
    
 

181 
 

Vol 45 No. 3 
March 2024 

Journal of Harbin Engineering University 
ISSN: 1006-7043 

Graphical  Approach On  Pattern Generation Using Edge Coloring 
 

Kavitha Thenmozhi1, B. Vivekanandam2, Bhuvaneswari. K3 
1 Department of Mathematics, Lincoln UniversityCollege, Malaysia 

2Faculty of Computer Science and Multimedia, Lincoln University College, Malaysia 
3Department of Mathematics, Sathyabama University, India 

 

Abstract: A graph's acyclic edge-coloring involves assigning colors to its edges in a way that ensures no 

bichromatic cycles exist. The acyclic chromatic index symbolized as χ′a(G), represents the minimum 

number of colors, required to effectively color the graph, denoted as 'm'. This study delves into the 

concept of edge coloring, particularly emphasizing the amalgamation of multiple graphs to create diverse 

patterns. Analyzing these patterns reveals their distinct characteristics. To achieve high symmetry, 

congruent polygons such as Isosceles right-angled triangles, regular pentagons, and regular hexagons are 

utilized. Notably, the findings establish a novel relationship: χ′a(G) equals the maximum degree of the 

graph, Δ(G), resulting in innovative pattern outcomes. 
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INTRODUCTION 

Graph theory and networking are intimately 

connected fields, it plays a fundamental role in 

understanding, designing, and optimizing 

communication systems and networks.  Graph 

theory provides a powerful framework for 

modeling and analyzing various types of 

networks. In graph theory, nodes and edges 

represent entities and connections, respectively, 

which align perfectly with the nodes (devices) 

and links (connections) in network topologies. 

Graph algorithms like Dijkstra's and Bellman-

Ford are essential for routing and optimizing 

data transmission paths in networks. Moreover, 

graph theory aids in network design, capacity 

planning, and fault tolerance analysis by 

uncovering network topology properties. Social 

network analysis and wireless sensor network 

deployment also rely heavily on graph theory. 

Ultimately, the symbiotic relationship between 

graph theory and networking underpins the 

foundation of modern communication systems 

and their efficient operation. It provides a 

mathematical framework for modeling and 

representing various types of networks. 

 

The simple, undirected, finite graphs are held in 

the study. Let G = (V, E)  a simple graph that has 

a vertex set V = V (G) and an edge set E = E(G). 

The terms order and size of G are represented 

by n = |V| and m = |E|, independently. The 

volume of edges that cross a vertex, displayed by 

d(v), is understood as its degree. Isolated vertex 

refers to a vertex u, that has d(u) =0. Let δ (G) 

and ∆( G) characterize the degree of at the 

smallest and loftiest degree, respectively. The 

diameter of G is represented by the diam () 

symbol and represents the most significant 

distance between any two vertices in a set of 

vertices (or edges) that aren't conterminous to 

one another and is appertained to as a vertex (or 

edge) independent set. 

 

Literature Survey: 

 

The concept of Acyclic Edge Coloring was 

studied by Fiamcik [2] and he bounced the 

acyclic edge coloring conjecture in 1978. He 

answered the guess for subcubic graphs. His 

papers weren’t available in English till lately and 

hence were unknown. Alon, McDiarmid, and 

Reed [6] presented it singly and using 

probabilistic styles demonstrated that  χ′a( (G) ≤ 

64∆. They also adverted that the constant 64 

could be bettered with the more alert operation 

of the Lovasz Local Lemma. Later Molloy and 

Reed exhibited that a χ′a( (G) ≤ 16∆. This is the 

best-known set presently for arbitrary graphs. 

Muthu, Narayanan, and Subramanian [3] 

demonstrated that χ′a( (G) ≤ 4.52∆ for graphs G 

of girth at least 220 (Girth is the length of the 

shortest cycle in a graph). All the above results 

use probabilistic styles. The best-known 

formative bound is by Subramanian who 
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showed that χ′a( (G) ≤ 5∆(log ∆ + 2). Though the 

best-known upper bound for the general case is 

far from the conjectured ∆ + 2, the conjecture is 

true for some special classes of graphs. Alon, 

Sudakov, and, Zaks [8] proved that there exists a 

constant k such that χ′a( (G) ≤ ∆ + 2 for any 

graph G whose girth is at least k∆ log ∆. They 

also proved that  χ′a( (G) ≤ ∆+2 for almost all ∆-

regular graphs. This result was improved by 

Neset ˇ ˇril and Wormald [9] who showed that 

for a random ∆-regular graph χ′a(  (G) ≤ ∆ + 1. 

