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Abstract 

Recent scientific advancements in information and communication technologies enable Industry 4.0 (I4.0), which 

empowers smart manufacturing with unprecedented operational efficiency and productivity. Integrating the smart 

Industrial Internet of Things (IIoT) facilitates continuous real-time monitoring of manufacturing processes by 

establishing safety controls through data collection. Despite the substantial benefits, the vast network of interconnected 

IoT devices in the I4.0 environment is vulnerable to cyber security threats. Routing Protocol for Low Power Lossy 

Networks (RPL) is a reliable, energy-efficient, and flexible way to set up a routing framework for IIoT-based critical 

industrial communication infrastructure. However, network security is a critical concern in RPL-based IIoT environments 

due to complex patterns and subtle deviations in the behavior of the network. Therefore, it is crucial to introduce novel 

security solutions with more accurate vulnerability analysis and attack detection. This work proposes a Novel RPL 

Security (NRS) approach that includes fuzzing-based vulnerability analysis and vision transformer-based attack detection 

to solve the abovementioned issues. The proposed work encompasses two primary components: the Wasserstein 

Generative Adversarial Network (WGAN)-based fuzzing method for RPL network vulnerability analysis and vision 

transformer-based attack discovery. In the first method, routing data from the RPL-IIoT network is collected, and the 

fuzzing model is combined with the WGAN to improve the vulnerability distribution in the fuzzer output data. The 

analyzed fuzzer output data is converted into images and fed into the vision transformer model for attack discovery. 

The vision transformer improves attack detection accuracy by effectively capturing complex patterns and subtle 

deviations in network behavior. Moreover, the efficacy of the proposed NRS is evaluated using Contiki/Cooja-based 

simulations and Python-based machine-learning models. The results are validated for vulnerability analysis and attack 

detection using various metrics such as detection accuracy, fuzzer output recognition rate, triggered efficiency of 

vulnerabilities, and diversity of generated data, revealing the notable outcome of the proposed approach. 

Keywords: Industrial 4.0, Industrial Internet of Things, Network Vulnerability Analysis, Novel  Fuzzing Method, RPL 

Routing Security, Deep Learning, Wasserstein Generative Adversarial Network, Vision Transformer, and Attack 

Discovery. 

 

Introduction 

The fourth revolution of Industry 4.0 (I4.0) with smart 

manufacturing factories enables novel opportunities 

and disruptive innovations by enabling the smart 

Industrial Internet of Things (IIoT) environment. The 

I4.0 environment comprises sensors, actuators, and 

smart communication elements. The IIoT devices are 

tiny in size and limited in resources like energy, 

bandwidth, and memory. Such devices monitor, collect, 

and transmit data through internet-based connections, 

creating a smart environment. Thus, the IIoT improves 

manufacturing efficiency by offering new opportunities 

and business models. The intelligence system 

automation of I4.0 is enhanced through smart 

machinery connectivity, resulting in tailored products 

and services [1]. Five primary stages are exploited to 

compose the I4.0-based smart manufacturing  

 

industries: sensing devices-based environmental 

monitoring, data collection, data transmission, data 

analysis, and data aggregation [2]. The various sensors, 

actuators, and intelligent devices initially monitor the 

surrounding environment and collect industrial 

information. Further, the data is collected by a high-

capacity device and transmitted to the server location 

for analysis and aggregation. 

Hence, different types of routing protocols are used for 

communication, and the Routing Protocol for Low-

power and Lossy networks (RPL) is the familiar protocol 

that supports IPV6 communication over an IIoT 

environment [3]. Albeit the RPL-IIoT maximizes smart 

communication efficiency and improves productivity in 

manufacturing smart factories by marrying the digital 
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world, RPL security is a major challenge in such an 

environment. The ingenious hacking activities lead to 

different vulnerabilities and system damages [4]. 

Therefore, security in RPL- IIoT is a critical element, and 

it is crucial to focus on diverse security like known, 

unknown, and zero-day vulnerabilities in smartly 

connected digital devices of smart manufacturing 

factories. Generally, the RPL creates low powered 

DODAG structure among the devices and enables 

communications in the network. However, the 

technological diversity and resource limitation 

characteristics increase the RPL security challenges in 

vulnerability analysis and detection [5] [6]. Several 

security vulnerabilities, such as Denial of Service (DoS), 

Distributed DoS, rank, version number, Objective 

Function (OF), and zero-day, are present in the I4.0 

environment [7]. 

A good security model should comprise two methods: 

vulnerability analysis and attack discovery. Firstly, the 

cyber security vulnerability analysis model analyzes the 

different types of known and unknown vulnerabilities 

using various models [8]. Fuzzing is the widely 

employed technique for vulnerability analysis in IoT 

systems [9]. Several fuzzing methods and tools are 

available for the current IoT environment. However, 

due to the massive heterogeneous data generation 

nature, they are not highly fit for the IIoT environment, 

especially in smart factory monitoring and control. 

Among the available fuzzing methods, the learning-

based fuzzing models can increase system automation 

with high vulnerability distribution and minimum cost 

values compared to general fuzzing models. The 

Wasserstein GAN-based fuzzing can increase the 

vulnerability distributions even if the input data is 

highly dimensional. However, integrating fuzzing and 

learning models over the IIoT environment is a major 

question and thus increases the RPL security 

vulnerability analysis challenges [10]. The deep 

learning-based vulnerability models achieve high 

accuracy by automatically learning the massive IIoT 

data [11]. However, a lack of RPL-IIoT feature-rich 

datasets restricts the deep learning model 

performance, and they lack the ability to obtain 

complex patterns over the high-dimensional dataset. 

Image-based vulnerability detection with CNN plays a 

significant role in solving the abovementioned issues. 

Although CNN is considered the fundamental 

component to identify the attacks from images in 

industry 4.0 applications, the Vision Transformer (ViT) 

has become a potential alternative to CNN by 

effectively capturing the global relationships with 

attention mechanisms and improving the detection 

performance. Hence, the concept of a ViT with the 

advanced model is exploited to effectively capture 

complex spatial patterns or global relationships among 

the images. This solution remarkably increases the 

vulnerability and attack detection accuracy under the 

IIoT environment. 

This paper proposes a Novel RPL Security (NRS) model 

with fuzzing for vulnerability and a vision transformer 

for attack discovery over RPL-enabled smart factory 

monitoring and control. The major contributions of the 

proposed model are as follows. 

The primary objective of NRS is to analyze and discover 

the multiple types of vulnerabilities, including zero-day 

over RPL- IIoT. To perform vulnerability analysis and 

detect diverse attacks, the NRS integrates two 

methods: Wasserstein Generative Adversarial 

Networks (WGAN)-Fuzzing-based Vulnerability Analysis 

(WFVA) and Vision Transformer-based Attack Discovery 

(VTAD). 

