

         (57) 

0
0 0 0 0 0 0, , , , , and are continuous across ,

dT
u w C T p x x

dx


     =

       (58) 

( ) ( )0 0
0 0 1 ,

dw dw
x x

dx dx

 
− +− =

   (59) 

( ) ( )0 0
0 0 0 ,

dC dC
x x

dx dx

 
− +− =

   (60) 

0 0 1 0i ( ) i ( ) ,nu x n w x − = −
   (61) 

0 0 0 0 0
0

0
0 0 0 0 0

(i) (0) (0) (0) (0) (0) (0) 0

.

(ii) (0) (0) (0) (0) (0) (0) 0

v v v v v
v

s
s s s s s

dv dw dT dC dp
u

dx dx dx dx dx

du
v w T C p

dx


= = = = = = 




= = = = = = 


     (62) 

    The solution of this system is given by  

    ( )
( )

( )

0

0

0

3
03 2

0 0 0 0

1 0

0
, , , , , ,1 , ,

2

j

j

j

x x

x xjs s

j j j x x
j

x xK e
w T p v Be

x xe



 


  

−

− +

− −
=

     
 = +  
      



     (63) 

( )
( )

( )

0

0

0

3
0

0

1 0

0
, ,

2

j

j

j

x x

x xj j

x x
j

x xK e
u B e

x xe








−

− +

− −
=

    − − 
 = +  
      



     (64) 

0 0 ,C  =
    (65) 

where  

( )

2

2

2
, ,

2 3

j

j j j

j j

K a
n


 

 
= = +

+
   (66) 

and j
( 

1,2,3j =
) are the roots of the cubic 

equation 
3 2 0 ,n + + =      (67) 

1 , for the varicose(even) mode
.

1 , for the sinuous(odd) mode
B


= 

−    
(68) 

The expression of the growth rate 1


  is given 

by 

( ) ( )1 0 2

i
, , , ,

2

n
m n x B S B N = +

     (69) 

where  

( )02

0sin 2 ,
x

S e x
−

=
          (70) 
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( )
3

02
1

, exp 2 .
(3 2 )

k

j

k j j j

j j

N E E x
n




=

= = −
+


   

(71) 

It should be noted here that the nature of the 

roots of the equation (67) make the expressions 

for kN
( k = 1 , 2 , 3 , …… ) real. It then follows 

that the expression for 1


 is purely imaginary 

which indicates that the disturbance is a neutral 

wave which has a vertical phase speed V defined 

by 

( )1
2

1
.

i 2
V S B N

n


= = +

       (72) 

It is then necessary to investigate the next order 

problem to determine the stability.  

When 1r = , the system is 

21
1 1 0 ,

du
m v w

dx


 − + =

   (73) 

1 ( ) ,u M x  =
   (74) 

1 1 ,vv p M   − =
   (75) 

2

1 1 1 ,ww T n p M    + + =
  (76) 

1 1 ,TT w M   − =
   (77) 

1 0 ,C  =
    (78) 

where 

2
2

2
,

d
a

dx

 
 = − 

     (79) 

( ) ( )1
1 0i ( ) ,

dp
M x n w x u

dx


  = +  −

 (80) 

( )1 0i ( ) ,vM n w x v  =  −
 (81) 

( ) ( )1 0 0 1i ( ) i ( ) ,w

d
M n w x w n w x u C

dx

    =  − − −

     (82) 

( ) ( )1 0 0i ( ) i ( ) ,T

d
M nw x T n T x u

dx

    =  − −

     (83) 

and the boundary conditions are 

1 1 1 1 1 1, , , , and 0 as ,u v w T C p x      → →

     (84) 

1 1
1 1 1 1 1 0, , , , , and are continuous across ,

dw dT
u C w T p x x

dx dx

 
     =

     (85) 

( ) ( ) ( )1 1
0 0 0 0i ,c

dC dC
x x n S u x

dx dx

 
− +− = −

 (86) 

2 1 0i ( ) ,nu x  = −
   (87) 

1 1 1 1 1
1

1
1 1 1 1 1

(i) (0) (0) (0) (0) (0) (0) 0

.