Muthu, Narayanan, and Subramanian proved the 

conjecture for grid-like graphs [10] and 

outerplanar graphs [11]. They gave a better 

bound of ∆ + 1 for those classes of graphs. From 

Burnstein’s [12] result it follows that the 

conjecture is true for subcubic graphs. 

Skulrattankulchai [13] gave a polynomial time 

algorithm to color a subcubic graph using ∆ + 2 

= 5 colors. Deciding a’(G) is a hard challenge 

both from a theoretical and an algorithmic point 

of view. Even for the simple and highly 

structured class of complete graphs, the value of 

a’(G) is still not determined exactly. The 

hardship in determining  χ′a( (G) for complete 

graphs could be observed by its equivalence to 

the Perfect 1-factorization Conjecture. It has also 

been shown by Alon and Zaks [14] that judging 

whether χ′a( (G) ≤ 3 is NP-complete for an 

arbitrary graph G. A generalization of the acyclic 

edge chromatic number has also been studied.  

      

K. Bhuvaneswari [1] undertook a thorough 

investigation into the generation of patterns 

created through tile pasting. Various P systems 

were utilized to form two-dimensional visual 

languages. The realm of picture processing and 

scene analysis, as explored by S. Kuberal [15], 

delves into octagonal arrays and patterns. T. 

Kalyani [17] delved into the realm of literature 

with the introduction of the k-Tabled 

Tetrahedral Tile Pasting System (k-TTTPS) and 

Tetrahedral Tile Pasting P System (TetTPPS), 

both designed to generate tetrahedral picture 

patterns.  

Our research establishes an intriguing link 

between this concept and the realm of graph 

theory's acyclic edge coloring, thereby 

facilitating the creation of an extensive variety of 

distinct graph patterns." 

 

1.1. Preliminaries 

In this section, specific fundamental definitions 

are reviewed and key ideas are illustrated. 

 

A graph G = (V, E) consists of a set V of vertices 

(also called nodes) and a set E of edges. A graph 

G = (V, E) consists of a set V of vertices (also 

called nodes) and a set E of edges. 

 

Definition 1:  

A simple graph is a graph with no loop edges or 

multiple edges. Edges in a simple graph may be 

specified by a set {vi, vj} of the two vertices the 

edge makes adjacent. A graph with more than 

one edge between a pair of vertices is called a 

multigraph while a graph with loop edges is 

called a pseudograph. 

 

Definition 2:  

The degree of a vertex is the number of edges 

incident to the vertex and is denoted deg(v), Let 

Δ(G) denote the maximum degree of a graph G. 

 

Definition 3: In graph theory, proper edge 

coloring of a graph is an assignment of "colors" 

to the edges of the graph so that no two incident 

edges have the same color. 

 

Definition 4: The minimum required number of 

colors for the edges of a given graph is called 

the chromatic index of the graph, denoted by 

χ′(G). 

 

Definition 5: Union of two graphs: Given two 

graphs G1 and G2 their union will be a graph 

such that 

                                      V(G1 U G2) = V(G1) U V(G2) 

                     And        E( G1 U G2) = E(G1) U E(G2) 

 The union of G1 and G2 is denoted by G1 UG2 

 

Proposition: For any graph G,  χ′(G) ≥ Δ(G). 

 

Definition 6: A proper edge coloring of G = (V, 

E) is a map c: E → C (where C is the set of 

available colors ) with c(e) ≠c(f) for any adjacent 

edges e,f. The minimum number of colors 

needed to properly color the edges of G is called 

the chromatic index of G and is denoted by χ′(G).  

 

Definition 7: A proper edge coloring c is called 

acyclic if there are no bichromatic cycles in the 

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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graph. In other words, an edge coloring is acyclic 

if the union of any two color classes induces a 

set of paths (i.e., linear forest) in G. The acyclic 

edge chromatic number (also called acyclic 

chromatic index), denoted by a′ (G), is the 

minimum number of colors required to 

acyclically edge color G. 