The proposed model collects the IIoT sample with 

routing-rich features using the Cooja simulator to 

construct the novel RID and improve the vulnerability 

distributions in fuzzing output data. By assuming that 

the novel zero-day vulnerabilities are partially similar to 

the existing vulnerabilities, the RID creates samples for 

zero-day vulnerability analysis and detection. 

To analyze multiple RPl-IIoT vulnerabilities and to 

accomplish high distributions of vulnerabilities in fuzzy 

outputs, the WFVA creates multiple numbers of fake 

samples with the assistance of an automatic WGAN 

model. By executing the deep learning algorithm only 

at edge devices, the NRS effectively handles the 

resource limitation issues of IIoT with minimum cost. 

The NRS boosts vulnerability detection accuracy by 

providing the high-vulnerability distributed fuzzer 

output converted into image patches as input to the 

VTAD model. Advanced attack detection strategy, a ViT 

in attack detection decision-making of NRS, 

significantly enhances accuracy. 

Finally, the Python-based simulation results show the 

superiority of the proposed NRS. The results 

demonstrate the advantage of the proposed NRS in 

terms of various metrics: Fuzzer Output Recognition 

Rate (FORR), Diversity of Generated Data (DGD), 

accuracy, precision, recall, and F1-Score. 
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Literature Survey 

This section divides the literature review into 

vulnerability analysis and discovery-based methods. 

Vulnerability Analysis 

The work in [12] analyzes the vulnerabilities related to 

power systems. It utilizes a Random Chemistry 

algorithm and a comprehensive Complete Cascading 

Failure Graph (CCFG) for vulnerability analysis. The 

study assesses vulnerability using CCFG-based indices, 

revealing variations under uncertainty. To mitigate the 

impact of uncertainty on system vulnerability, the 

vulnerability analysis model tests the system's 

resilience. Further, it analyzes the system risk level 

using different scenarios and utilizes a threshold value 

to measure the uncertainty level of the system. A 

cascading failure simulation (CFS) strategy in [13] 

analyzes the cascading failure propagation issues over 

integrated power-gas systems (IPGSs). It integrates 

different factors like generator and gas well ramping, 

transmission lines tripping and gas pipelines to manage 

the island issues and load-shedding problems. It 

exploits a hybrid learning model with a random forest 

and regression algorithm. Further, it classifies the 

vulnerabilities under different categories. A framework 

in [14] proposes an automatic vulnerability discovery 

with a hybrid neural network structure. It utilizes a 

program source code with fine granularity for inter-

procedural vulnerability detection. It transforms the 

inputs by utilizing a lower-level virtual machine 

intermediate representation (LLVMIR) and backward 

program slicing model to enable analysis over control 

and data level. An integrated data mining framework in 

[15] proposes an automated vulnerability analysis 

model. It considers the vulnerability probability 

distribution model with Topically Supervised Evolution 

Model (TSEM) to analyze the distributions of 

vulnerabilities.  

The research work in [16] introduces a vulnerability 

analysis model for scanning large-scale source code. 

The main intention of such work is to improve 

scalability and accuracy. Further, it includes a deep 

learning strategy to classify images. Another work [17] 

proposes an innovative deep-learning model called 

LineVD to analyze the vulnerabilities in the statement 

level of source code [17]. It designs vulnerability 

detection as a node categorization model and captures 

the dependencies among data and control packets 

based on graph neural. Also, it encodes the tokens of 

raw source code using a transformer-based model. By 

effectively handling conflicting outputs between 

function-level and statement-level information, LineVD 

significantly increases the performance of the 

prediction level, even if the function code vulnerability 

status is unavailable. Moreover, it utilizes a pioneering 

strategy to jointly learn the information from function 

and statement levels with the assistance of neural 

networks, resulting in accurate vulnerability analysis.  

A deep learning-based penetration testing framework, 

LSTM-EVI, has been proposed in [18]. It utilizes a smart 

airport-level testbed model to detect vulnerabilities. It 

collects realistic IoT information by integrating physical 

IoT devices with virtual elements. Capturing benign and 

malicious or scanning data within the smart airport test 

bed increases vulnerability detection efficiency. The 

work in [19] aims to detect the OF-based vulnerabilities 

in the RPL-IoT environment using machine learning. It 

determines the combined attacks against two objective 

functions: Minimum rank with hysteresis objective 

function (MRHOF) and objective function zero (OF0). It 

constructs a novel IoT data set for efficient vulnerability 

analysis. Further, it utilizes cutting-edge technology to 

improve the performance level of the vulnerability 

analysis model. The work in [20] proposed an iDetect 

vulnerability analysis model that detects vulnerabilities 

in the C/C++ source code of embedded IoT operating 

systems. It exploits machine learning tools for 

vulnerability identification. The iDetect design 

consumes minimum energy and is highly suitable for 

detecting vulnerabilities in IoT environments. The work 

in [21] includes the widely used IIoT Computational 

Intelligence Algorithm (CIA) to analyze the 

vulnerabilities in a dark web environment. The 

demonstrates real-world hidden security vulnerabilities 

by creating a scenario. However, the above-discussed 

vulnerability analysis model fails to detect the RPL-I4.0 

vulnerabilities, increasing the cost and complexity in IoT 

scenarios. 

Vulnerability and Attack Detection Using Fuzzing 

Method 

The fuzzing-based vulnerability detection models can 

improve the system automata with minimum costs. 

EOSFuzzer [22] is an advanced black-box fuzzing 

technique that identifies vulnerabilities in EOSIO smart 

contracts. It exploits effective attacking scenarios to 

test the oracles. It consists of various components: 

input generator, executor, instrumented Wasm VM, 
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and vulnerability detection engine for efficient 

vulnerability detection. The work in [23] presents an 

EtherFuzz model, a mutation fuzzing strategy that aims 

to identify Transaction Ordering Dependent (TOD) 

vulnerabilities over smart contracts. It precisely detects 

the vulnerabilities using a defined test oracle with 

mutation amplification test data. However, the unique 

operating environment and complex program 

characteristics make the Ether fuzzer inefficient for 

resource-constrained environments. The work in [24] 

presents a GAXSS approach that efficiently determines 

cross-site scripting vulnerabilities in web applications. It 

addresses vulnerability detection using a novel genetic 

algorithm-based fuzzing model. It improves the attack 

detection efficiency with minimum detection time by 

increasing the system automata and reducing 

algorithm structure complexity. A cutting-edge model 

called HotFuzz has been proposed in [25]. It detects the 

Algorithmic Complexity (AC) vulnerabilities 

automatically in Java libraries. It also integrates a 

genetic algorithm for vulnerability detection. The work 

in [26] presents a novel fuzzing model, named BECFuzz 

[26], to effectively address the following key challenges 

of the fuzzing model: collision at the edge, source code 

availability, and efficiency. The work in [27] proposes a 

fuzzing-based MQTT cybersecurity model for 

vulnerability detection in IoT networks. It inputs the 

ransom data to the fuzzing model and can detect novel 

security breaches in MQTT through effective 

vulnerability analysis. It increases the system automata 

and minimizes the computation cost in a resource-

limited IoT environment. 

