A Review of a New Advance Technique for Energy Consumption Management by Using Active Solar Still (Nano and PCM Material)

Prakash Patel

Research Scholar, Drs. Kiran & Pallavi Patel Global University, Vadodara, India. Dr. Pallavi Agarwal Director (Academics), Drs. Kiran & Pallavi Patel Global University, Vadodara, India Dr. Zulfiquar Naimuddin Ansari Faculty, Drs. Kiran & Pallavi Patel Global University, Vadodara, India

Abstract - This review aims to provide a comprehensive analysis of active solar stills, a promising technology for sustainable water purification. Active solar stills utilize external energy sources and the sun's energy to evaporate and condense water, thereby removing impurities and producing clean drinking water. However, existing reviews on active solar stills have certain limitations. This review addresses these limitations through consistent experimental setups and meta-analyses. Additionally, the review takes a holistic approach, considering not only productivity and efficiency but also practicality, maintenance requirements, and economic feasibility. The use of phase change material (PCM) in solar stills is a potential approach to entrap the heat and reduce the losses. The review provides practical guidelines and recommendations for optimizing the performance and feasibility of active solar stills. By integrating these novel aspects, this review offers valuable insights to advance the understanding, implementation, and adoption of active solar stills as a sustainable water purification solution.

Keywords: Active Solar Stills, Solar Desalination, Productivity, Efficiency, Nano Materials, Phase Change Materials.

1. Introduction

The world's population is growing, and the demand for freshwater is increasing. At the same time, many parts of the world are facing water scarcity due to climate change, pollution, and over-The day, when water runs out, has occurred in many worldwide cities, particularly Cape Town, Beijing, and Chennai. seventeen countries, home to a fifth of the world's population, are reportedly experiencing "severe water stress," based on the World Resources Institute's (WRI) Aqueduct Water extraction of groundwater. Desalination is a potential solution to this problem, as it can provide a reliable source of fresh water in areas where freshwater is scarce.

Risk Atlas, whose statistics we have provided below. [1]

Solar desalination is the process of using solar energy to remove salt from seawater or brackish water to produce fresh water. It is a sustainable and environmentally friendly way to produce fresh

Fig 1 Global Water Stress (World Resources Institute, 2021)

water, and it is particularly well-suited for use in areas with limited access to fresh water.

There are two main types of solar desalination systems: passive solar stills and active solar stills. Passive solar stills rely solely on solar energy to evaporate the water, while active solar stills use external energy sources to enhance the evaporation and condensation processes.

Active solar stills are typically more efficient than passive solar stills, and they can produce fresh water at a faster rate. This is because they use external energy sources to heat the water, which causes it to evaporate more quickly.

Fig 2 Picture Of Tested Solar Stills [2] (a). Reference Solar Still (b). Trays Solar Still (c). Finned Trays Solar Still

There are many different types of active solar stills, but they all share some common features. The

basic components of an active solar still include a basin of water, a solar collector, a condenser, and a heat exchanger. The solar collector heats the water in the basin, which causes it to evaporate. The vapor then condenses on the condenser, and the condensate is collected in a reservoir.

The heat exchanger can be used to transfer heat from the solar collector to the basin, which can help to improve the efficiency of the still. Active solar stills can be powered by a variety of sources, including solar photovoltaic (PV) panels, solar thermal collectors, and waste heat.

The advantages of active solar stills over passive solar stills include:

Higher productivity

- Faster production rate
- Better performance in cold climates

• Reduced dependence on solar radiation The challenges that need to be addressed to improve the performance of active solar stills include:

- The cost of the system
- The efficiency of the heat exchanger
- The durability of the components

The future potential of active solar stills for providing fresh water in areas with limited access to water is significant. As the demand for freshwater continues to grow, active solar stills could play an important role in providing a sustainable and environmentally friendly source of fresh water.

2. Literature Reviews on Solar Stills:

2.1 Reviews of Active SS with PCM and Nano Materials

As shown in Figure 2, examined three solar stills (one conventional and two TSS) with cuo. The glass cover was used as an area of condensing for all SSs with a 240-degree tilt angle. The daily water output of the FTSS was enhanced by 196% above the CSS. The diameters of the trays and finned absorbers can be optimized by theoretical research.

Alqsair et al. boosted the effectiveness of drum solar stills (DSS) by applying PSC, as demonstrated in Figure 3. The opening width as well as the rim angle were 150 cm and 400 cm, respectively, as per the design. When using NC, PSC, and an external condenser in DSS, peak output increased by around 32% with an effectiveness of 72%. [3]

Fig 3 An Image of The Experimental Setup (DSS with PSC and without PSC) [3]

Parsa et al.'s recommended system contain five elements: photovoltaic modules, two SSs, phase

Journal of Harbin Engineering University ISSN: 1006-7043 DOI: https://doi.org/10.52783/jheu.v44i6.264

change modules, turbulators, and thermal modules in the town of Tehran. The PVs were oriented to the south and inclined 35° with the horizon. Fig. 4 displays the proposed setup during tests. A topic that merits investigation is comparing the same experiment for solar stills at various geometries to determine the best geometry in thermoelectric-based systems. [4] Abdelgaied, Abdulla, et al. evaluated a stepped

solar distiller, demonstrating three effective hybrid alterations, comprising PCMs below the steps, inside mirrors, and absorber surfaces wrapped with CuO nanoparticles. The updated stepwise solar distiller increased the estimated daily energy efficiency to 7.96%, an increase of 187.4%. [5]

Abdelgaied, Attia, et al. researched three MHSS instances and matched them to THSS: (0.3 wt%) According to reports, the hemispherical distillers' overall daily efficiency varied between 35.52%, 45.45%, 56.46%, and 63.61% depending on the four scenarios that were studied (THSS, MHSS/PCM, MHSS/CuO-water nanofluid, and MHSS/PCM + CuO-water nanofluid). The thermoeconomic performances of the four cases under analysis were compared and evaluated. It is boost in thermal efficiency and an increase in production of roughly 183%. [7]

The efficiency of tabular solar using phase-change material, parabolic solar concentrator (PSC), rotational drum (TDSS), and nanoparticle coating In this research, different operational elements were explored by them. The relationship between PSC and PCM was originally examined in TDSS. The CSS achieved a thermal performance of roughly 32 to 34%. At 0.3 rpm, the greatest TDSS thermal efficiency utilizing PCM was 63.8%. After a few years, rotation may be impacted by erosion. [8] Sharshir et al. has examined two pyramid-shaped solar stills, one standard and another customized by wick materials, reflectors, freezing of the glass cover, and the inclusion of nano-TiO2 particles. The daily thermal efficiency for five customconstructed pyramid solar tests that were still being examined was 83.8% for MPSS-Case 5 and 37.87% for TSS, respectively. The cost per liter for MPSS-Case 5 was 0.021 dollars, which is around 52.38% less expensive than the cost for TSS. [9] Abdullah et al. conducted a study on three solar stills with copper oxide: CSS, FTSS, and CTSS, to contrast their performance (Fig 5). A glass plate of

Fig. 4. Experimental Setup of Two Single Basin Square Pyramids Shape Solar Stills[4]

testable using various nanoparticles and modifications. [6]

Felemban et al. has tested the influence of employing three unique absorber liners: a convex plate absorber, a stepped absorber, and an absorber with a corrugated cover over it. Their performances were studied and compared with those of a typical solar distiller. The dish distiller with a corrugated absorber, wicks, and energy storage substance produced more, with a 69.5% three millimeters in thickness was applied as the condensing layer for all solar stills having an angle of inclination of 24, which is the latitude of Al Kharj, KSA. [10]

Younes et al. have developed four sorts of solar stills: a flat wick solar still (FWSS), a corrugated wick solar still (CWSS), a half barrel wick solar still (BWSS), as well as a standard sun still. The improved evaporation area for CWSS and BWSS originates from modifications in absorber

Fig. 5. Pictorial View of Tested Solar Stills [10] (a). Conventional Solar Still (b). Trays Solar Still (c). Corrugated Trays Solar Still

Tafavogh and Zahedi designed a mechanism to distribute clean water, heat, and power. The proposed HRES has been formed of a groundbased heat pump together with a microalgal culture pond to create microalgae biomass, a parabolic trough catcher and solar still prefilter photovoltaic panels to provide heat, electricity, and water needed to include n-octadecane with a polymer shell via miniemulsion polymerization and transform bio-oil into biodiesel, and a wind turbine as well as a proton exchange On a 67.1% production efficiency, encapsulating was applied to create the nanocapsules. However, while CO production increased, NOx emissions decreased. [12]