 

Theorem 1:1 Vizing’s Theorem:  

Let Δ(G). be the maximum degree of a 

graph G. Then the number of colors χ′ 

needed to edge  color is  

                          Δ( G)   ≤   χ′(G)  ≤  Δ(G) +1 

 

Theorem 1:2 (K˝onig, 1916):  

If G is a bipartite graph with a maximum 

degree ∆ then χ’(G) = ∆ 

 

Theorem 1:3  

A regular graph on an odd number of 

vertices is class two. 

 

Definition 8: Class one graph and class two 

graph: If χ′(G) = Δ(G) then G is said to be a class 

one graph, and if χ′(G)  = Δ(G) +1 then G is said 

to be a class two graph. 

 

A complete graph, denoted as Kp, belongs to 

Class 1 when p is an even number, and it falls 

into Class 2 when p is an odd number. 

According to Vizing's Theorem, the chromatic 

index of any graph G can be precisely 

determined as either equal to its maximum 

degree ∆(G) or ∆ (G) + 1. A straightforward 

approach for calculating the exact chromatic 

index of a graph with 2s + 2 vertices and a 

maximum degree of 2s. 

 

2. Triangular graphs 

 

a. Definition 

The labeled isosceles right-angled triangular 

graph is defined as G1= (V, E) where V= 𝑣1
1 , 

𝑣1
2, 𝑣1

3 are vertices, E = 𝑒1
1, 𝑒1

2, 𝑒1
3are edges 

whose horizontal (Vertical) and side edges 

are of length  1 unit and  √2  unit 

respectively.  

 
The isosceles right-angled triangular graph 

has the path  P = v1,v2,v3 by joining vi and 

vi+1. It is a  regular graph. We denote this 

graph by G1.   

 

  
Maximum degree Δ [G1] = 2 

Number of vertices in G1 = 3 

Number of edges in G1    = 3 

Chromatic number χ’(G1)=3 

Clearly, χ′(G1) > Δ(G1). if χ′(G1) = Δ(G1) +1 

then G1 is said to be a class two graph. 

 

b.  Catenation of triangular graphs: 

 

Definition 9:   

The process of catenating two triangular 

graphs involves taking two separate 

triangular graphs and connecting them by 

adding additional edges in a manner that 

they share at least one common edge, 

resulting in a larger interconnected graph. 

This operation can be used to create a more 

intricate network structure for various 

graph theory applications. 

 

On one of the three sides of the first graph 

G1 with the same edge color, the second 

graph G2 could be positioned. The resulting 

graph is square. A parallelogram will result 

from placing the third graph G3 and the 

fourth graph G4 side by side and combining 

their edges with the same color. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Graph_coloring
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Example: 

 

  

 

                              Result (1)                                           

Result (2)  

Example1:  

        Consider two graphs with three 

vertices, G1 and G2. The complete union of 

two graphs, GI and G2, is what we refer to as 

G1 UG2 being a connected graph. 

V( G1) = { 𝑣1
1 , 𝑣1

2, 𝑣1
3}                                                      

E(G1) = { 𝑒1
1, 𝑒1

2, 𝑒1
3} 

V( G2) = { 𝑣2
1 , 𝑣2

2, 𝑣2
3}                                                     

E(G2) = { 𝑒2
1, 𝑒2

2, 𝑒2
3} 

V( G1 U G2) = { 𝑣1
3, 𝑣12

21, 𝑣2
3, 𝑣12

12}                          

E (G1 U G2) = {𝑒1
2, 𝑒2

3, 𝑒2
2, 𝑒1

3, 𝑒12
1 } 

 

When G1 and G2 are combined, results in a 

square pattern. Note that the merged edges 

are all the same length. Edges 𝑒1
1and 𝑒2

1 with 

the same yellow colour are pasted together 

to form edge 𝑒12
1 . 

Maximum degree Δ [G1UG2]  = 3 

Number of vertices in G1UG2 = 4 

Number of edges in G1UG2    = 5 

Chromatic number χ(G1UG2) =3 

Clearly, χ′(G1UG2) = Δ(G1UG2). 