The work in [28] presents a MultiFuzz model, a 

coverage-based multi-party protocol strategy utilized 

to detect vulnerabilities in IoT publisher/subscriber 

protocols. It provides a single input with multiple 

connections to increase the fuzzer output efficiency. It 

stimulates the transitions of publisher/subscriber by 

integrating a mutation algorithm. Moreover, it feeds 

the fuzzer outputs for testing by employing a multi-

model. The work in [29] presents a protocol fuzzing 

technique to detect the unknown software 

vulnerabilities of industrial network protocols. Initially, 

it clearly understands the protocol fuzzing concepts to 

utilize it for vulnerability detection. Further, it applies 

the fuzzing-based detection model over RabitMQ with 

the assistance of the MAVlink protocol process. Thus, it 

improves the security in drone-to-ground-based 

communication models of industrial networks.  

The work in [30] presents a new test technique with a 

protocol fuzzing model to detect zero-day security 

vulnerabilities in IIoT environments. It utilizes a black 

box testing model in which the test cases are generated 

using seed pools. It exploits diverse program paths to 

update the seed pool model-based test cases. Further, 

it utilizes three steps that are input, output, and delta, 

to search the novel program areas over a black box 

environment and detect the zero-day vulnerabilities. 

The main intention of the vulnerability analysis system 

in [31] is to select the best communication protocols for 

IoT and Web of Things (WoT) environments. It utilizes 

three intelligent objects to choose messaging and 

application protocols in non-critical and critical multi-

level IoT and WoT. It determines the three objects by 

initial data generation, effective vulnerability analysis, 

and vulnerability discovery models.  

However, the data generated by the IIoT environment 

is captured in terms of tabular form, in which the 

performance is hindered when the dataset comprises 

numerous massive real-time attributes. The existing 

learning models with numerical datasets fail to capture 

the spatial relationships among the significant features, 

resulting in poor detection performance. Converting 

the tabular data into images is a significant solution to 

the abovementioned issue [32]. Another work in [33] 

proposes a novel solution in which CNN is exploited to 

identify heart failure patients' survival status 

accurately. The CNN-based novel model converts the 

numeric data to the image to improve the learning 

efficiency and reduce detection errors. Generally, CNN 

plays a significant role in image-based attack detection. 

However, it fails to obtain the global relationships 

precisely. Therefore, the ViT-based strategies receive 

high attention that can precisely capture the complex 

patterns and improve the detection accuracy.  

The work in [34] includes a ViT-based strategy to detect 

lung diseases effectively and classify them under 

different categories. It classifies the X-rays under 

various classes by including an off-the-shelf ViT model. 

The comparison results demonstrate that the ViT with 

a CNN-based hybrid deep learning-based detection 

model outperforms conventional deep learning 

methods regarding attack detection and efficiency. The 

work in [35] uses the ViT to classify the images in 

remote areas. However, there is no effective solution 

to convert the RPL-specific numeric dataset into images 

for improving the RPL-based industry 4.0 vulnerability 

detection. In addition to that, the existing model uses 
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fuzzing strategies for vulnerability attack analysis, and 

they do not attain better results when applying the RPL-

I4.0 environment. Also, they need high manual analysis 

and minimize the vulnerability distributions in output 

owing to the errors that happened by manual analysis. 

Therefore, innovating a novel IIoT RPL security model is 

crucial that effectively learn the realistic massive 

features with fine-grained spatial relationships to 

improve vulnerability detection efficiency in the RPL-

IIoT environment. 

Problem Statement 

In the current world, IIoT exploits different industry 4.0 

standards to connect different systems that interact 

with the physical world. The diversity in 4.0 standards 

with various network connections increases the 

vulnerabilities, especially in RPL-based routing services. 

Hence, efficient security solutions are needed to 

provide defense against such vulnerabilities. A lot of 

vulnerability analysis and attack discovery models are 

presented in the literature. However, they fail to fulfill 

the RPL-IIoT environment's security issues effectively. 

Firstly, the existing works mainly focus on devices and 

application layer vulnerabilities. Hence, there is no 

unique security model for the RPL-based IIoT 

environment. Secondly, the benchmarking datasets do 

not contain RPL-rich features and data. Thus, it limits 

the evaluation efficiency of RPL-IIoT. Hence, there is a 

need to design an RPL-IIoT dataset for effective 

evaluation. Thirdly, the general fuzzer and other fuzzing 

models increase the manual analysis and decrease 

vulnerability data distribution in fuzzy outputs. Many 

errors happened due to protocol specifications and 

misunderstandings. Finally, the conventional deep 

learning-based vulnerability discovery models 

inherently pose a higher degree of spatial variance and 

improve the false alarm rate due to ineffective learning 

with non-fuzzing inputs. It improves the accuracy with 

a minimum level when adopting fuzzing input datasets 

as images. A ViT is an advanced learning strategy that 

obtains fine-grained spatial relationships that surpass 

the CNN, thereby enhancing vulnerability discovery 

accuracy over RPL-enabled industrial 4.0. Moreover, it 

is crucial to avert such issues by designing a novel RPL-

IIoT security model with fuzzing and ViT models. 

Network Architecture and Vulnerabilities 

A set of tools and applications define the IIoT in which 

large enterprises accomplish end-to-end connectivity 

from core to edge. Industrial 4.0 covers smart 

manufacturing factories, digitalization, and corporate 

sustainability in its broader future scope. The 

applicability of RPL routing in such a smart factory 

monitoring and control environment needs significant 

attention. The RPL routing is applied among the smart 

factory sensors, devices, and edges. The smart factory 

monitoring environment may introduce different 

challenges: signal interference and temporary 

disruptions in communication. Applying RPL routing in 

such an environment is highly resilient to packet loss 

and can easily adapt to lossy network conditions. Thus, 

it assures reliable communication even if the network 

comprises subtle changing conditions. Also, the 

hierarchical structure in the RPL protocol can 

effectively organize the smart factory monitoring 

devices and enable optimized routing paths for 

communication. In the proposed NRS, the RPL can be 

configured to provide well-suited support to real-time 

communication requirements, and it facilitates timely 

routing services to the monitoring data. It is crucial for 

applications with rapid responses, such as in-process 

monitoring and control for equipment over smart 

factory I4.0. The proposed smart factory monitoring 

I4.0 architecture comprises five different layers: cloud 

layer, edge layer, IoT gateway layer, network layer, and 

physical resource layer in which everything is 

interconnected using 5G internet completely, and they 

work automatically. Figure 1 shows the architecture of 

the I4.0 environment. 

Cloud Layer: This layer comprises various servers, 

cloud, data, and application servers to perform in-

depth analysis, offer high storage, and handle resource 

limitation issues. The devices or users can obtain 

information from cloud servers anytime and anywhere. 