In the study of [13], the PCM fulfilled the role of a latent heat storage medium inside the inner tube of the evacuated tube. The PTC featured a 3 m length, an 80° rim tilt, and a 0.9 m aperture width. the daily production for the standard solar system, which continues to use oil as its working fluid at flow rates of 1.5, 1.0, and 0.54 L/min, as well as its efficiency of 28%, 13.7%, system and 26%.Mahmoud et al. have designed a solar still with an incorporated two-effect humidifying desalination

unit (SS-HDH). Regarding transient performance, the influences of solar concentration ratios (CR)

and then also partial solar thermal energy storage were explored. According to the statistics, with h = 0.2 m and CR = 2, the largest water output without PCM remained at 11.6 L/m² per day. The cost of configuration. For CSS and CWSS utilizing PCM, the

efficiency and anticipated cost per liter were 35%-0.028\$ and 54.5%-0.023\$, respectively. The effectiveness has grown as a result of new designs. [11]

operation and maintenance is significant due to the extensive setup. [14]

Fig. 6. Layout Of Experimental Setup (a) Conventional SS (b) Modified SS [17]

Bhargva & Yadav have fitted a heat exchanger (HE) alongside an inner reflector (IR), and an outside condenser enhances the performance of this ETC even more. The SS (HE+IR+condenser) features a massive yield of 2259 ml along with an efficiency of 33.4%, depending on the testing findings. For better outcomes, it can be done at various depths. [15].

2.2 Reviews of Active SS with PCM and Without Nano Materials

To enhance production, [16] developed PCM chambers, erected them and connected them to a stepped solar still. Case I included a single-step solar still; Case II contained a stepped solar still with PCM; Case III contained a stepped solar still with an external condenser and PCM; and Case IV contained a single-step solar still. Single-stepped solar still had a 28.21% efficiency. Abed et al. constructed experimental an setup that fundamentally includes a typical solar still, a solar water heater, PCM power storage caps, a highfrequency ultrasonic vaporizer, PVs, a feeding water tank, a water reservoir, a water pump, and a control system as shown in Fig. 6. A 0.004 m single glass cover was applied as a still transparent covering, situated at an inclination angle of 35° with the horizon in Baghdad, Iraq. The larger the setup, the more room is needed to install it. [17].

Tuly et al. has investigated an active customized solar still (SS) with a double slope that takes into account the impacts of an external condenser, a stiff rectangular fin, paraffin wax, and black cotton fabric. Three double-slope SSs' performance is examined utilizing five separate instances (modified, finned, and conventional). The maximal productivities for modified, finned, and standard SSs are found to be 3.07, 2.70, and 2.46 L/m², respectively. Although PCM is expensive and EC manufacturing co

Production climbed by roughly 340% when the SS system unit added the outside solar collector. If the glass cover is effectively cooled, more improvement may be feasible.

Khairat Dawood et al. have analyzed one study, a solar still with a stepped slope works better with an outside solar dish. 250, 350, 450, & 550 mL/min were the 4 flow rates of water flowing. The combination of PCM and sand accordingly enhances daily production by 51% & 31% at water spray mass flow rates of 250 & 550 mL/min. [22]

sts are rather high, fin and wick materials function as inexpensive heat transfer mediums. [18].

Arunkumar et al. have experimentally evaluated the effectiveness of a single-slope solar still paired with a composite parabolic concentratorconcentric tubular solar (CPC-CTSS). In the present experiment, the distillation productivity was 3.23 L/m2/day, resulting in a yield efficiency of 76.78%, and the gross distillate output totaled 6.46 L/day. [19]

Phase change material (PCM) was employed to connect a self-powered dual-cover solar still to a solar collector, and its performance was studied by [20] The three types of tests that were conducted with the glass cover refrigerated were the solar still alone (SS), the solar still coupled to an external solar collector (SSC), and the solar including PCM and being attached to an external collector. R et al. have constructed a method by installing an evacuated tube thermosyphon heat pipe and experimented with enhancing the productivity of a regular solar still that provides fresh water. Two additional solar stills were built and tested at the same time, one with a three-evacuated tube thermosyphon and the other without any evacuated tube thermosyphon. Heat input is raised by 84.5% when an added source of heat is an evacuated tube heat pipe. The customized solar still created 215.7% additional fresh water jointly than the traditional sun. [23] Fresh water production is still good when the evacuated heat pipe is connected directly to the solar panel.

Ganesan et al. have suggested a research

SCC, and SCCP units from 1 to 2.14, 1 to 6.65, and

Fig. 8 Photograph for the Proposed Solar Still and The Conventional Solar Still [27]

project to boost the performance of PV/T solar stills. To promote vapour turbulence, a DCpowered blower was inserted inside a solar still with a single slope. In the solar still, a nickelchromium (NiCr) heater has been added to accelerate the generation of filtered water. With higher overall thermal and electrical performances of around 12.5% & 11.5%, respectively, the suggested PV/T solar system still offers exceptional performance [24].

Benhammou & Sahli have studied, A single-slope solar still with a unique heat storage system that consists of a dual-glass solar collector with a latent heat storage component. For each sample period, the fraction of melted PCM was calculated using this model. The new configuration's diurnal, nocturnal, & daily levels of productivity grew by 44%, 635%, & 63%, respectively, over the conventional still. [21] The tilt angle must remain constant throughout the year for solar uses.

Ghadamgahi et al., have reported an investigation focusing on a paraffin wax-powered, five-stage solar still. Additionally, the quantity of fluid produced at flow rates of 0.7, 1.3 & 1.8 L/min using and without PCMs was investigated. revealed that 70% of the total water came from the first step's water generation. [25]

To evaluate the performance of a modified solar still, [26] tested three different scenarios: a solar still with glass cooling (SC), a solar still linked to an external collector (SCC), and a solar with phasechange material. Sodium thiosulfate pentahydrate, paraffin wax, and sodium acetate trihydrate were all used as PCMs. Productivity climbed in the SC, 1 to 7.5 ml/min, respectively, when the coolant mass flow rate was adjusted from 0 to 10 kg/s. The total cost of PCM materials is expensive.

The integrated desalination system propped by [27] consists of a single solar still, PV module, ½ hp centrifugal pump, and an evacuated solar collector shown in Fig. 8. A 5 mm glass sheet was placed at an inclination angle of 30° with the ground at Alexandria, Egypt. The maximum reported yield was around 7.45 kg per day.

Amarloo and Shafii have done a study in which the possibility of applying radiative cooling to solar still was investigated. An integrated collector was employed for the operations of solar radiation absorption and infrared radiation emission in radiative cooling. The day yield and efficiency were raised to 2.805 kg/m² and 30.7%, respectively, by employing nocturnal radiative freezing to preserve coolness in the PCM condenser. (Radiative cooling has a limited cooling capability; hence, using an air condenser in addition to the PCM condenser is required. [28]

Elbar and Hassan have created a single-acting solar cell still connected to a photovoltaic (PV) module. Their daily productivity is increased by around 11.7% when they have a PCM unit with a still and PV, while their daily yields are raised by 19.4% when they have a FAC with CSS, PV, and PCM. More research can be done with a method that uses salty water to cool the PV. [29]

Kumbhar and Sonage have made attempts to enhance the design of stills by incorporating reflectors and phase change material (PCM). According to experiments, the solar still's efficiency rose to 42%, and its distillate production rate reached 4 liters. [30]

Mazraeh et al. has created a novel solar still system that incorporates phase change materials, evacuated tube collectors, and semitransparent photovoltaics. The maximum diurnal energy and exercise efficiencies were reported for water depths of 0.03 m and 10 tubes with PCM, respectively. These values were 17.93% and 6.95%. [31] Although the presence of PCM increases energy efficiency, it has little impact on exercise efficiency.

Al-harahsheh et al. have examined a solar still furnished with PCM and connected to a solar collector that was employed to undertake an experimental inquiry on the desalination of water. The effects of hot water circulation rate of flow, freezing flow rate, and basin water level were examined regarding the generation of fresh water. The generator could create 4300 ml/day, or roughly 40% of that amount generated after sunset. [32]

Different thermal models are implemented to investigate the impact of height shifts, and experimental data are utilized to support those models. [33] have been utilized. Four stirrers in research to produce turbulence in saline water. The performance of the solar was still 33.76% without any adjustments; however, it is 58.63% when paraffin wax and a stirrer are applied. The saltwater is stirred using a solar PV panel-powered motor setup as part of ongoing trials on the solar still.