(ii) (0) (0) (0) (0) (0) (0) 0

v v v v v
v

s
s s s s s

dv dw dT dC dp
u

dx dx dx dx dx

du
v w T C p

dx


= = = = = = 




= = = = = = 


     (88) 

Operating on equation (73) with   , and using 

equations (74)-(76) and (80)-(82) we obtain 

1 1 ,pp T M   − =
   (89) 

where  

( ) 0 12i ( ) .p

d
M n w x u C

dx

  = +
 (90) 

This system of linear ordinary differential 

equations is nonhomogeneous, and it can be 

obtained as the sum of particular and 

complementary solutions for each variable. Then 

the application of the boundary conditions leads to 

the growth rate 2


 . However, in order for a 

solution to exist, the system must obey a 

solvability condition. It turns out that the 

solvability condition provides the required 

expression for 2


 . We therefore will not find 

explicit expressions for the variables of the first 

order problem. The expression can be written in 

the form  

( ) ( ) ( )2 0 2 0 2 0, , , ; , , , , ; , ; , ,o dx Sc B m n x Sc B m n Sc x m n   =  + 

     (91) 

where 2o


 is the growth rate that was found in 

the absence of the material diffusion and it is real, 

and 2d
  is the growth rate introduced by the 

addition of the material diffusion. The expression 

for 2d
can be expressed concisely as 

2

2 1 2 ,
4

d

n
N N =

   (92) 

this shows that it is real and then it affects the 

growth rate of the disturbance.  

    We mention here that the case of a single 

interface has a different stability property 

compared to that of the Cartesian plume when 

material diffusion is present. This is due to the fact 
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that expressing the basic concentration for a single 

interface by  

1
sgn( ) .

2
C x= −

   (93) 

We note that the zeroth order solution has an odd 

0 ( )u x
which vanishes at the interface 0x = . 

Hence 1 0C  =
 and consequently 2 0d =

. 

Thus material diffusion does not modify the 

growth rate of single interface at order 
1R  , as in 

the case of the Cartesian plume.  

4. Discussion 

The expression of the growth rate (91) is 

composed of two terms. The first term 20


 

represents the expression obtained in the absence 

of material diffusion while the term 2d
 is 

entirely due to the presence of material diffusion. 

The properties of 20


 have been investigated by 

Eltayeb and Loper (1994). Here we want to isolate 

the influence of material diffusion by examining in 

detail the dependence of 2d
 on the parameters 

of the problem, and then discuss the effect of 

2d
 on the total growth rate 2


. In the 

calculations of the growth rates 2


 , 20


 and 

2d
 a scaling factor of 

210  is used in order to 

facilitate comparison with the results in the 

absence of material diffusion.  

We immediately note that the expressions (92) 

and (71) for 2d
 are independent of the parity of 

the solution and of  . However, 2d
 depends 

strongly on the thickness of the plume. The 

isolines of 2d
 in the 

( , )m n
plane are plotted in 

figure 2 for different representative values of 0x
 . 

It is found that 2d
 is negative except in a small 

region with small n  and moderate m  provided 

0x
 is moderate or large. We therefore find it 

informative to examine in detail the expression 

(92) as 0n → . The calculations show that  

2 10 20 , 0 ,d N N n = →
 (94) 

where 

2 22

4
,d d

n
 = 

   (95) 

( )
0

0

2 cos
2 22

10 0e e cos 2 sin ,
2

x r
m x

N x r o n




 
−  −  

  
= − + +  

  

     (96) 

( )
02 cos

22

20 0e sin 2 sin ,
2

x r

N x r o n




 
−  

 
  

= +  
     (97) 

4 1

2

1
1 , tan .r m

m
 −  

= + =  
   (98) 

  Numerical computations of 10N
 and 20N

 

showed that 10N
 is negative for all values of m  

and 0x
 while  20N

 takes positive values in a 

number of regions determined by the argument of 

the sine function in (97) . As a result, 2d
 , which 

is given by the product of 10 20N N
 in (94) , takes 

positive values outside the regions in which 

20 0N 
 . This is illustrated in figure 3. 

Since 2d
 is mostly negative, it is of interest to 

see how the presence of diffusion affects the total 

growth rate 2


 for different values of cS

. This 

can be first illustrated by plotting the isolines of 

2


 in the 

( , )m n
 plane for sample values of cS

, 

0x
 and   for both varicose and sinuous modes 

(see figures 4-6) . For fixed 0x
and small 

( 1.0)
 , the varicose mode is 3-dimensional 

when material diffusion is absent ( i.e. 
0.0cS =

) . 

As cS
is increased it remains 3-dimensional until 

cS
 reaches a value, 

S  , dependent on  when 

the mode becomes 2-dimensional. The value of  

S  increases with  . For example, when 

10.0 = ,  
S  is greater than 100.0 .  