Edge Layer: The edge layer comprises different edge 

devices that take the cloud services near the users or 

devices. It also manages the resource limitation 

problems of I4.0 devices by executing complex 

algorithms instead of those at resource-limited devices.  

IoT Gateway Layer: The sensor data is collected and 

converted into digital channels to process further at the 

internet gateway. Further, it transmits the collected 

digital data through the internet for further processing 

before transmitting it to the cloud. The gateways are 

part of the data-collecting systems of edges. The 

gateways are adjacent to the physical layer and 

preliminary to the edge layer. 
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Figure 1: Architecture of Smart Manufacturing and Control of I4.0 

Network Layer: It consists of 5G base stations, wireless 

access points, and industrial switches to enable data 

communication. The data of the IIoT system are 

transferred by this layer using various communication 

protocols. Such protocols should be designed based on 

industry standards and requirements. The protocols 

define the law for data transfer among diverse IIoT 

devices and comprise the security features for reliable 

communications. 

Physical Resource Layer: This layer comprises various 

sensors such as pressure, temperature, and actuators 

to continuously monitor and provide timely reports 

over the smart factory environment. The sensors are 

tiny in size and limited in resources like energy, 

memory, and computation. The sensors monitor the 

specific environment and obtain the data. Further, it 

collects and sends the information to the server 

location for further action.  

IIoT Network Vulnerabilities 

The RPL is the most widely used protocol for IIoT. Albeit 

the RPL provides reliable routing services in a resource-

constrained environment, it lacks strong security 

features against different vulnerabilities. It does not 

incorporate strong security against the vulnerabilities 

of the industrial 4.0 IIoT environment. RPL is exposed to 
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several vulnerabilities, such as objective function, zero-

day, denial of service, and rank attacks.  

OF Vulnerability: The RPL exploits two familiar OFs that 

are OF0 and MRHOF. The OF plays a significant role in 

DODAG construction and routing processes. There is a 

possibility for OF vulnerabilities, like version number, 

rank, and parent selection, in RPL-IIoT. Considering the 

vulnerabilities related to OF is crucial as it significantly 

impacts the network performance. 

Zero-Day: It is a serious type of vulnerability, as the 

manufacturers do not know the vulnerability pattern of 

such attacks. This kind of new attack/hack was 

previously unheard of in the community as a zero-day 

vulnerability. Zero-day vulnerabilities are considered a 

potential security risk, and it is not easy to design 

defenses against them as they have not happened in 

the network previously. The proposed NRS takes 

assumptions on the zero-day sample creation that it is 

partially similar to the existing vulnerabilities to model 

it in the smart factory environment effectively. 

Rank: In this type, a malicious device intends to 

announce a wrong rank, leading the neighboring 

devices to select the malicious device as a preferred 

parent. It is very dangerous in an RPL-based IIoT 

environment, as the wrong parent selection can shrink 

the entire RPL performance. 

Version: In this type, the malicious node manipulates 

or exploits the version number field of the RPL protocol 

to launch the attacks. This type of attack is highly 

related to DoS, which is inaugurated by increasing the 

RPL control traffic during the global repair mechanism. 

Theft: In this type, the attacker may try to manipulate 

the RPL routing table maintained by entities. This way, 

the attacker can redirect the traffic, isolate the nodes 

from routing participation, and disrupt the normal 

routing function. 

Blackhole: In this type, an adversary selects the 

blackhole nodes to discard or drop the routing packets, 

thereby minimizing the RPL performance. 

Sinkhole: In this type, an adversary can divert 

communication traffic toward a compromised or 

malicious node, permitting the attacker to 

eavesdropping or data tampering. 

Selective Forwarding (SF): In this type, a malicious 

node selectively drops certain packets or refuses the 

packets while allowing other nodes to pass through. In 

this way, it can disrupt normal RPL operations. 

Hello Flood (HF): An adversary aims to flood a 

significant or large amount of malicious control packets 

and disrupts the normal routing function of the RPL 

protocol. This attack leads to high energy exhaustion, 

poor network performance, and increased traffic. 

Distributed DoS Vulnerability: It is a type of DoS attack 

where the incoming traffic originates from multiple 

distinct sources, and it is challenging to restrict such an 

attack by blocking a single traffic source. Such attacks 

are analogous to the gate of a shop being blocked by a 

crowd of non-customers, thus disrupting trade. 

Overview of the Proposed Model 

The revolutions in I4.0 advocate the novel technologies 

and automation of conventional industrial structures 

and manufacturing. However, security is a great 

concern that can impact the surveillance of I4.0 

systems. This paper proposes a novel IIoT security 

model, NRS, that integrates WFVA and VTAD strategies. 

An overview of the proposed methodology is explained 

in Figure 2.

 



 
 
 

387 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 45 No. 3 

March 2024 

 

Figure 2: Overview of Proposed Work 

The proposed model comprises two main parts: RPL 

vulnerability analysis and attack discovery. It utilizes 

the WGAN fuzzing model to generate the input fuzzy 

sets and to analyze the RPL vulnerabilities. Fuzzing is an 

effective method to discover vulnerabilities in industrial 

RPL protocol. The WGAN-based fuzzing is highly 

adaptable, as it reduces the manual analysis of other 

fuzzing techniques and effectively deals with massive 

input data over an IIoT environment. Initially, the 

WGAN-based vulnerability analysis model collects 

information from the smart factory monitoring 

environment of I4.0. The fuzzing model is used to 

generate the fuzzing data for vulnerability analysis. 

Consequently, it converts the fuzzing data into various 

image patches and feeds the image dataset as the input 

to the ViT-based attack discovery model. The second 

part of the proposed work utilizes a ViT that exploits an 

advanced transformer encoder to effectively observe 

the environment's complex vulnerability patterns and 

detect various RPL vulnerabilities from the image-

based fuzzing dataset. Moreover, the proposed work 

can effectively analyze and discover attacks of RPL-

based IIoT with high automation using suitable fuzzing 

and ViT strategies. 