Faegh and Shafii have studied whether phase transition materials may be exploited to store the latent heat of condensed vapor in solar stills. The system includes two evacuated tube collectors, a saline water basin, a phase change material tank, a fan, and 20 thermosiphon heat pipes. The yield increases by 86% and reaches 6.555 kg/m² per day, with 50% effectiveness compared to the system lacking PCM. [34]

Kabeel & Abdelgaied have researched experimentally to determine the performance of a focal pipe-equipped cylindrical parabolic concentrator linked to a solar still with an oil heat exchanger and PCM. While the regular solar panel still has a value of 46%, the improved solar panel remains at a daily efficiency of around 25.73%. The cost of setup is considerable. [35]

Kabeel et al. have provided A modified solar still incorporating phase change material that is connected to a solar air collector became the object of investigation. The altered still and the normal still are compared. The two-stage customized solar still with PCM generates 108% more freshwater than the normal still on average. [36]

Arunkumar et al. have offered a suggestion for a solar still that employs a parabolic concentrator (PC) as well as a storage tank to assure consistent water circulation. There were four separate working modes applied in the studies: PC-solar without top cover cooling, PC-solar with top cover cooling, PC-solar merged with phase change material (PCM), and PC-solar merged PCM with cooling. Different water flow rates were employed throughout the studies. [37] Additionally, it has been determined that nanofluids can be used in solar parabolic trough collectors to warm water for greater water evaporation.

Arunkumar et al. has enhanced the concentratorlinked hemispherical basin solar still's effectiveness and distillate output. One single-slope solar still without the PCM impact and a single-slope solar still with the PCM effect have both been the subject of investigation. Experimental studies reveal that the impact of heat storage in the concentrator-coupled hemispherical basin solar system still enhances production by 26%. [38]

Journal of Harbin Engineering University ISSN: 1006-7043 DOI: https://doi.org/10.52783/jheu.v44i6.264