 

Example 2:  

            Let G3 and G4 be two graphs with 3 

vertices. We say that G3 UG4 is a joined 

graph is the complete union of two graphs 

G3 and G4 

V( G3) = { 𝑣3
1 , 𝑣3

2, 𝑣3
3}                                                   

E(G3) = { 𝑒3
1, 𝑒3

2, 𝑒3
3} 

V( G4) = { 𝑣4
1 , 𝑣4

2, 𝑣4
3}                                                 

E(G4) ={ 𝑒4
1, 𝑒4

2, 𝑒4
3} 

V( G1 U G2) = { 𝑣3
1 , 𝑣34

32, 𝑣4
1, 𝑣34

23}                          

E (G1 U G2) = {𝑒3
3, 𝑒4

1, 𝑒4
3, 𝑒3

1, 𝑒34
2 } 

 

When G3 and G4 are combined, results in a 

parallelogram pattern. Note that the merged 

edges are all the same length. Edges 𝑒3
2 and 

𝑒4
2 with the same red colour are pasted 

together to form edge 𝑒34
2 . 

Maximum degree Δ [G3UG4] = 3 

Number of vertices in G3UG4 = 4 

Number of edges in G3UG4    = 5 

Chromatic number χ(G3UG4) = 3 

Clearly, χ′(G3UG4) = Δ(G3UG4). 

 

Observation 1. 

In graphs G1, G2, G3, and G4  maximum 

degree was  Δ = 2, and the Chromatic 

number χ =3. Clearly, χ′(G) > Δ(G), it’s a 

bipartite graph.  While combining the 

graphs maximum degree was  Δ = 3 and the 

Chromatic number χ =3. Clearly, χ′(G1UG2) 

= Δ(G1UG2) then the joined graph is said to 

be a class one. 

 

Catenation of 4 vertices graphs : 

 

The highest degree and the minimum 

number of colours in a four-vertex 

appropriate edge-colored graph are both 2 = 

χ′(G) = Δ(G). A proper edge coloration is 

impossible with only two colours if we join 

another graph with four vertices, which has 

a maximum degree of 3 = Δ(G), According to 

Vizing’s Theorem  Δ( G) should be less than 

χ′(G) .  

 . Therefore, Pattern generating is not 

feasible. 

 

3. Pentagon Graphs 

 

Definition 11:The labeled pentagon graph is a 

simple undirected graph with no loops and no 

multiple edges between the same pair of 

vertices. The graph is formed by five vertices 𝑣1
1 , 

𝑣1
2, 𝑣1

3, 𝑣1
4, 𝑣1

5 . Each vertex is then connected to 

the two adjacent vertices by edges 𝑒1
1, 𝑒1

2, 𝑒1
3, 

𝑒1
4, 𝑒1

5 resulting in a cycle of five vertices. 

 

The pentagon graph is denoted as "P"= (V, E) to 

indicate that it is a cycle with five vertices. Red, 

Blue, and Green colors have been allocated to 

graph P1's edge coloring so that adjacent edges 

are colored differently. 

https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
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Maximum degree Δ [P1] = 2 

Number of vertices in P1 = 5 

Number of edges in P1    = 5 

Chromatic number χ’(P1).=3 

Clearly, χ′(P1) > Δ(P1).  

 

1.6. Catenation of pentagon graphs : 

 

In this process, where two or more pentagon 

graphs are connected in a specific way to create 

a unique pattern.  This process involves linking 

the graphs together by identifying one or more 

vertices from each graph and adding edges 

between them which has the same edge colour. 

Let's consider the catenation of two pentagon 

graphs (P1) and (P2) to form a larger graph: 

 

 
A new pattern is created when the P1 graph is 

positioned on the P2 graph by connecting the 

edges of the two graphs with the same edge 

colour on both. 