 

WGAN-Fuzzing for Vulnerability Analysis (WFVA) 

The WGAN is a variant of the GAN model that can highly 

scale with large data sets and is stable with large-scale 

I4.0 manufacturing applications. Compared with other 

fuzzing techniques, the learning-based fuzzing model 

minimizes manual analysis and automates the system 

without sacrificing performance. Therefore, the NRS 

incorporates the WGAN-Fuzzing for vulnerability 

analysis. Exploiting heterogeneous technologies, 

highly-structured data generation, prone to diverse 

novel attacks, and resource-limited tiny industrial 

device characteristics escalate the security challenges 

in the smart factory monitoring IIoT environment. By 

integrating the WGAN-Fuzzing model to analyze the 

RPL vulnerabilities over IIoT and to generate the fuzzer 

outputs with recent and zero-day vulnerabilities, the 

WFVA increases the attack detection accuracy and 

improves the RPL routing performance over resource-

limited IIoT devices. The NRS executes the WGAN-

Fuzzing only at edge IIoT devices to manage the 

resource limitation issues associated with IIoT devices 

effectively. Finally, the fuzzing output dataset is 

converted into an image dataset, making it highly 

suitable for ViT-based attack detection. The WFVA 

process is explained in the following Figure 3. 
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Figure 3: Process of WFVA 

 

Data Collection of IIoT and RID Construction 

Initially, the WFVA collects the RPL routing data from 

the industrial 4.0 manufacturing environment to 

construct the RPL-IIoT Dataset (RID). The proposed NRS 

model generates the RID using the packet capture 

(PCAP) files from Contiki-based IIoT devices in a virtual 

industrial 4.0 network simulation platform utilizing the 

Cooja simulator. The NRS constructs the novel RID from 

a diverse IPV6-based network environment, which is 

frequently utilized in large-scale IIoT deployment 

scenarios and different types of low-power IIoT devices 

are supported to construct such networks. Further, the 

RID dataset will be evaluated with 100 industrial IoT 

nodes, and hence, it can be exploited to design a 

scalable security vulnerability analysis and attack 

discovery model for an IIoT network. The RID dataset is 

a good solution for RPL-IIoT security design as it has 

lightweight network packet traces which can be 

employed over resource-limited IIoT devices. The 

constructed RID comprises different network 

vulnerability types: OF, zero-day, rank, and DDoS,  

Data Sample Creation: The proposed NRS exploits the 

Cooja simulator to collect the data from the IIoT 

environment and construct the RID with a rich set of 

vulnerabilities. The NRS generates the IIoT data from 

the industrial 4.0 environment using Cooja. Thus, it 

effectively handles the lack of IIoT vulnerability 

datasets. Initially, by running the RPL-IIoT code in 

Cooja, the simulator collects the RPL traces as raw 

packet capture (PCAP) files from the environment. 

After data collection, the data normalization is applied 

to the raw samples. An example of raw data collection 

samples is depicted in Table 1. 
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Table 1: A sample of Raw RPL-IIoT Dataset 

 

Data Normalization: Generally, the I4.0 manufacturing 

scenario is very dynamic, and the data collected from 

such an environment have varying central tendencies. 

Hence, the NRS exploits the min–max normalization 

technique to normalize the attribute values into a 

common range. The equation for the min-max 

normalization value of RID (RIDNorm) is given as 

follows. 

RIDNorm =
RIDact − RIDmin

RIDmax − RIDmin

                (1) 

In equation (1), the term RIDact denotes the actual 

value. The terms RIDmax and RIDmin refers to the 

maximum and minimum values for normalization, 

which is decided using actual value. Further, the 

proposed NRS utilized the WGAN-Fuzzing to analyze 

the vulnerabilities of RID and generate the WFVA 

output generation. The WFVA output comprises ten 

types of vulnerabilities: OF, zero-day, rank, DDoS, 

version, theft, blackhole, sinkhole, SF, and HF. 

PCAP to CSV Transformation: The NRS transforms the 

PACP files of the normalized dataset into Comma 

Separated Values (CSV) with the assistance of Python 

libraries. Generally, the collected PCAP files are huge, 

and the NRS dissects the PCAP into CSVs using 

Wireshark. Further, the converted CSV files are 

aggregated and sent as input to the WGAN-Fuzzing 

Model. The sample dataset is given in the following 

Table 2. 

 

Table 2: Dataset Details 

Dataset 
Benign Vulnerabilities 

Scenario Devices Total Packets Total Packets 

OF 
OF10 

 
10 

 
1,60,820 

 
8,415 

 

Zero-Day 
ZD10 

 
10 

 
0 
 

0 
 

Rank 
R10 

 
10 

 
1,60,820 

 
5,175 

 

DDoS 
DDoS10 

 
10 

 
1,60,820 

 
3,857 

 

Version 
V10 

 
10 

 
1,48,760 

 
4,985 

 

Theft 
T10 

 
10 

 
95,760 

 
2,684 

 

Blackhole 
B10 

 
10 

 
1,34,600 

 
5,288 

 

Sinkhole 
S10 

 
10 

 
1,38,778 

 
6,825 

 

SF 
SF10 

 
10 

 
1,05,610 

 
5,885 

 

HF 
HF10 

 
10 

 
1,32,157 

 
5,175 

 

 

Further, the preprocessing steps are applied over the 

datasets only to extract the RPL-rich features for 

vulnerability analysis and attack detection. After 

feature extraction, the dataset comprises the features 

described in 

 

No Time Source Destination Packet Length Information 

121 8.84569 SID12::c30c::0::2 DID12::c30c::0::3 102 RPL Control Message 

122 8.84784 SID12::c30c::0::6 DID12::c30c::0::8 97 RPL Control Message 

123 8.841086 SID12::c30c::0::12 DID12::c30c::0::18 76 RPL Control Message 
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Table 3. 

Table 3: Extracted Features of RID 

 

The RID network packet traces with extracted features 

are provided as input to the WGAN fuzzing model. The 

WGAN-Fuzzing starts to generate the output test cases 

of fuzzer outputs by taking the RPL-IIoT network packet 

trace as inputs. The process of WGAN-Fuzzing is 

explained in algorithm 1. 

Algorithm 1: WGAN-Fuzzing

 

 

 

 

No Features Description 

1 No Sequence number of network packet 

2 SID Source device Identity 

3 DID Destination device Identity 

4 L Length of the packet 

5 PTR Packet Transmission Rate 

6 PRR Packet Reception Rate 

7 ATT Average Time for Transmission 

8 ATR Average Time for Reception 

9 CTP Count of Transmitted Packets 

10 CRP Count of Received Packets 

11 minute Minutes (from Time) 

12 second Seconds (from Time) 

13 millsec Milliseconds (from Time) 

14 Label Types of Attack 

15 RPL_DAO RPL control packets 

16 RPL_DIO RPL control packets 

17 RPL_DIS RPL control packets 

Input: Raw Dataset  

Output: WGAN-Fuzzing Output Dataset 

Initializes the WGAN Fuzzing model; 

 Feeds the raw dataset as input to the WGAN-Fuzzing model; 

WGAN do { 

 For (Attack=n; n≤10; n++) { 

  Generate the initial test case for attack n; 

  Executes the fuzz test with real data in the dataset; 

  Identify the targeted fuzzed outputs through analysis; 

  Final test case generation; 

  } 

 Consolidates the n test cases; 

 Constructs the WGAN-Fuzzer output dataset; 

} 
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Vulnerability Analysis over RPL-IIoT Protocol 

Owing to the resource-constrained nature of IIoT 

devices and the unsecured internet connectivity of the 

RPL routing protocol, RPL-IIoT is prone to various 

attacks. The RPL-IIoT routing is prone to various attacks 

that target different functionalities of the DODAGs like 

topology disruption, unwanted network resource 

utilization and traffic misrouting. Developing novel 

security solutions to RPL protocol and performing 

regular vulnerability assessments for auditing and 

addressing the potential vulnerabilities over RPL-

industry 4.0 is crucial. Therefore, the NRS model 

incorporates WFVA to analyze such types of RPL 

vulnerabilities clearly and to generate vulnerability-

based fuzzing output data. The fuzzing models are 

generally used to analyze or detect network 

vulnerabilities. It builds the test cases according to the 

inconsistent protocol specifications in many scenarios. 