Table 1 Summary of Active SS with PCM and Nano Materials

Location (Latitude, Longitude))TypePCMNano materialsArea (m²)AngleThicknes sm m/Remark Producti Vity(l/ M²/D) or Efficiency v(%)A.s.Trays SolarParaffin WaxCopper Oxide0.5 m² Oxide24 °3 mm4.5Solar Stills With IR I / m²/dA.s.Trays SolarParaffin VaxCopper Oxide0.5 m² Oxide24 °3 mm4.5Solar Stills With IR I / m²/dAdulah Arabia.StillWaxOxide0.5 m² Oxide24 °3 mm8.8The Apetrure DepthAlgsair et Saudi Arabia.Drum Solar ParafinParaffin WaxSilver Nanopart icle0.5 m² O25 m²3 mm8.8The Apetrure DepthAbdelgaie t et al. [3]StillParaffin WaxSilver Nanopart icle0.25 m² Nanopart icle30.47 Nanopart icle3 mm9.79 SilverDepth Of The Basin Saltwater for Both Distillers is 2 CmAbdelgaie (30.47 ~ N (30.47 ~ N<	Author(s)	Construction	Use Of	Use Of	Basin	Glass	Glass	Maximu	Occurrence
(Latitude, Longitudematerials(m²)sProducti vityProducti vityA.s.TraysSolarParaffinCopper Oxide0.5 m²24 °3 mm4.5Solar Stills With IR at 2 Cm Water DepthAbdullah saudi Arabia.StillWaxOxide0.5 m²24 °3 mm4.5Solar Stills With IR at 2 Cm Water DepthAlqsair et audi Arabia.Drum Solar al.Paraffin WaxSilver (Ag)0.5 m²3 mm8.8 at 2 Cm Water Um²/dThe Aperture With and The Rim Angle Were Arabia.Arabia.StillWaxOxide0.5 m²3 mm8.8 at 2 Cm Water Um²/dThe Aperture With and The Rim Angle Were Arabia.Arabia.Fyramid Solar al.Paraffin VaxSilver Nanopart icle0.25 m²35 °4 mm10-12 VaxTEHM System has Higher Performance Than TECM- SystemAbdelgaie (30.47 N (30.47 N (40 metal (40 m et al.Faraffin (Ar man break Nanopart (cles1.08 <br< td=""><td>Location</td><td>Туре</td><td>PCM</td><td>Nano</td><td>Area</td><td>Angle</td><td>Thicknes</td><td>m</td><td>/Remark</td></br<>	Location	Туре	PCM	Nano	Area	Angle	Thicknes	m	/Remark
Longitude)Image: Solar StillParaffin WaxCopper Oxide0.5 m² Solar Still24 ° Solar3 mm4.5 Solar Stills With IR at 2 Cm Water DepthA.s. Abdullah stillTrays StillParaffin WaxCopper Oxide0.5 m² Solar24 ° Solar3 mm4.5 Solar Stills With IR at 2 Cm Water DepthAlgasir et Saudi Arabia.Drum Solar StillParaffin WaxSilver (Ag)0.5 m² Solar24 ° Solar3 mm8.8 Solar Stills With IR at 2 Cm Water DepthAlgasir et Saudi Arabia.Drum Solar StillParaffin WaxSilver (Ag)0.5 m² Solar3 mm8.8 Solar Stills With and The Rim Angle Were 150 Cm And 40°Parsa et Parsa et Paraffin IranParaffin WaxSilver Nanopart icle0.25 m² Solar35 ° Solar4 mm10-12 Higher Performance Than TECM- SystemAbdelgale Gold-Te StillsStillsParaffin WaxCuo Nanopart icles1.08 m² Solar30.47 Solar3 mm9.79 Solar SolarDepth Of The Basin Saltwater for Both Distillers is 2 CmAbdelgale Gl (G) (G) Clor StillHemispherica Solar StillParaffin WaxCuo Nanopart icles0.11 m² Solar36 ° - Solar3 mm8.65 Solar Solar StillsThe Basin Water Depth In All Stills was Set At 1.0 Cm WaxAbdelgale (G) (G) Clor StillHemispherica Nanopart iclesCuo Nanopart icles0.11 m² S	(Latitude,			materials	(m²)		S	Producti	
)Mr(D) or Efficienc Y(%)A.s.Trays SolarParaffinCopper0.5 m²24 °3 mm4.5Solar Stills With IR at 2 Cm Water DepthAbdullahStillWaxOxide0.5 m²24 °3 mm4.5Solar Stills With IR at 2 Cm Water DepthAdsair et al. [3]Drum Solar StillParaffinSilver Wax0.5 m²24 °3 mm8.8The Aperture DepthAlqsair et Saudi Arabia.Drum Solar StillParaffin WaxSilver Nanopart Icle0.5 m²3 mm8.8The Aperture N'dWith and The Rim Angle Were 150 Cm And 40°Parsa et Parsa et IranPyramid Solar StillsParaffin WaxSilver Nanopart Icle0.25 m²35 °4 mm10-12 If m²/dTEHM System has Higher Performance Than TECM- SystemAbdelgaie (30.47° M Logitude 3StillsParaffin WaxCuo Nanopart Icles1.08 m²30.47 Sim3 mm9.79 If m²/dDepth Of The Basin Saltwater for Both Distillers Is 2 CmAbdelgaie (30.47° M (30.47° MHemispherica ParaffinCuo Wax0.11 m² Sim36° - 3 mm3 mm8.65 N m²The Basin Water Depth Of The Basin Saltwater for Both Distillers Is 2 CmAbdelgaie (Gi (G3.277N), 7-11'E), Algeria.Hemispherica I Solar StillParaffin WaxCuo Nanopart Icles0.11 m² 36° - Sim3 mm8.65 SimThe Basin Water Depth Of The Basin Saltwater<	Longitude							vity (L/	
A.s. Abdullah StillTrays Solar StillParaffin WaxCopper Oxide0.5 m² Oxide24 ° Sum3 mm4.5 I / m²/dSolar Stills With IR at 2 Cm Water DepthAlgsair et Arabia.Drum Solar Arabia.Drum Solar ParaffinSilver Wax0.5 m² (Ag)24 ° Silver3 mm4.5 Silver I / m²/dSolar Stills With IR at 2 Cm Water DepthAlgsair et Arabia.Drum Solar StillParaffin WaxSilver Nanopart icle0.5 m² Silver3 mm8.8 Silver I / m²/dThe Aperture Width and The Rim Angle Were I So Cm And 40°Parsa et Arabia.Pyramid Solar StillParaffin WaxSilver Nanopart icle0.25 m² Silver3 5 ° Silver Nanopart sicle4 mm10-12 I / m²/dTEHM System has Higher Performance Than TECM- SystemAbdelgale (30.47° N Latitide & 31° E (30.47° N Latitide & 31° E (1 Solar StillParaffin WaxCuo Nanopart icles0.11 m² 36° - 39°3 mm8.65 3 mmThe Basin Water Depth In All Stills was Set At 1.0 Cm SystemAbdelgaie (33·27'N, 7·11'E), Algeria.Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² af6° - and3 mm8.65 affinThe Basin Water Depth I All Stills was Set At 1.0 Cm(33·27'N, 7·11'E), Algeria.Dish Solar<)							M ² /D) or	
As.TraysSolarParaffinCopper Oxide0.5 m² oxide24 ° oxide3 mm4.5 oxideSolar Stills With IR at 2 Cm Water DepthAbdullah et al. [2] SaudiStillWaxOxide0.5 m² oxide24 ° oxide3 mm4.5 oxideSolar Stills With IR at 2 Cm Water DepthAlqsair et Saudi Arabia.Drum SolarParaffin WaxSilver (Ag)0.5 m² oxide3 mm8.8 oxideThe Aperture Width and The Rim Angle Were 150 Cm And 40°Saudi Arabia.StillWax(Ag)0.25 m² oxide3 s²4 mm10-12 Var/dTEHM System has Higher Performance Than SystemAbdelgaie (1 cm 41)StillWaxNanopart icle1.08 m² oxide30.47 oxide3 mm9.79 Vim²/dDepth Of The Basin Satwater for Both Distillers Is 2 CmAbdelgaie (30.47° N Latitude & 31 or E (30.47° N Latitude & (30.47° N Latitude & (30.47° N Latitude & (30.47° N Latitude & (30.47° N Latitude & (30.47° N Latitude & (31 or EParaffin VaxCuo Nanopart icles0.11 m² 36° - oxide3 mm8.65 NegThe Basin Water for Both Distillers is 2 CmAbdelgaie (6] (33-27/N, r-11Fb, Algeria.Hemispherica VaxParaffin Nanopart iclesCuo r0.11 m² a 36° - a 3 mm8.65 a 3 mmThe Basin Water lopth In All Stills was Set At 1.0 CmAbdelgaie (13-27/N, r-11Fb, Algeria.Dish Solar StillPar								Efficienc	
A.S. Tays Solar Paraffin Abdullah Abdullah Arabia. Alqsair et al. [3] Still Wax Oxide Arabia. Alqsair et al. [3] Still Wax Solar Paraffin Suver Arabia. Paraffin al. [4] Still Wax Nanopart icle Abdelgaie d et al. [5] Stills Wax Nanopart icle Abdelgaie Abdelgaie Abdelgaie At 2 Cm Water Depth Nanopart icle Na	۸c	Trave Solar	Doroffin	Connor	$0 \in m^2$	24.0	2 mm	у (%) 4 Е	Solar Stills With ID
AuditalitStatiWaxOxideImage: StateImage: State <t< td=""><td>A.S. Abdullab</td><td>still</td><td>M/av</td><td>Ovide</td><td>0.5 111</td><td>24</td><td>5 11111</td><td>$1/m^2/d$</td><td>at 2 Cm Water</td></t<>	A.S. Abdullab	still	M/av	Ovide	0.5 111	24	5 11111	$1/m^2/d$	at 2 Cm Water
Chow (F) Saudi Arabia.Drum Solar Algsair et al. [3] StillParaffin WaxSilver (Ag)0.5 m² (Ag)3 mm8.8 al. [1/m²/d]The Aperture With and The Rim Angle Were 150 Cm And 40°Parsa et Arabia.Pyramid Solar al. [4] StillParaffin WaxSilver Nanopart icle0.5 m² al.3 mm8.8 al.The Aperture With and The Rim Angle Were 150 Cm And 40°Parsa et Parsa et al. [4] StillPyramid Solar WaxParaffin WaxSilver Nanopart icle0.25 m² al.35 ° al.4 mm10-12 (J/m²/d)TEHM System has Higher Performance Than TECM- SystemAbdelgaie d et al. [5] StillsStepped Solar al.Paraffin WaxCuo Nanopart icles1.08 m² al.30.47 al.3 mm9.79 al.Depth of The Basin Saltwater for Both Distillers is 2 CmAbdelgaie (30.47° N Lattude & al (10 m²/d)Paraffin WaxCuo Nanopart icles0.11 m² al.36° - al.3 mm8.65 al.The Basin Water for Both Distillers is 2 CmAbdelgaie (6] (33-72'N, 7-11'E), Algeria.Paraffin WaxCuo Nanopart icles0.11 m² al.36° - al.3 mm8.65 al.The Basin Water beth in All Stills(6] (33-72'N, 7-11'E), Algeria.Paraffin WaxCuo Nanopart icles0.11 m² al.36° - al.3 mm8.65 al.The Basin Water Depth in All StillsFelemban elembanDish Solar r </td <td>et al [2]</td> <td>Still</td> <td>VVax</td> <td>Oxide</td> <td></td> <td></td> <td></td> <td>i, iii , u</td> <td>Denth</td>	et al [2]	Still	VVax	Oxide				i, iii , u	Denth
Arabia.Image: Arabia	Saudi								Depth
Alqsair et al. [3] SuillDrum Solar StillParaffin WaxSilver (Ag)0.5 m² al.3 mm8.8 al.The Aperture Width and The Rim Angle Were 150 Cm And 40°Parabia.Paratia.Pyramid Solar al. [4] StillParaffin WaxSilver Nanopart icle0.25 m² al.35 ° al.4 mm10-12 al.TEHM System has Higher Performance Than TECM- SystemAbdelgaie IranStepped Solar AdtelgaieParaffin WaxCuo Nanopart icles1.08 m² al.30.47 al.3 mm9.79 al.Depth Of The Basin Saltwater for Both Distillers is 2 CmAbdelgaie (30.47° N Latitude & 31° EHemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² 36° - 39°3 mm8.65 al.mmThe Basin Water Depth Of The Basin Saltwater for Both Distillers is 2 CmAbdelgaie (30.47° N Latitude & 31° EHemispherica VaxParaffin VaxCuo Nanopart icles0.11 m² afo° - and3 mm8.65 al.mmThe Basin Water Depth In All Stills was Set At 1.0 CmAbdelgaie (33-27'N, 7-11'E), Algeria.Hemispherica VaxParaffin VaxCuo Nanopart icles0.11 m² afo° - afo° -3 mm8.65 al.mmThe Basin Water Depth In All Stills was Set At 1.0 CmFelemban et al. [7]Dish SolarParaffin WaxTio2 Nanopart icles70-cm r and- and3 mm8.150 andDifferent Water Depths (1.0, 2.0, and	Arabia.								
al.[3]StillWax(Ag)Image: Constraint of the second sec	Alqsair et	Drum Solar	Paraffin	Silver	0.5 m²		3 mm	8.8	The Aperture
Saudi Arabia.Rim Angle Were 150 Cm And 40°Parsa et al. [4]Pyramid Solar StillParaffin WaxSilver Nanopart icle0.25 m² icle35 ° P4 mm10-12 I/ m²/dTEHM System has Higher Performance Than TECM- SystemAbdelgaie d et al. [5]Stepped Solar StillsParaffin WaxCuo Nanopart icles1.08 m²30.47 °3 mm9.79 I/ m²/dDepth of The Basin Saltwater for Both Distillers Is 2 CmBodelgaie d et al. [5]Stepped Solar StillsParaffin WaxCuo Nanopart icles1.08 m²30.473 mm9.79 I/ m²/dDepth of The Basin Saltwater for Both Distillers Is 2 CmEgypt (30.47° N Latitude & 31° E Longitude)Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² a 36° - 39°3 mm8.65 I/ m²/dThe Basin Water Depth In All Stills was Set At 1.0 CmAbdelgaie (33°-27'N, 7°-11'E), Algeria.Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² a 36° - a 3 mm3 mm8.65 I/ m²/dThe Basin Water Depth In All Stills was Set At 1.0 CmFelemban et al. [7]Dish SolarParaffin WaxTio2 Nanopart icles70-cm r r r and3 mm8.150 I/ m²/dDifferent Water Depths (1.0, 2.0, and 3.0, 4.0, And 5.0	al. [3]	Still	Wax	(Ag)				l/ m²/d	Width and The
Arabia.Manopart icleSilver Nanopart icle0.25 m² icle35 ° icle4 mm10-12 10-12 1/ m²/dTEHM System has Higher Performance Than TECM- SystemAbdelgaie d et al. [5] Tanta city, Egypt (30.47° N Latitude & 31° E Longitude (30.47° N Latitude & 31° E LongitudeStepped Solar Nanopart iclesParaffin Nanopart iclesCuo Nanopart m²1.08 ° Nanopart icles30.47 ° Nanopart icles3 mm9.79 N Nanopart iclesDepth of The Basin Saltwater for Both Distillers is 2 CmAbdelgaie (30.47° N Latitude & 31° E Longitude (30.47° N Latitude & (30.47° N Latitude & 1Paraffin Nanopart iclesCuo Nanopart icles0.11 m² 36° - 39°3 mm8.65 l l/ m²/dThe Basin Water for Both Distillers is 2 CmAbdelgaie (33°-27'N, 7°-11'E), Algeria.Hemispherica Nanopart iclesParaffin iclesCuo nanopart icles0.11 m² a 36° - a3 mm8.65 l l/ m²/dThe Basin Water Depth in All Stills was Set At 1.0 CmFelemban et al. [7]Dish SolarParaffin WaxTio2 Nanopart icles70-cm r r r r r3 mm8.150 l l/ m²/dDifferent Water Depths (1.0, 2.0, and 3.0, 4.0, And 5.0	Saudi								Rim Angle Were
Parsa et al. [4] Tehran, IranPyramid Solar StillParaffin WaxSilver Nanopart icle0.25 m² n35 ° al.4 mm10-12 l / m²/dTEHM System has Higher Performance Than Tana TECM- SystemAbdelgaie d et al. [5] StillsStepped Solar al. [5]Paraffin WaxCuo Nanopart icles1.08 m²30.47 of n²3 mm9.79 l / m²/dDepth Of The Basin Saltwater for Both Distillers Is 2 CmAbdelgaie d tati tude & 31°Stepped Solar al. [5]Paraffin WaxCuo Nanopart icles1.08 m²30.47 of n²3 mm9.79 l / m²/dDepth Of The Basin Saltwater for Both Distillers Is 2 CmAbdelgaie d M. et al. [6] (33°-27'N, ro11'E), AlgeriaHemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² all all icles36° - all blanParaffin MaxCuo All all all all all all all all allSilver all all all all all all allDifferent Water Depths (1.0, 2.0, and all all all all all allParaffin (13°227'N, ro11'E), AlgeriaParaffin all all all all blanTio2 all <td>Arabia.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>150 Cm And 40°</td>	Arabia.								150 Cm And 40°
al. [4] Still Wax Nanopart icle Nanopart icle icle icle icle Nanopart icle icle icle icle icle icle icle icle	Parsa et	Pyramid Solar	Paraffin	Silver	0.25 m²	35 °	4 mm	10-12	TEHM System has
Tehran, IranStillsParaffin WaxCuo Nanopart 	al. [4]	Still	Wax	Nanopart				l/ m²/d	Higher
IranThanTECM- SystemAbdelgaieStepped Solar d et al. [5]ParaffinCuo1.0830.473 mm9.79Depth Of The Basin Saltwater for Both Distillers Is 2 CmTanta city, Egypt (30.47° N Latitude & 31° E Longitude)StillsWaxNanopart iclesm²°I/m²/dBasin Saltwater for Both Distillers Is 2 CmAbdelgaie (30.47° N Latitude & 31° E Longitude)Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² a boto icles36° - 3 mm3 mm8.65The Basin Water Depth In All Stills was Set At 1.0 CmAbdelgaie (3° 27'N, r-11'E), Algeria.Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² a boto icles36° - a m²3 mm8.65The Basin Water Depth In All Stills was Set At 1.0 CmFelemban et al. [7]Dish StillParaffin WaxTio2 Nanopart icles70-cm r r and3 mm8.150Different Water Depths (1.0, 2.0, and 3.0, 4.0, And 5.0	Tehran,			icle					Performance
Abdelgaie d et al. [5]Stepped Solar StillsParaffin WaxCuo Nanopart icles1.08 m² icles30.47 °3 mm and icles9.79 I/m²/dDepth Of The Basin Saltwater for Both Distillers Is 2 CmEgypt (30.47° N Latitude & 31° E Longitude)Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² anopart icles36° - 39°3 mm anopart icles8.65 I/m²/dThe Basin Water for Both Distillers Is 2 CmAbdelgaie d M. et al. [6] (33°27'N, r°11'E), Algeria.Hemispherica VaxParaffin VaxCuo Nanopart icles0.11 m² a 36° - anopart3 mm anopart anopart8.65 I/m²/dThe Basin Water Depth In All Stills was Set At 1.0 CmFelemban et al. [7]Dish StillParaffin WaxTio2 Nanopart icles70-cm r and- a 3 mm8.150 Ifferent Water I/m²/dDifferent Water Depths (1.0, 2.0, and a 30, 4.0, And 5.0	Iran								Than TECM-
AbdelgaleStepped SolarParaffinCuo1.0830.473 mm9.79DepthOff Thed et al. [5]StillsWaxNanopartm²°I/m²/dBasin Saltwaterfor Both DistillersEgyptIclesInterviewedInterviewedInterviewedInterviewed(30.47° NInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed(30.47° NInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed(30.47° NInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed(30.47° NInterviewedInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed(30.47° NInterviewedInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed(30.47° N)InterviewedInterviewedInterviewedInterviewedInterviewedInterviewedInterviewedAbdelgaieHemisphericaParaffinCuoInterviewedInterviewedInterviewedInterviewedInterviewed(30.3°27'N,InterviewedInterviewedInterviewedInterviewedInterviewedInterviewedInterviewedFelembanDishSolarParaffinTio270-cm-InterviewedInterviewedInterviewedFelembanInterviewedInterviewedInterviewedInterviewedInterviewedInterviewed<			D (()	-	1.00	20.47	-	0.70	System
O et al. [5]SuitsWaxNahopartIn<		Stepped Solar	Parattin	Cuo Nananart	1.08	30.47 °	3 mm	9.79	Depth Of The
Egypt (30.47° N Latitude & 31° E Longitude)Hemispherica Hemispherica 	u et al. [5] Tanta city	SUIIS	VVdX	iclos	III-			i/ m⁻/u	for Both Distillars
(30.47° N Latitude & 31° E Longitude 	Fount			ICIES					ls 2 Cm
Latitude & 31° E Longitude) Abdelgaie d M. et al. [6] (33°27'N, 7°11'E), Algeria. Felemban Dish Solar Saudi Saudi Latitude & Nanopart I Solar Still Max Nanopart I Solar Still Nanopart I Solar Still I Solar Still Nanopart I Solar Still I Solar Still	Leypt (30.47∘ N								13 Z CIII
31°E Longitude)Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² 36° - 39°3 mm 39°8.65 I / m²/dThe Basin Water Depth In All Stills was Set At 1.0 Cm Depth In All Stills was Set At 1.0 Cm6] (33°27'N, 7°11'E), Algeria.Dish StillParaffin WaxTio2 Nanopart icles70-cm ticles- 3 mm3 mm Almente I / m²/d8.150 Different Water Depths (1.0, 2.0, 3.0, 4.0, And 5.0	Latitude &								
Longitude)Longitude)Longitude (3)Longitude (3)Longitude (3)Longitude (3)Hemispherica (3)Paraffin (3)Cuo (3)0.11 m² (3)36° - (3)3 mm (3)8.65 (1/m²/d)The Basin Water Depth In All Stills was Set At 1.0 Cm (3)[6] (3)(3)(3)(2)(3)	31∘ E								
)Image: constraint of the second	Longitude								
Abdelgaie d M. et al. [6] (33°27'N, 7°11'E), Algeria.Hemispherica I Solar StillParaffin WaxCuo Nanopart icles0.11 m² 36° - 39°3 mm8.65 I / m²/dThe Basin Water Depth In All Stills was Set At 1.0 Cm7°11'E), Algeria.Dish SolarSolar ParaffinTio2 Wax70-cm icles- and3 mm8.150 Ifferent Water Depths (1.0, 2.0, andDifferent Water I./ m²/d)								
d M. et al.I Solar StillWaxNanopart icles39°I/ m²/dDepth In All Stills was Set At 1.0 Cm[6] (33°27'N, 7°11'E), Algeria.I Solar StillWaxNanopart icles39°I/ m²/dDepth In All Stills was Set At 1.0 CmFelembanDish SolarSolarParaffin WaxTio270-cm diamete-3 mm8.150Different U MaterFelembanDish SolarSolarParaffin iclesTio270-cm r-3 mm8.150Different U MaterSaudiIWaxNanopart iclesdiamete rand3.0, 4.0, And 5.0	Abdelgaie	Hemispherica	Paraffin	Cuo	0.11 m²	36° -	3 mm	8.65	The Basin Water
[6] (33°27'N, 7°11'E), Algeria.iclesicleswas Set At 1.0 CmFelemban et al. [7]Dish StillSolar WaxParaffin Nanopart iclesTio2 diamete70-cm r-3 mm m8.150 l/m²/dDifferent Depths (1.0, 2.0, and 3.0, 4.0, And 5.0	d M. et al.	l Solar Still	Wax	Nanopart		39∘		l/ m²/d	Depth In All Stills
(33°27'N, 7°11'E), Algeria.Image: Solar big	[6]			icles					was Set At 1.0 Cm
7°11'E), Algeria. Algeria. Image: Constraint of the second seco	(33∘27′N,								
Algeria.DishSolarParaffinTio270-cm-3 mm8.150DifferentWateret al.[7]StillWaxNanopartdiameteI/m²/dDepths (1.0, 2.0,Saudiiclesrand3.0, 4.0, And 5.0	7∘11′E),								
FelembanDishSolarParaffinTio270-cm-3 mm8.150DifferentWateret al. [7]StillWaxNanopartdiameteI/m²/dDepths (1.0, 2.0,Saudiiclesrand3.0, 4.0, And 5.0	Algeria.								
Saudi icles r and and 3.0, 4.0, And 5.0	Felemban	Dish Solar	Parattin	1102 Nanchart	/U-cm	-	3 mm	8.150	Different Water
	et al. [/] Saudi	SUII	vvdx	iclos	ulainete			i/ m⁻/d	20 40 400 = 0
	Sauui Arahia			10162	i anu 45-cm			anu 69.5%	5.0, 4.0, AIIU 5.0
height linvestigated					height			55.570	Investigated
Essa et al. Tubular Solar Paraffin Cuo essa et tubular Paraffin Wax	Essa et al.	Tubular Solar	Paraffin	Cuo			essa et	tubular	Paraffin Wax
[8] Still Wax al. [8] solar still	[8]	Still	Wax				al. [8]	solar still	
Saudi saudi	Saudi						saudi		
Arabia. arabia.	Arabia.						arabia.		

