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Abstract 

This research paper investigates the magnetohydrodynamic (MHD) boundary layer flow over a stretching 

surface in porous media. The study aims to analyze the effects of various parameters, such as the magnetic 

field, porosity, and stretching rate, on the flow characteristics and heat transfer. The governing partial 

differential equations are transformed into a system of nonlinear ordinary differential equations using 

similarity transformations. The resulting equations are then solved numerically using the Runge-Kutta-Fehlberg 

method. The effects of the governing parameters on the velocity and temperature profiles, as well as the skin 

friction coefficient and local Nusselt number, are presented graphically and discussed in detail. The results 

indicate that the magnetic field and porosity have significant influences on the flow and heat transfer 

characteristics. The findings of this study have potential applications in various fields, including materials 

processing, geothermal engineering, and heat exchanger design. 
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1 Introduction 

1.1. Background and motivation 

The study of magnetohydrodynamic (MHD) 

boundary layer flow over a stretching surface in 

porous media has gained significant attention in 

recent years due to its wide range of applications 

in various engineering and industrial processes. 

These applications include materials processing, 

geothermal engineering, heat exchanger design, 

and the production of polymer sheets and 

filaments (Hayat et al., 2015). The presence of a 

magnetic field and the porosity of the medium 

have a profound impact on the flow and heat 

transfer characteristics, making it essential to 

understand their effects for optimal design and 

operation of such systems (Khan et al., 2017). 

The concept of boundary layer flow over a 

stretching surface was first introduced by Crane 

(1970), who provided an exact solution for the 

problem of a linearly stretching plate in a 

quiescent fluid. Since then, numerous studies have 

been conducted to explore various aspects of this 

problem, considering different stretching 

velocities, fluid properties, and boundary  

 

conditions (Gupta and Gupta, 1977; Grubka and 

Bobba, 1985; Chen and Char, 1988). 

The presence of a magnetic field in the boundary 

layer flow adds another layer of complexity to the 

problem. The interaction between the magnetic 

field and the electrically conducting fluid gives rise 

to a Lorentz force, which tends to slow down the 

fluid motion and alter the heat transfer 

characteristics (Chakrabarti and Gupta, 1979). The 

study of MHD boundary layer flow has important 

applications in magnetic materials processing, 

electromagnetic casting, and the design of MHD 

generators and pumps (Hayat et al., 2016). 

The inclusion of porous media in the analysis of 

boundary layer flow over a stretching surface is 

motivated by its relevance in various engineering 

applications, such as geothermal systems, oil and 

gas extraction, and heat exchanger design (Nield 

and Bejan, 2013). The presence of a porous 

medium affects the flow dynamics by introducing 

an additional resistance to the fluid motion, which 

is characterized by the Darcy's law (Vafai and Tien, 

1981). The combined effects of a magnetic field 

and porous media on the boundary layer flow over 
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a stretching surface have been the subject of 

numerous studies in recent years (Hayat et al., 

2018; Sharma et al., 2019). 

1.2. Literature review 

The study of MHD boundary layer flow over a 

stretching surface in porous media has been 

extensively investigated in the literature. Anjali 

Devi and Thiyagarajan (2006) analyzed the steady 

nonlinear hydromagnetic flow and heat transfer 

over a stretching surface in a porous medium, 

considering temperature-dependent fluid 

properties. They employed a numerical solution 

using the Runge-Kutta-Gill method and found that 

the magnetic field and porosity have significant 

effects on the flow and heat transfer 

characteristics. 

Hayat et al. (2010) investigated the effects of 

Ohmic heating and viscous dissipation on the MHD 

flow of a second-grade fluid over a stretching 

surface in a porous medium. They used the 

homotopy analysis method to solve the governing 

equations and observed that the Ohmic heating 

and viscous dissipation have a significant impact 

on the temperature distribution in the boundary 

layer. 

Rashidi et al. (2014) studied the MHD boundary 

layer flow over a stretching surface in a porous 

medium with heat generation or absorption. They 

employed the homotopy analysis method to 

obtain semi-analytical solutions and found that the 

heat generation or absorption parameter has a 

substantial effect on the temperature profile and 

the local Nusselt number. 