 
Example 3: 

            Let P1 and P2 be two graphs with 5 

vertices. We say that P1UP2 is a joined graph is 

the complete union of two graphs P1 and P2 

V( P1) = { 𝑣1
1, 𝑣1

2, 𝑣1
3, 𝑣1

4 , 𝑣1
5}                                                      

E(P1) = { 𝑒1
1, 𝑒1

2, 𝑒1
3, 𝑒1

4, 𝑒1
5} 

V( P2) = { 𝑣2
1 , 𝑣2

2, 𝑣2
3, 𝑣2

4, 𝑣2
5}                                                     

E(P2) = { 𝑒2
1, 𝑒2

2, 𝑒2,
3 𝑒2

4, 𝑒2
5} 

V( P1 U P2) = { 𝑣1
3, 𝑣1

4, 𝑣1
5, 𝑣12

1 , 𝑣2
5, 𝑣2

4, 𝑣2
3, 𝑣12

22}            

E (P1 U P2) = {𝑒1
2, 𝑒1

3, 𝑒1
4, 𝑒1

5, 𝑒2
5, 𝑒2

4, 𝑒2
3, 𝑒2

2, 𝑒12
1 } 

 

When P1 and P2 are combined, it results in a 

new pattern. Note that the merged edges are all 

the same length. Edges 𝑒1 
1 and 𝑒2

1 with the same 

red colour are pasted together to form edge 𝑒12
1 . 

Maximum degree Δ [P1 U P2]  = 3 

Number of vertices in P1 U P2  = 8 

Number of edges in P1 U P2     = 9 

Chromatic number χ(P1 U P2).=3 

Clearly, χ′( P1 U P2) = Δ(P1 U P2). 

 

Example 4: Consider a set of pentagon graphs 

with proper edge coloring red, green, and blue,  

the operation of "joining multiple pentagon 

graphs edges with same edge color" entails 

fusing the individual graphs by joining their 

edges to create a new composite graph. 

 

https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
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By connecting the edges of the same color, we link together the other 10 pentagon graphs. As a result, an 

exquisite flower design is created. 

 

Let P1, P2, P3, P4, P5, P6, P7, P8, P9 and P10 be two graphs with 5 vertices.  

V( 𝑃1) = { 𝑣1
1 , 𝑣1

2, 𝑣1
3, 𝑣1

4, 𝑣1
5}                                                      E(𝑃1) = { 𝑒1

1, 𝑒1
2, 𝑒1

3, 𝑒1
4, 𝑒1

5} 

V( 𝑃2) = { 𝑣2
1 , 𝑣2

2, 𝑣2
3, 𝑣2

4, 𝑣2
5}                                                     E(𝑃2) = { 𝑒2

1, 𝑒2
2, 𝑒2,

3 𝑒2
4, 𝑒2

5} 

V( 𝑃3) = { 𝑣3
1 , 𝑣3

2, 𝑣3
3 , 𝑣3

4, 𝑣3
5}                                                      E(𝑃3) = { 𝑒3

1, 𝑒3
2, 𝑒3

3, 𝑒3
4, 𝑒3

5} 

V( 𝑃4) = { 𝑣4
1 , 𝑣4

2, 𝑣4
3, 𝑣4

4, 𝑣4
5}                                                     E(𝑃4) = { 𝑒4

1, 𝑒4
2, 𝑒4,

3 𝑒4
4, 𝑒4

5} 

V( 𝑃5) = { 𝑣5
1 , 𝑣5

2, 𝑣5
3 , 𝑣5

4, 𝑣5
5}                                                      E(𝑃5) = { 𝑒5

1, 𝑒5
2, 𝑒5

3, 𝑒5
4, 𝑒5

5} 

V( 𝑃6) = { 𝑣6
1 , 𝑣6

2, 𝑣6
3, 𝑣6

4, 𝑣6
5}                                                     E(𝑃6) = { 𝑒6

1, 𝑒6
2, 𝑒6,

3 𝑒6
4, 𝑒6

5} 

V( 𝑃7) = { 𝑣7
1 , 𝑣7

2, 𝑣7
3 , 𝑣7

4, 𝑣7
5}                                                      E( 𝑃7) = { 𝑒7

1, 𝑒7
2, 𝑒7

3, 𝑒7
4, 𝑒7

5} 

V( 𝑃8) = { 𝑣8
1 , 𝑣8

2, 𝑣8
3, 𝑣8

4, 𝑣8
5}                                                     E(𝑃8) = { 𝑒8

1, 𝑒8
2, 𝑒8,

3 𝑒8
4, 𝑒8

5} 

V( 𝑃9) = { 𝑣9
1, 𝑣9

2 , 𝑣9
3, 𝑣9

4, 𝑣9
5}                                                      E( 𝑃9) = { 𝑒9

1, 𝑒9
2, 𝑒9

3, 𝑒9
4, 𝑒9

5} 

V( 𝑃10) = { 𝑣10
1  , 𝑣10

2 , 𝑣10
3 , 𝑣10

4 , 𝑣10
5 }                                          E(𝑃10) = { 𝑒10

1 , 𝑒10
2 , 𝑒10,

3 𝑒10
4 , 𝑒10

5 } 

 

The joining rule for graphs P1,P2,P3,P4,P5, P6,P7, P8, P9 and P10 are given below. 