Sharshir et al. [9] Egypt (30.570°E and 31.070°N)	Pyramid Solar Still	-	Nano- Tio2 Particles	0.64 m2	-	3.5 mm	7 l/ m²/d	The Tio2 Nps (30 Nm Size) Were Mixed With The Saline Water With a Concentration Of 1.5 Wt%.
Abdullan et al. [10] Al Kharj ,KSA	Still	Wax	Cuo Nanopart icles	1 m-	24	3 mm	6- 7 l/ m²/d	2 Cm Basin Water Depth for Basin and Trays.
Younes et al. [11] Al Kharj, KSA	Wick Solar Stills	Paraffin Wax	Cuo Nanopart icles	0.5 m²	24°	3 mm	54.50%	Fiberglass
Tafavogh M. et al. [12] Iran	Solar Still Desalination	Paraffin Wax	Mgo Nanopart icles	71 m ³	-	2 mm	67.10%	Depth of Water 2 To 5 Cm
Khairat Dawood et al. [13] Egypt (30°35′N 32°16′E)	Conventional Single-Slope Solar Still	Paraffin Wax	Cuo Nanopart icles	1 m²	-	3 mm	11.14 I/ m²/d	The Effect Of The Saline Water Depths Of 1.5 And 3 Cm was Investigated.
Mahmoud et al. [14] Egypt	Integrated Solar Still	Paraffin- 18 Wax, Paraffin Wax-56, Potassium , And Glaubers Salt (Na2so4 - 10 H2	Cuo Nanopart icles	4.4 m ²	30°	-	11.6 I/ m²/d	Water Temperature Below Caco3 Scale Deposits Of 70 °C
Bhargva & Yadav [15] NIT Kurukshet ra, India (29.9490° N ,76.8173° E)	Single-Slope Solar Still	Paraffin Wax	Aluminu m Oxide	0.36 m²	29.9°	4 mm	6.28 l/ m²/d	The Water Depth of 6 Cm Is Maintained