The sinuous mode has a 2-dimensional maximum 

when 
0.0cS =

 . As cS
 increases, the maximum 

becomes 3-dimensional in a range 1 2( , )c cS S
 of 

cS
beyond which the maximum reverts to its 2-
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dimensional nature. As   increases, the interval 

1 2( , )c cS S
 expands until the 2-dimensional 

maximum disappears completely at a value 

0( )x
, dependent on 0x

, and the maximum 

becomes 3-dimensional for all values of cS
 . It is 

then observed that the vertical wavenumber, cn
, 

of the maximum growth rate is increased by the 

presence of material diffusion. This results in a 

smaller vertical wavelength. This behavior is 

unusual since the influence of diffusion is normally 

to stabilize short wavelengths. However, the fact 

that such shortening of the wavelength is 

associated with 2–dimensional motions for both 

parities indicates that the two effects may be 

linked.  

 
Figure 2. The contours of the growth rate 

contribution, 2d
 , due to material diffusion in 

the 
( , )m n

plane for different values of 0x
 . (a) , 

(b) , (c) , (d) refer to 0x =
1.0 , 2.0 , 3.0 , 5.0 , 

respectively. Note that 2d
is negative except 

for a small area occurring when 0x
 exceeds 

about 2.0 and n  is small. 

 
Figure 3. The growth rate of  material diffusion , 

2d
 , isolines in the 0( , )m x

plane when 

0n →  (see equation (94))  . Note that 2d
is 

positive for 0x
in the interval 

(2.3, 4.5)
. 

 
Figure 4. Counters of the growth rate of the 

varicose mode , 2

v  ,  for the Cartesian plume  in 

the (m,n) plane for fixed values of  0x =
3.0 and 

 = 1.0 and for four different values of the 

Schmidt number  ; (a) cS =
 0.0 , (b) 5.0 , (c)  20.0, 

and (d) 100.0 . Note that the area of instability 

decreases when the Schmidt number increases 

and the value of the maximum decreases. 
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Figure 5. Counters of the growth rate of the 

sinuous mode , 2

s
 ,  for the Cartesion plume  in 

the (m,n) plane for the same parameters and 

notation as in figure 4. Note that the area of 

instability decreases when the Schmidt number 

increases and the value of the maximum 

decreases. 

 

 

 

 

 
Figure 6.  illustration of the dependence of the 

growth rate 2


 on the parity of the solution. 

0 3.0x =
 , 10.0 =  and 

0.0cS =
 in (a) , (c) , 

and 100.0  in (b) and (d).  (a) , (b) for varicose 

and (c) , (d) for sinuous. Compare with figures 

4(a) , (d)  and 5(a) , (d) for 1.0 = . 

5. Conclusion 

The linear stability of a compositional plume of 

finite width 02x
 rising in an infinite fluid of the 

same thermal diffusivity, viscosity, and material 

diffusion has been studied. The main purpose is to 

investigate the effect of material diffusion on the 

stability problem.  The stability analysis showed 

that the growth rate of the disturbance of the 

interfaces of the plume is a sum of two terms one 

of which , 2o
, represents the growth rate in the 

absence of material diffusion while the other is 

entirely due to the presence of material diffusion, 

2c dS 
(see equation (91)). Detailed 

investigations of the term 2d
 due to material 

diffusion showed that it is negative except in a 

small region for moderate values of 0x
 and 

horizontal wavenumber , m , and small values of 

the vertical wavenumber, n . Another 

characteristic property of 2d
 is that it is 

independent of the parity of the solution so that 

the two possible modes of sinuous and varicose 

are equally affected by material diffusion.  

    When the total growth rate is computed in the 

parameter space 
( )0 , , ; ,cx S m n

 for both 

sinuous and varicose modes, it is found that 

material diffusion has a strong effect on the 

properties of growth rate, c
 , of the preferred 

mode of instability. The growth rate c
is reduced 

in value and the wavenumbers, cm
, cn

, are also 

altered when cS
is increased from 0 . In some 

cases, the 3-dimensional nature of the preferred 

mode is destroyed, and 2-dimensional modes 

become preferred for large values of cS
 (see, e.g., 

figure 4). 

  When the thickness of the plume increases to 

large values (i.e. 0x →
 ) , the plume resembles 

the single interface model studied by Eltayeb and 

Loper (1991). In the present study, we find that 

material diffusion has no effect on the growth rate 

of the single interface problem, to the same 

leading order. This indicates that the thickness of 

the plume plays an important role in the stability 

of the plume. 

 Another unexpected result produced by material 

diffusion is an increase in the vertical wavenumber 

leading to a smaller wavelength at large Schmidt 

number. It is noted that such effect always 

occurred when a 3–dimensional mode is 

transformed into a 2–dimensional one. 
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