1) Graph P1 U P2, green-colored edges 𝑒1
2 and 𝑒2

1 from the P1 and P2 joins, respectively. 

2) Graph P2 U P3, blue-colored edges 𝑒2
4 and 𝑒3

1 from the P2 and P3 joins, respectively. 

3) Graph P3 U P4, red-colored edges 𝑒3
4 and𝑒4

1 from the P3 and P4 joins, respectively. 

4) Graph P4 U P5, green-colored edges 𝑒4
4 and 𝑒5

1 from the P4 and P5 joins, respectively. 

5) Graph P5 U P6, blue-colored edges 𝑒5
4 and 𝑒6

1 from the P5 and P6 joins, respectively 

6) Graph P6 U P7, blue-colored edges 𝑒6
3 and 𝑒7

1 from the P6 and P7 joins, respectively. 

7) Graph P7 U P8, green-colored edges 𝑒7
3 and 𝑒8

1 from the P7 and P8 joins, respectively. 

8) Graph P8 U P9, red-colored edges 𝑒8
3 and 𝑒9

1from the P8 and P9 joins, respectively. 

9) Graph P9 U P10, blue-colored edges 𝑒9
3 and 𝑒10

1  from the P9 and P10 joins, respectively. 

10) Graph P10 U P1, green-colored edges 𝑒10
3  and 𝑒1

5 from the P10 and P1 joins, respectively 
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By connecting the edges of the same color, we 

link together the other 10 pentagon graphs. As a 

result, an exquisite flower design is created. 

 

Let graph G1 = P1 U P2 U P3 U P4 U P5 U P6 U 

P7 U P8 U P9 U P10 

Maximum degree Δ [G1]    = 3 

Number of vertices in G1   = 30 

Number of edges in G1       = 40 

Chromatic number χ(P1 U P2).=3 

Clearly, χ′( P1 U P2) = Δ(P1 U P2). 

 

Observation 2: 

 

In this graph   P1 U P2  and P1 U P2 U P3 U P4 U 

P5 U P6 U P7 U P8 U P9 U P10, 3 colours are 

sufficient to colour the edges, then the graph is 

said to be 3-colourable, Since χ′= 3, it is said to 

be 3-edge-chromatic. It satisfies Vizing’s 

Theorem , Δ( G)   ≤   χ′(G)  ≤  Δ(G) +1. While 

combining the graphs maximum degree was  Δ = 

3 and the Chromatic number χ =3. Since χ′ = Δ, 

then joined graph is said to be a class one. 

 

When χ′ = Δ very few pattern is possible. 

 

Example 5:  

The operation of "joining numerous pentagon 

graphs edges with same edge color" entails 

fusing the individual graphs by joining their 

edges to create a new composite graph. Assume 

a set of pentagon graphs, for which 4 colors are 

sufficient to color the edges, the graph is said to 

be 4-colourable. The edges are colored red, 

green, yellow, and blue. 

 

 
We are adhering the other five pentagon graphs 

to the five edges of P1 by linking the edges of the 

same color. Consequently, a lovely flower design 

is produced. 

 

The joining rule for graphs P1,P2,P3,P4,P5 and 

P6 are given below. 

1) Graph P1 U P2, yellow-colored edges 𝑒1
1 

and 𝑒2
1 from the P1 and P2 joins, 

respectively. 

2) Graph P1 U P3, green-colored edges 𝑒1
2 

and 𝑒3
1 from the P1 and P3 joins, 

respectively. 

3) Graph P1 U P4, red-colored edges 𝑒1
3 

and 𝑒4
1 from the P1 and P4 joins, 

respectively. 