Table 2 Summary of Active SS with PCM

Author(s)	Constructio	Use Of	Use Of	Basin	Glass	Glass	Maxim	Occurrence
Location	n Type	PCM	Nano	Area	Angle	Thickn	um	/Remarks
(Latitude,			materi	(m²)		ess	Product	
Longitude)			als				ivity(l/	
							m2/d)	
							or	
							Efficien	
							cv (%)	
Adibi Toosi	Stepped	Stearic	-	60 cm	36.26	3 mm	56.6%.	3 Cm Depth of
et al [16]	Solar Still	Acid		x 8 cm	0			Basin Water Has
Iran (36.26		1 10101		x 35				Been Kent
°N and				cm				Constant For
59.61 °F)				CITI				Both Still
Tuly et al	Double	Paraffin		$0.5 m^2$	25 °	25	20 7/%	The Constant
[19]	Slope Solar	Max	-	0.5 11	25	5.5 mm	39.7470	Water Level of 3
[10] Bangladash		νναλ.						Cm Was Kant In
	Sum							The Abcerber
(88.0241 E,								The Absorber
24.3030 N)	Tubular	Doroffin		2 m ²	110	1 100 100	2.22	Pidles
		Parailii	-	2 111	11	4 11111	5.25 1/m²/d	Cot Copper Balls
1. et al.	Solar Still	VVdX					1/11-/0	GOL FADRICALEO
[19]								with 28 ivim
India							/6./8%	Diameter &
								Covered With
								Black Paint
Al-	Active Solar	Sodium	-	0.83	35°	6 mm	9.7	Exterior Solar
Harahsheh	Still	Thiosulfat		m²			l/ m²/d	Collector &
et al. [20]		е						Stainless Steel
Jordan		Pentahyd						Pipes to The
		rate (Stp),						Solar Still
		Sodium						Enhanced The
		Acetate						Production by
		Trihydrat						3.2 Times.
		е						
		(Sat) And						
		Paraffin						
		Wax						
Khairat	Stepped	Paraffin	-	1.0 m²	30 °	5 mm	13	-
Dawood et	Solar Still	Wax					l/ m²/d	
al. [22]								
Egypt (30°								
35' N, 32°								
16' E)								
Vijay R. et	Convention	Paraffin	-	0.5 ×	15°	4 mm	4 l/	The Heat Pipe
al. [23]	al Solar Still	Wax		0.5 m²			m²/d	Was Connected
India								at A 45° Angle to
(11°18'45.8'								The Horizontal
'N,								Surface.
•••								