The disregarded information of RPL protocols is 

vulnerable to zero-day or novel attacks. Also, the 

conventional fuzzing techniques need a high cost to 

implement in the I4.0 scenario. The WGANs are also 

called deep adversarial learning models, which do not 

require protocol specifications and are not too 

expensive to generate the fuzzing output. Therefore, 

the NRS exploits the more stable and higher scalable 

WGAN-fuzzing model for RPL-IIoT vulnerability analysis.  

WGAN-Fuzzing Model Design: The WFVA intends to 

intelligently analyze the vulnerabilities from raw 

network packets of RPL-IIoT from RID. After 

vulnerability analysis, it can obtain a concrete fuzzy 

output data generation model to generate well-formed 

learning data for attack discovery. Thus, it provides 

accurate learning sets to the learning model and 

increases detection accuracy. The WGAN-Fuzzing 

consists of two models: are generator and a 

discriminator. The following Figure 4 shows the 

architecture of the WGAN-Fuzzing model.  

 

Figure 4: Design Model of WFVA 

Firstly, the generator model comprises three layers: 

input, hidden and output. The proposed WFVA adjusts 

the number of hidden layers according to the size of the 

RID. Regarding the discriminator of the GAN network 

structure, the WFVA utilizes the fully connected neural 

network structure as an activation function in the input 

layer of WGAN-Fuzzing. Thus, it reduces the 

calculations on the generator side. The maximum and 

minimum lengths of IIoT features are set using the 

input data size of the neural network or WGAN. Thus, it 

processes the data uniformly. The WFVA utilizes the 

rectified linear units (ReLU) as an activation function in 

the middle layer, as it neglects the vanishing gradient 

problem in training and averts the overfitting issues 

caused by zero-valued neurons with minimum 

computational costs. Finally, the WFVA selects the 

sigmoid function as an activation function in the output 

layer of WGAN-fuzzing. The output values lie between 

0 to 1. The WGAN employs the Earth Mover’s Distance 

(EMD) to compute the difference between two feature 

distributions. It is estimated using the following 

equation (2). 

 

W(fi, fj) = infk∈∏(fi,fj)E(i,j)~k[||i − j||]     (2) 
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In equation (2), the terms 𝑓𝑖  𝑎𝑛𝑑 𝑓𝑗 represent the two 

feature distributions. The term k is the joint distribution 

value of 𝑓𝑖𝑎𝑛𝑑 𝑓𝑗. The generator estimates the joint 

data values for each feature and provides it as input to 

the discriminator model. Consequently, the 

discriminator generates the output fuzzer values to the 

corresponding input values. 

 

 

 

 

 

 

 

 

WFVA Output Data Generation 

Fuzzing can analyze and discover security 

vulnerabilities in a protocol by providing a large amount 

of unexpected input to the learning model. A significant 

part of WFVA is output data generation. The proposed 

NRS model considers four types of RPL vulnerabilities. 

Hence, different feature sets are essential to analyze 

such types of attacks. The key features crucial to 

discovering such types of attacks are discussed as 

follows. Firstly, the objective functions and rank fields 

are generally used to analyze the OF and rank 

vulnerabilities. Secondly, the number of packets and 

energy fields are used to identify the DDoS attack. 

However, the zero-day attacks are unknown, as they 

have not happened till now in the network. The WGAN-

Fuzzing model provides random and invalid input sets 

to the GAN model to generate future zero-day attack 

samples. Further, it is used to train the learning 

algorithm for vulnerability discovery. Algorithm 2 

explains  the WFVA model.  

Algorithm 2: Working Process of WFVA Model 

 

//WFVA Model// 

Input: Real-time RPL-I4.0 and RID 

Output: Fuzzy Output Data with Vulnerabilities 

NRS do { 

 Collects the realistic data from I4.0 environment; 

 Constructs the RID for vulnerability analysis and discovery; 

 Divides the RID into learning and testing; 

Applies min–max normalization technique using equation (1); 

 Provides the learning data to the WFVA for analysis; 

WFVA do { 

 Generates fake samples related to realistic data; 

 Compares the fake sample with multiple hidden layers; 

 Hidden layer (n=Size (RID); n++); 

 Generate output fuzzer values with data diversity; 

 } 

 Feeds the output fuzzer values as input to VTAD for attack discovery; 

 }}; 
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Fuzzing Data to Image Conversion: The fuzzing output 

data is in CSV file format. Hence, converting the CSV 

files as images to input the fuzzing output data for the 

ViT-based vulnerability discovery model is crucial. This 

process is shown in the following figure 5.

Figure5: Fuzzing Output to Image Conversion 

 

The new CSV files of fuzzer output are in different sizes 

in terms of number of rows and columns. Therefore, 

the proposed NRS applies some preprocessing steps to 

ensure that the images have the right sizes that are 

highly fit for the modules in the ViT. The mapping step 

is used to convert the CSV as JSON image values. Firstly, 

it initializes a blank image with the same height and 

width as the number of rows and columns of the fuzzer 

output CSV file. Consequently, each feature value from 

the fuzzer output CSV file will be converted into a JSON 

value with the appropriate color. It is accomplished by 

determining the highest and lowest value of each 

feature in the fuzzer output dataset and then exploiting 

this feature range to map the feature value linearly to 

the JSON range.  

Generating RPL-IIoT data benefits precise vulnerability 

detection greatly, and at the same time, it is a major 

disadvantage that numerical data with deep learning 

solutions significantly minimizes the vulnerability 

discovery rate. They fail to precisely capture the 

complex learning patterns of high-dimensional RPL 

datasets and diminish the detection performance. To 

rectify this issue, the NRS creates an image of each test 

case generated by the WGAN fuzzer. Further, the NRS 

maps the highly correlated RPL features for attack 

detection at nearby locations of the image and 

improves the image conversion quality of the RPL 

numeric dataset. Different image samples are created 

from the same sample during image conversion by 

performing rotation, feature location changes, and 

pixel variations. Thus, it increases the number of image 

samples in the training dataset and maximizes the 

performance of vulnerability detection. In the image, 

the NRS identifies the brightness of each region by 

representing feature significance values between 0 and 

1 of the data. The images are created in gray space. 

Moreover, the image dataset is provided as input to the 

VTAD model for vulnerability detection. 