4) Graph P1 U P5, blue-colored edges 𝑒1
4 

and 𝑒5
1 from the P1 and P5 joins, 

respectively. 

5) Graph P1 U P6, green-colored edges 𝑒1
5 

and 𝑒6
1 from the P1 and P6 joins, 

respectively. 

https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
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                                                            G2 

Let G2 = P1 U P2 U P3 U P4 U P5 U P6 results in 

a new patten. 

Maximum degree Δ [G2]  = 4 

Number of vertices in G2 = 20 

Number of edges in G2    = 25 

Chromatic number χ(G2).= 4 

Clearly, χ′( G2) = Δ(G2). 

Since the degree of this new graph is 4, we are 

focused on using the four colors red, blue, green, 

and yellow to effectively color the edges, 

ensuring that every pair of neighboring edges 

has a distinct color. 

 

 Observation 3: 

 While combining the graphs maximum degree 

was  Δ = 4 and the Chromatic number χ =4. 

Clearly, χ′ = Δ then the joined graph is said to be 

a class one. 

 

Hexagonal Graphs 

 

Definition 12: A hexagon is a six-sided polygon, 

while a graph is a mathematical structure 

composed of vertices (nodes) and edges 

(connections) between these vertices. Given 

this, a hexagon graph could be understood as a 

graph in which the vertices and/or edges form a 

hexagonal pattern. 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5 and 𝑉6 are 

vertices the path formed by joining vi and vi+1. 

It is a  regular graph. We denote this graph by H. 

𝑒1,𝑒2,𝑒3,𝑒4 , 𝑒5 and 𝑒6are edges. 

 
Proper coloring 

 

1) Colour the vertical opposite  edges  𝑒2  

and 𝑒5  by green 

2) Colour the alternate obliqued edges in 

the top left 𝑒4 and bottom right 𝑒1 by red 

3) Colour alternate obliques edge in the 

top right 𝑒3  and bottom left 𝑒6 by blue. 

 

1.6. Catenation of hexagonal graphs : 

 

Honeycomb networks are built recursively from 

hexagonal tessellation. The honeycomb network 

HC(1) is a hexagon. The honeycomb network is 

obtained by adding several hexagons to the 

boundary edges. 

 

Example 6: 

The joining rule for several hexagon graphs H to 

make a honeycomb network is given below. 

1) Join the vertical edges 𝑒2 and 𝑒5  which 

has the same green colour 

 

https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/Graph_coloring
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2) Join the alternative obliqued edges top 

right 𝑒3 and bottom left 𝑒6 which has 

the same blue colour. 

Join the alternative oblique edges top 

left 𝑒4 and bottom right 𝑒1  which has 

the same red colour 

 
1) Join the alternative oblique edges 

bottom right 𝑒1  and top right 𝑒4  which 

has the same red colour. 

Join the alternative oblique bottom left 

𝑒6 and top right 𝑒3 which has the same 

blue colour 

 

 

 
                                                                                HC      

  

Every cycle includes at least two oblique acute, 

two oblique obtuse and two vertical edges. Thus 

the edges of any cycle are colored with at least 

three colors.  

Maximum degree Δ [HC]  = 3 

Number of vertices in HC = 47 

Number of edges in HC    = 63 

Chromatic number χ(HC).=3 

Clearly, χ′(HC) = Δ(HC). 

 

Observation 4: Since χ′( (HC) ≥∆(HC) = 3 , we 

have a χ′( (HC) = 3. 

 

Conclusion: 

When a graph features a vertex with a degree of 

'k', it necessitates a minimum of 'k' distinct 

colors for the proper coloring of edges linked to 

that vertex. Nonetheless, the chromatic index is 

not solely dictated by the degree. Certain graphs 

exhibit uniform vertex degrees, yet their 

chromatic index surpasses expectations due to 

https://en.wikipedia.org/wiki/Graph_coloring
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additional structural attributes. A regular graph 

on an odd number of vertices is class two. A 

regular graph on an even number of vertices is 

class one. Remarkably, in all the innovative 

patterns we formulated, the degree aligns with 

the chromatic index, denoted as χ′ = Δ, thereby 

categorizing the merged graph as a "class one" 

structure. Analyzing graph patterns helps in 

understanding network connectivity, identifying 

influential nodes, and optimizing network 

performance. 
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