77°42'57.8'' E)								
Ganesan et al. [24] India	Convention al Solar Still	Glauber Salt	-	1 m × 0.65 m	10°	3 mm	5.8 kg/m²	Constant Water Depth Of 1 Cm
A. H. Abed et al. [17] Iraq (33.309253° N, 44.45 °E.)	Single-Slop Solar Still	Paraffin Wax	-	0.5 m ²	35 °	4 mm	7.255 I/m²/d and 39.3%	Hfu Vaporizer Modules Were Employed In This Investigation To Atomize The Water Basin & Create Ultrafine Droplets Of Water (Fog).
Benhammo u & Sahli [21] Algeria (27.53°N, 0.17 °W)	Sloped Solar Still	Paraffin Wax	-	0.35 m²	30°	4 mm	9.870 kg/m²	The Water Depth, 3—9 Cm
Ghadamgah i M. et al. [25] Iran (52.5 °E, 35.7 °N)	Five-Stage Solar Still	Paraffin Wax	-	0.25 m²	35 °	1 mm	4.9 l/ m²/d	This Water Content Was Attained at a Speed Of 1.3 L/Min
Abu-Arabi et al. [26] Jordan	Modified Solar Still	Paraffin Wax	-	1.3 m ²	-	3.4 mm	6.3 l/ m²/d	-
Shehata et al. [27] Egypt	Single Solar Still	Paraffin Wax	-	1 m²	30°	5 mm	7.45 l/ m²/d	Water Depths of 25 And 35 Mm
Amarloo & Shafii [28] Iran (51.35°E,35. 70°N)	Convention al Solar Still	Paraffin Wax	-	78 cm × 56 cm	18°	1 mm	2.805 I/m²/da Y	The Polyethylene Foam Having a Thickness Of 5 Cm was Utilized for Thermal Insulation
Elbar & Hassan [29] Egypt (Longitude/ Latitude: E 029° 42'/N 30° 55')	Single Acting Solar Still	Paraffin Wax	-	1 m ²	31°	4 mm	32.86%	ThreeTinyChannelsWereWeldedAlongBothInternalSides of The StillsGlassPanelsAnAngleS° DownwardInclination

Journal of Harbin Engineering University ISSN: 1006-7043 DOI: https://doi.org/10.52783/jheu.v44i6.264

Kumbhar &	Double	Paraffin	-	0.65	23°	4 mm	6-6.5	Brackish Water
Sonage	Slope Solar	Wax		m²			l/m²/da	(High Contents of
[30] India	Still						v	Sodium
							,	Carbonates –
								40% Soap
								Solution) Used
Mazraeh et	Single Slope	Paraffin		1 m ²	45°	1 mm	1 55	Water Depth of
	Solar Still	Max	-	I 111	45	4 11111	4.55 kg/m².d	
ai. [51]	Solar Still	vvax					kg/iii 'u	0.05 M,0.07, And
Iran							ау	0.12 M
Al-	Single Basin	Sodium	-	1 m²	35°	4 mm	4300	Three Water
harahsheh	Solar Still	Thiosulfat					ml/(m².	Levels were
et al. [32]		e					day)	Investigated; 5,
Jordan		Penta						8, And 10 Cm
		Hydrate						
Arunkumar	Single	Paraffin	-	0.25	11°	4 mm	7346	Fill The Pss Basin
et al. [39]	Slope Solar	Wax		m²			ml/m²/	Up to a Depth Of
Coimbatore	Still	-					dav ,	3 Cm.
(11° North							,	
77° Fast)								
India								
Pajacooniva	Convention	Daraffin		0.64	10°		E 22	A Salina Water
Rajaseeniva		Parailii	-	0.04	10	-	5.25 kg/m²d	A Same Water
Sali et al.	al Solar Still	VVdX		m-			kg/m⁻u	Depth of 1 Cm is
[33]							ау	iviaintained in
India								The Basin
(9.9252° N)								
Faegh &	Simple	Paraffin	-	0.04	35.5°	1 mm	6.555	Saline Water
Shafii [34]	Solar Still	Wax		m²			kg/m²d	Basin, a Tank, a
Iran(latitud							ау	Fan, and also
e:42.35,lon								Twenty
gitude:35.5								Thermosiphon
1)								Heat Pipes
Kabeel &	Developed	Paraffin	-	0.72	30.47	3 mm	10.77	Same Water
Abdelgaied	Solar Still	Wax		m²	o		l/m²day	Depth of 2 Cm
[35]								
Egypt								
(Latitude								
30.47°N								
and								
longitude								
31°F)								
Kabael of	Modified	Paraffin		0.6 ~	20 47	4 mm	0.36	The Denth of The
	Solar Still		-	0.0 III v 1.2	。	+	$1/m^2/d_{2}$	Saline Water
ai. [30]	Julai Juli	vvaX		~ 1.2			, yn yua	Bomains
ERADI							У	Constant at 2 Cm
								Constant at 2 Cm
								Juring The
								Experiments

Arunkumar	PC-Solar	Paraffin	-	0.25 m	11 °	2 mm	3.5	To Improve
et al. [37]	Still	Wax		× 0.25			l/day	Production
Coimbatore				m				Further,
,India								PCM-Loaded
								Balls Are Added
								to The Basin
Arunkumar	Hemispheri	Paraffin	-	-	23.18	-	4460	-
et al. [38]	cal Basin	Wax			•		ml/m²/	
India	Solar Still						day	
(Latitude								
11°)								

Summary

This section presents a summary of various solar technologies still employing phase change materials and nanomaterials that have been reviewed. The summary contains information about the solar still types, altitudes of location, PCM, nanomaterials, specifications of basins and glass, productivity, and remarks.

Conclusion

The proposed review, considering the limitations mentioned earlier, can address several important problems related to solar stills. Based on the findings of the review, practical guidelines, and recommendations can be formulated to optimize the performance, maintenance, and economic feasibility of solar stills. These guidelines can be beneficial for researchers, engineers, policymakers, and individuals interested in implementing solar still systems.

By advancing the understanding of active solar stills, this review contributes to the promotion of sustainable water purification technologies and their adoption in regions facing water scarcity challenges.

References

- R. Connor and M. Paquin, "The United Nations World Water Development Report, 2016: Water and jobs. Executive summary.," 2016.
- [2] A. S. Abdullah et al., "Enhancing trays solar still performance using wick finned absorber, nano-enhanced PCM," Alex. Eng. J., vol. 61, no. 12, pp. 12417–12430, Dec. 2022, doi: 10.1016/j.aej.2022.06.033.

- [3] U. F. Alqsair, A. S. Abdullah, and Z. M. Omara, "Enhancement the productivity of drum solar still utilizing parabolic solar concentrator, phase change material and nanoparticles' coating," J. Energy Storage, vol. 55, p. 105477, Nov. 2022, doi: 10.1016/j.est.2022.105477.
- [4] S. M. Parsa, A. Yazdani, D. Javadi, M. Afrand, N. Karimi, and H. M. Ali, "Selecting efficient side of thermoelectric in pyramid-shape solar desalination units incorporated phase change material (PCM), nanoparticle, turbulator with battery storage powered by photovoltaic," J. Energy Storage, vol. 51, p. 104448, Jul. 2022, doi: 10.1016/j.est.2022.104448.
- [5] M. Abdelgaied, A. S. Abdulla, G. B. Abdelaziz, and A. E. Kabeel, "Performance improvement of modified stepped solar distillers using three effective hybrid optimization modifications," Sustain. Energy Technol. Assess., vol. 51, p. 101936, Jun. 2022, doi: 10.1016/j.seta.2021.101936.
- [6] M. Abdelgaied, M. E. H. Attia, A. E. Kabeel, and M. E. Zayed, "Improving the thermo-economic performance of hemispherical solar distiller using copper oxide nanofluids and phase change materials: Experimental and theoretical investigation," Sol. Energy Mater. Sol. Cells, vol. 238, p. 111596, May 2022, doi: 10.1016/j.solmat.2022.111596.
- [7] B. F. Felemban et al., "Experimental investigation on dish solar distiller with modified absorber and phase change material under various operating conditions," Environ. Sci. Pollut. Res., vol. 29, no. 42, pp. 63248– 63259, Sep. 2022, doi: 10.1007/s11356-022-20285-z.

- [8] F. A. Essa et al., "Experimental enhancement of tubular solar still performance using rotating cylinder, nanoparticles' coating, parabolic solar concentrator, and phase change material," Case Stud. Therm. Eng., vol. 29, p. 101705, Jan. 2022, doi: 10.1016/j.csite.2021.101705.
- [9] S. W. Sharshir, M. A. Rozza, M. Elsharkawy, M. M. Youns, F. Abou-Taleb, and A. E. Kabeel, "Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial," Desalination, vol. 539, p. 115939, Oct. 2022, doi: 10.1016/j.desal.2022.115939.
- [10] A. S. Abdullah et al., "Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters," J. Energy Storage, vol. 40, p. 102782, Aug. 2021, doi: 10.1016/j.est.2021.102782.
- [11] M. M. Younes, A. S. Abdullah, F. A. Essa, Z. M. Omara, and M. I. Amro, "Enhancing the wick solar still performance using half barrel and corrugated absorbers," Process Saf. Environ. Prot., vol. 150, pp. 440–452, Jun. 2021, doi: 10.1016/j.psep.2021.04.036.
- [12] M. Tafavogh and A. Zahedi, "Design and production of a novel encapsulated nano phase change materials to improve thermal efficiency of a quintuple renewable geothermal/hydro/biomass/solar/wind hybrid system," Renew. Energy, vol. 169, pp. 358– 378, May 2021, doi: 10.1016/j.renene.2020.12.118.
- [13] M. M. Khairat Dawood, T. Nabil, A. E. Kabeel, A. I. Shehata, A. M. Abdalla, and B. E. Elnaghi, "Experimental study of productivity progress for a solar still integrated with parabolic trough collectors with a phase change material in the receiver evacuated tubes and in the still," J. Energy Storage, vol. 32, p. 102007, Dec. 2020, doi: 10.1016/j.est.2020.102007.
- [14] A. Mahmoud, H. Fath, S. Ookwara, and M. Ahmed, "Influence of partial solar energy storage and solar concentration ratio on the productivity of integrated solar still/humidification-dehumidification desalination systems," Desalination, vol. 467,

pp. 29–42, Oct. 2019, doi: 10.1016/j.desal.2019.04.033.