Vision Transformer-based Attack Discovery (VTAD) 

The proposed NRS model integrates a novel ViT 

strategy for vulnerability discovery. The ViT can obtain 

fine-grained spatial data from the environment and 

enhance image-based attack detection accuracy in an 

RPL-enabled smart monitoring industry 4.0 

environment. Figure 6 shows the architecture of the ViT 

integrated in NRS. The NRS feeds the RID with the 

images as input to the ViT. The ViT has three layers: 

input, transformer encoder, and output. The input layer 

obtains the input images as different patches and sends 

them to the transformer encoder. The transformer 

encoder comprises two main parts: multi-head self-

attention and feed-forward. In the self-attention layer, 

the input images are transformed into three vectors: 

query, key, and value with dimension. The ViT 

transformer derives from different inputs to pack them 

into three various matrices to construct and estimate 

the self-attention function. The vectors that have high 

probabilities receive more attention in the upcoming 

layers. The multi-head in the self-attention layer is a 

mechanism that can be exploited to boost the 

efficiency of the self-attention layer. 

The transformer applies a feed-forward for linear 

transformations to each encode and decode process of 

the self-attention layer. The transformer output is 

provided as input to the output or SoftMax layer. In the 

proposed NRS, the number of layers is adjusted 

according to the dataset dimensionality, making the 
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NRS more suitable for RPL-industry 4.0 vulnerability 

detection. Finally, SoftMax decodes the transformer 

outputs and determines the vulnerabilities according to 

the self-attention significance. The ViT learns the input 

image dataset using multiple layers, and the generator 

generates a fake information value for feedback 

generation. Further, it matches the learning data with 

the testing data and determines the vulnerabilities 

through the encoding and decoding with multi-head 

self-attention. Finally, SoftMax generates the output to 

the corresponding input. At this stage, the attention to 

the NRS focuses on the last layer to obtain the best 

detection results. Finally, it combines the features 

identified in the previous phase as input to the 

classifier, which is performed according to the SoftMax 

layer. In this way, the NRS determines the 

vulnerabilities most accurately. Compared to the 

transformer activation function, the output of the 

SoftMax layer activation function is unique, as it plays a 

significant role in vulnerability discovery. 

 

Figure 6: Architecture of Vision Transformer 

 

Initially, the NRS provides the image output data as 

input to the VTAD model for attack discovery. The ViT 

performs learning with the output of the WFVA image 

dataset with labels. Further, they start the attack 

discovery on the testing data. Further, it compares the 

testing data with the learning information and provides 

the output with attacks. Moreover, the VTAD classifies 

the detected attacks under different classes like OF and 

rank, Zero-day, DDoS, version, theft, blackhole, 

sinkhole, SF, and HF. Algorithm 3 explains the VTAD 

model. 
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Algorithm 3: Working Process of VTAD Model 

 

Experimental Evaluation 

The effectiveness of the proposed approach is analyzed 

using Python machine-learning libraries. A personal 

computer with Intel i5 2.5GHZ CPU and 16 GB memory 

is utilized to carry out the experiment. Using deep 

learning strategies, the NRS exploits RID to build the 

learning and testing phases. The Contiki is highly 

suitable for simulating the IIoT environment, as it is a 

reliable and widely used open-source network 

simulator that can enable connections among tiny, low-

cost and low-power industrial devices. It also supports 

the RPL protocol for low-power IPv6 networking and 

the 6LowPAN adaptation layer protocol. For evaluation, 

the proposed WGAN-Fuzzing model is compared with 

the existing general fuzzer [36] and GAN-based fuzzer 

[37]. Further, the vulnerability detection efficiency of 

the ViT model is evaluated by comparing it with the 

existing deep learning algorithms. The following Table 

4 shows the simulation parameters of the Cooja. 

Table 4: Simulation Parameters for Dataset Generation 

Parameter Values 

Simulator Contiki Cooja 

Protocol RPL 

Simulation Area 500m*500m 

Number of Nodes 100 

Number of Attackers 10 

Physical Layer IEEE 802.15.4 

Radio Medium UDGM 

Transmission Range 50 m 

Simulation Time 300 seconds 

  

 

Performance Metrics 

The results are obtained using the following metrics. 

Vulnerability Analysis: 

Fuzzer Output Recognition Rate (FORR): It is the 

percentage of output generated by the WGAN-Fuzzing 

Model. 

Triggered Efficiency of Vulnerabilities (TEV): It denotes 

the number of vulnerabilities triggered by WGAN 

fuzzing after vulnerability analysis. 

//VTAD Model// 

Input: Image Dataset; 

Output: Attack discovery under different classes; 

ViT do { 

Initiate the learning process with image dataset; 

Transformer do { 

Perform learning with labeled fuzzing output data; 

Initiates the testing process for attack discovery; 

Discover the attacks using different layers; 

Classifies the attacks under different classes; 

}}; 
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Diversity of Generated Data (DGD): It is the ability to 

maintain diverse learning data of the WGAN-Fuzzing 

model. 

Attack Discovery: 

Detection Accuracy: It is the percentage of 

vulnerabilities that are correctly identified as attacks. 

Precision: It is the percentage of correctly identified 

vulnerabilities. 

Recall: It is the percentage of correct positive 

predictions from the actual positive samples in the 

dataset. 

F1-Score: It is the combination of precision and recall. 

Experimental Results 

Vulnerability Analysis Results: 

To evaluate the effectiveness of the proposed WGAN-

Fuzzing model, the learning epochs are varied from 10 

to 100. 

 

Figure 7: Learning Epochs VS FORR 

 

 

Figure 8: Learning Epochs VS TEV 
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Figure 9: Learning Epochs VS DGD 

 

The WGAN-Fuzzing-based vulnerability model 

simulation results are taken by providing 70% of the RID 

as fuzzing input data. The input samples are divided by 

various epochs to analyze the performance of WGAN-

fuzzing under various scenarios. Figure 7 demonstrates 

the FORR results of the general fuzzer, GAN-Fuzzer, and 

WGAN-Fuzzer. The results show that the WGAN-

Fuzzing model generates a high percentage of realistic 

output samples compared to the other two algorithms. 

The WGAN model in NRS can improve output 

generation accuracy by fully automating the 

vulnerability analysis in I4.0 systems. For example, the 

general fuzzer, GAN-Fuzzer, and WGAN-Fuzzer 

accomplish 91%, 94.5% and 99.1% of FORR for 100 

epochs. Figure 8 shows the TEV comparison results of 

general fuzzer, GAN-Fuzzer, and WGAN-Fuzzer. The 

WGAN-Fuzzing model increases the TEV by varying the 

epochs from low to high. The WGAN model can 

increase vulnerability analysis to its nature. Thus, it 

triggers the number of vulnerabilities in fuzzy output 

generation and increases the performance of the 

fuzzer. Moreover, Figure 9 demonstrates the DGD 

values of the general fuzzer, GAN-Fuzzer, and WGAN-

Fuzzer by varying the epochs from 20 to 100. Compared 

to other fuzzers, the WGAN-fuzzer can improve the 

data diversity maintenance efficiency. For instance, 

general fuzzer, GAN-Fuzzer, and WGAN-Fuzzer attain 

4.1, 6.3, and 7.8 of DGD under 100 epochs scenario.  

 

Figure 10: Box Plot for Proposed Dataset 

Figure 10 plots the box plot of the proposed dataset. 

The box plot is a data visualization strategy that 

demonstrates the sixteen features' data distribution by 

employing multiple lines and boxes. It allows WGAN-

fuzzer output dataset features over a geographical 

area. It displays the variation in samples of a numeric 
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fuzzer output dataset. The results show that the first 

feature is highly distributed, and features 9 and 10 

receive second place for data distribution. The other 

features have minimum samples compared to 1, 9, and 

10. 

 

 

Figure 11: Heatmap of Proposed Dataset 

Figure 11 depicts the heatmap of the proposed dataset. 

The heatmap is a data visualization strategy 

representing the individual feature magnitudes within 

the WGAN-Fuzzer output dataset as color. The 

variations may be in two cases: hue and intensity. The 

heatmap assists in building the learning models with 

rich features that highly correlate to vulnerability 

detection. It is built by converting the correlation matrix 

into different color dimensions. The figures depict that 

CTP and CRP's feature space is highly rich for 

vulnerability detection. The dimensional space with 

one intensity value highly contributes to vulnerability 

detection. 
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Figure 12: (A, B, C, D, E, 

F, G, H, I, J, and K) Histograms of Various Features of 

Proposed Dataset 

Figure 12 compares the histogram frequencies of 

different features in the proposed dataset. The 

histogram representation assists in easily 

understanding which feature is most and least common 

for vulnerability detection. In a histogram 

representation, the feature type is shown on the 

horizontal axis, and the feature frequency is depicted 

on the vertical axis. The histograms of different 

features, including RPL-DIS, DAO, and DIO, show the 

importance of each feature in vulnerability analysis and 

attack detection. 

Attack Discovery Results: 

The NRS analyzes the attack discovery results of the 

proposed VTAD mechanism by comparing it with 

existing deep learning models that are Random Forest 

(RF) [38], Recurrent Neural Networks (RNN) [39], and 

Convolutional Neural Networks (CNN) [40], CNN-Image 

(CNN-I), and Gated Recurrent Unit (GRU). For 

evaluation, the fuzzer output dataset that comprises 

numeric data is provided as input to the RF, RNN, and 

CNN algorithms. Instead, the converted images are 

provided as input to the CNN-I, GRU, and proposed 

VTAD. Moreover, the performance of RF, RNN, and CNN 

are evaluated with numeric datasets, and the efficacy 

of CNN-I, GRU, and VTAD are analyzed using image 

datasets.

 

Figure 13: Algorithms Vs Detection Accuracy 
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Figure 14: Algorithms Vs Precision 

 

Figures 13 and 14 show the detection accuracy and 

precision results of RF, RNN, CNN, CNN-I, GRU, and 

proposed VTAD algorithms. In Figure 10, the proposed 

VTAD outperforms the other five algorithms in terms of 

accuracy. For instance, the detection accuracy of VTAD 

is 98.41%. It is higher by 4.9%, 22.62%, 14.69%, 4.74%, 

and 17.4% than RF, RNN, CNN, CNN-I, and GRU, 

respectively. The main reason is that the proposed 

VTAD exploits the advantage of ViT in vulnerability 

detection in which the complex patterns are effectively 

learned from a high-dimensional I4.0 dataset. Thus, the 

proposed vulnerability detection strategy VTAD 

minimizes the error rates and increases the detection 

accuracy compared to the other five algorithms. For 

example, the precision of VTAD is 96.61%, whereas the 

GRU accomplishes 95.63% of precision. By converting 

the numeric dataset into the image, the VTAD improves 

the learning accuracy and enhances the precision rate.

 

Figure 15: Algorithms Vs. Recall 
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Figure 16: Algorithms Vs F1-Score 

 

Figures 15 and 16 depict the comparative relationship 

of recall and F1-score of RF, RNN, CNN, CNN-I, GRU, and 

proposed VTAD algorithms. The results demonstrate 

that the proposed VTAD model accomplishes better 

than the other five algorithms. The main reason is that 

the VTAD model exploits the ViT that precisely captures 

the spatial relationship among the features in the 

image dataset and improves the learning efficiency, 

resulting in a high vulnerability detection rate. Thus, it 

boosts the recall when compared with other 

algorithms. For example, the proposed model obtains 

98.25% of recall value, improving by 19.83%, 8.45%, 

8.56%, 0.29% and 38.25% to RF, RNN, CNN, CNN-I, and 

GRU algorithms. Unlike VTAD, the RF, RNN, and CNN do 

not incorporate the ViT and fail to effectively capture 

the complex patterns and subtle deviation in the large-

scale I4.0 dataset. Thus, it minimizes the F1-score when 

compared with VTAD. For instance, the RF, CNN, and 

VTAD attain 86.78%, 84.2%, and 98.28% of F1-score 

values, respectively. 
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Figure 17: Illustrates the ROC curve relationships of 
different learning strategies. 

RF, RNN, CNN, CNN-I, GRU, and VTAD. Generally, the 
ROC curves show the visualization trade-off between 
the false positive rate (x-axis) and the true positive rate 
(y-axis) across different decision thresholds. The 
proposed NRS estimates the false positive and true 
positive rates for each learning strategy RF, RNN, CNN, 
CNN-I, GRU, and VTAD across various thresholds for 
constructing the ROC curve visualization. Through 
visual inspections, it is concluded that the ROC curves 
of the proposed VTAD are closer to the plot's top-left 
corner, which is more desirable, as it accomplishes a 
higher true positive rate value while maintaining a 
lower false positive rate value, as shown in figure 17 (f). 

Conclusions 

This paper proposes a Novel RPL Security NRS model for 

the RPL-based I4.0 manufacturing environment. Two 

techniques, such as WFVA and VTAD, are integrated by 

NRS for vulnerability analysis and discovery. The NRS 

collects the realistic RPL-IIoT data and constructs the 

novel RID to rectify the dataset lacking issues. The 

proposed NRS effectively captures the complex 

patterns and improves the learning efficiency by 

converting the numeric dataset into an image dataset. 

Further, it escalates the system automata and 

minimizes the resource consumption costs of the I4.0 

environment by integrating a WGAN-Fuzzing-based 

vulnerability analysis model. The algorithm complexity 

is reduced by adjusting the hidden layers according to 

the dataset size. The NRS enhances the detection 

accuracy level by providing the high vulnerability 

distributed image-based fuzzer output data as input to 

the ViT-based attack discovery model, resulting in high 

vulnerability detection efficiency. Moreover, the 

simulation results demonstrate that the proposed NRS 

outperforms the existing methods regarding fuzzer 

output recognition rate, triggered efficiency of 

vulnerabilities, diversity of generated data, detection 

accuracy, precision, recall, and F1-score. 
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