- [15] M. Bhargva and A. Yadav, "Productivity augmentation of single-slope solar still using evacuated tubes, heat exchanger, internal reflectors and external condenser," Energy Sources Part Recovery Util. Environ. Eff., pp. 1–21, Nov. 2019, doi: 10.1080/15567036.2019.1691291.
- [16] S. S. Adibi Toosi, H. R. Goshayeshi, and S. Zeinali Heris, "Experimental investigation of stepped solar still with phase change material and external condenser," J. Energy Storage, vol. 40, p. 102681, Aug. 2021, doi: 10.1016/j.est.2021.102681.
- [17] A. H. Abed, H. A. Hoshi, and M. H. Jabal, "Experimental investigation of modified solar still coupled with high-frequency ultrasonic vaporizer and phase change material capsules," Case Stud. Therm. Eng., vol. 28, p. 101531, Dec. 2021, doi: 10.1016/j.csite.2021.101531.
- [18] S. S. Tuly, M. S. Rahman, M. R. I. Sarker, and R.
 A. Beg, "Combined influence of fin, phase change material, wick, and external condenser on the thermal performance of a double slope solar still," J. Clean. Prod., vol. 287, p. 125458, Mar. 2021, doi: 10.1016/j.jclepro.2020.125458.
- [19] T. Arunkumar et al., "Effect of heat removal on tubular solar desalting system," Desalination, vol. 379, pp. 24–33, Feb. 2016, doi: 10.1016/j.desal.2015.10.007.
- [20] M. Al-Harahsheh, M. Abu-Arabi, M. Ahmad, and H. Mousa, "Self-powered solar desalination using solar still enhanced by external solar collector and phase change material," Appl. Therm. Eng., vol. 206, p. 118118, Apr. 2022, doi: 10.1016/j.applthermaleng.2022.118118.
- [21] M. Benhammou and Y. Sahli, "Energetic and exergetic analysis of a sloped solar still integrated with a separated heat storage system incorporating phase change material," J. Energy Storage, vol. 40, p. 102705, Aug. 2021, doi: 10.1016/j.est.2021.102705.
- [22] M. M. Khairat Dawood et al., "Experimental investigation of a stepped solar still employing a phase change material, a conical tank, and a

solar dish," Int. J. Energy Res., vol. 46, no. 12, pp. 16762–16776, Oct. 2022, doi: 10.1002/er.8337.

- [23] V. R, K. Govindasamy, V. P, and G. A. Lazarus, "Experimental Investigation on Productivity Enhancement of a Solar Still Modified with the Evacuated Tube Heat Pipe using Paraffin Wax," Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 21, pp. 10865–10876, Nov. 2022, doi: 10.1177/09544062221105987.
- [24] K. Ganesan, D. P. Winston, S. Ravishankar, and S. Muthusamy, "Investigational study on improving the yield from hybrid PV/T modified conventional solar still with enhanced evaporation and condensation technique - An experimental approach," Energy Sources Part Recovery Util. Environ. Eff., vol. 44, no. 2, pp. 5267–5286, Jun. 2022, doi: 10.1080/15567036.2022.2083273.
- [25] M. Ghadamgahi, H. Ahmadi-Danesh-Ashtiani, and S. Delfani, "Experimental investigation of multi-stage solar still using phase-change material," Environ. Prog. Sustain. Energy, vol. 40, no. 1, Jan. 2021, doi: 10.1002/ep.13477.
- [26] M. Abu-Arabi, M. Al-harahsheh, M. Ahmad, and H. Mousa, "Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector," J. Energy Storage, vol. 29, p. 101372, Jun. 2020, doi: 10.1016/j.est.2020.101372.
- [27] A. I. Shehata et al., "Enhancement of the productivity for single solar still with ultrasonic humidifier combined with evacuated solar collector: An experimental study," Energy Convers. Manag., vol. 208, p. 112592, Mar. 2020, doi: 10.1016/j.enconman.2020.112592.
- [28] A. Amarloo and M. B. Shafii, "Enhanced solar still condensation by using a radiative cooling system and phase change material," Desalination, vol. 467, pp. 43–50, Oct. 2019, doi: 10.1016/j.desal.2019.05.017.
- [29] A. R. A. Elbar and H. Hassan, "Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration," Sol. Energy, vol. 184, pp. 584–593, May 2019, doi: 10.1016/j.solener.2019.04.042.
- [30] S. V. Kumbhar and B. K. Sonage, "Experimental Investigations of Developed Solar Still for

Increment in Efficiency and Rate of Distillate," Int. J. Heat Technol., vol. 37, no. 2, pp. 471– 480, Jun. 2019, doi: 10.18280/ijht.370213.

- [31] A. E. Mazraeh, M. Babayan, M. Yari, A. M. Sefidan, and S. C. Saha, "Theoretical study on the performance of a solar still system integrated with PCM-PV module for sustainable water and power generation," Desalination, vol. 443, pp. 184–197, Oct. 2018, doi: 10.1016/j.desal.2018.05.024.
- [32] M. Al-harahsheh, M. Abu-Arabi, H. Mousa, and Z. Alzghoul, "Solar desalination using solar still enhanced by external solar collector and PCM," Appl. Therm. Eng., vol. 128, pp. 1030– 1040, Jan. 2018, doi: 10.1016/j.applthermaleng.2017.09.073.
- [33] T. Rajaseenivasan, R. Prakash, K. Vijayakumar, Srithar, "Mathematical and Κ. and experimental investigation on the influence of basin height variation and stirring of water by solar PV panels in solar still," Desalination, vol. 67–75, 415, pp. Aug. 2017, doi: 10.1016/j.desal.2017.04.010.
- [34] M. Faegh and M. B. Shafii, "Experimental investigation of a solar still equipped with an external heat storage system using phase change materials and heat pipes," Desalination, vol. 409, pp. 128–135, May 2017, doi: 10.1016/j.desal.2017.01.023.
- [35] A. E. Kabeel and M. Abdelgaied, "Observational study of modified solar still coupled with oil serpentine loop from cylindrical parabolic concentrator and phase changing material under basin," Sol. Energy, vol. 144, pp. 71–78, Mar. 2017, doi: 10.1016/j.solener.2017.01.007.
- [36] A. E. Kabeel, M. Abdelgaied, and M. Mahgoub, "The performance of a modified solar still using hot air injection and PCM," Desalination, vol. 379, pp. 102–107, Feb. 2016, doi: 10.1016/j.desal.2015.11.007.
- [37] T. Arunkumar, D. Denkenberger, R. Velraj, R. Sathyamurthy, H. Tanaka, and K. Vinothkumar, "Experimental study on a parabolic concentrator assisted solar desalting system," Energy Convers. Manag., vol. 105, pp. 665–674, Nov. 2015, doi: 10.1016/j.enconman.2015.08.021.

- [38] T. Arunkumar, D. Denkenberger, A. Ahsan, and R. Jayaprakash, "The augmentation of distillate yield by using concentrator coupled solar still with phase change material," Desalination, vol. 314, pp. 189–192, Apr. 2013, doi: 10.1016/j.desal.2013.01.018.
- [39] T. Arunkumar et al., "Effects of concentrator type and encapsulated phase change material on the performance of different solar stills: an experimental approach," DESALINATION WATER Treat., vol. 87, pp. 1–13, 2017, doi: 10.5004/dwt.2017.21268.