Khan et al. (2015) analyzed the unsteady MHD 

boundary layer flow and heat transfer of a 

nanofluid over a stretching surface in a porous 

medium. They considered the effects of Brownian 

motion and thermophoresis and solved the 

governing equations using the finite element 

method. The results showed that the magnetic 

field, porosity, and nanofluid parameters have 

significant influences on the flow and heat transfer 

characteristics. 

Sharma et al. (2018) investigated the MHD 

boundary layer flow and heat transfer over a 

exponentially stretching surface in a porous 

medium with suction/injection. They used the 

Keller-box method to solve the governing 

equations numerically and found that the 

exponential stretching parameter, magnetic field, 

and suction/injection have a profound impact on 

the velocity and temperature profiles, as well as 

the skin friction coefficient and local Nusselt 

number. 

Recently, Hayat et al. (2020) studied the MHD 

boundary layer flow of a Williamson fluid over a 

stretching surface in a porous medium with 

Cattaneo-Christov heat flux model. They employed 

the homotopy analysis method to obtain semi-

analytical solutions and observed that the 

Williamson fluid parameter and the Cattaneo-

Christov heat flux have significant effects on the 

flow and heat transfer characteristics. 

1.3. Objectives of the study 

The present study aims to investigate the MHD 

boundary layer flow over a stretching surface in 

porous media with the following objectives: 

1. To formulate the governing equations for the MHD 

boundary layer flow over a stretching surface in 

porous media, considering the effects of magnetic 

field, porosity, and stretching rate. 

2. To transform the governing partial differential 

equations into a system of nonlinear ordinary 

differential equations using similarity 

transformations. 

3. To solve the transformed equations numerically 

using the Runge-Kutta-Fehlberg method and 

validate the numerical scheme. 

4. To analyze the effects of various governing 

parameters, such as the magnetic parameter, 

porosity parameter, and stretching parameter, on 

the velocity and temperature profiles, as well as 

the skin friction coefficient and local Nusselt 

number. 

5. To discuss the practical implications of the findings 

and provide recommendations for future work in 

this field. 

By achieving these objectives, the present study 

aims to contribute to the existing knowledge on 

MHD boundary layer flow over a stretching surface 

in porous media and provide valuable insights for 

the design and optimization of related engineering 

applications. 

 

2. Mathematical Formulation 

2.1. Governing equations 

The mathematical formulation of the MHD 

boundary layer flow over a stretching surface in 
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porous media is based on the conservation laws of 

mass, momentum, and energy. The governing 

equations for this problem are derived from the 

Navier-Stokes equations, which describe the 

motion of a viscous, incompressible, and 

electrically conducting fluid (Schlichting and 

Gersten, 2017). The flow is assumed to be two-

dimensional, steady, and laminar, with the 

stretching surface being located at y = 0 and 

extending in the x-direction (Mukhopadhyay, 

2013). 

The continuity equation, which represents the 

conservation of mass, is given by: 

∂u/∂x + ∂v/∂y = 0 

where u and v are the velocity components in the 

x and y directions, respectively (Bansal, 2013). 

The momentum equation, which describes the 

conservation of momentum, is modified to include 

the effects of the magnetic field and the porous 

medium. The modified momentum equation in the 

x-direction is given by: 

u ∂u/∂x + v ∂u/∂y = ν ∂²u/∂y² - σB₀²u/ρ - νu/K 

where ν is the kinematic viscosity, σ is the 

electrical conductivity, B₀ is the strength of the 

applied magnetic field, ρ is the fluid density, and K 

is the permeability of the porous medium (Bejan, 

2013). The terms on the right-hand side of the 

equation represent the viscous force, the Lorentz 

force, and the Darcy's law resistance, respectively 

(Nield and Bejan, 2013). 

The energy equation, which represents the 

conservation of energy, is given by: 

u ∂T/∂x + v ∂T/∂y = α ∂²T/∂y² 

where T is the temperature and α is the thermal 

diffusivity of the fluid (Bergman et al., 2011). 

2.2. Boundary conditions 

The boundary conditions for the MHD boundary 

layer flow over a stretching surface in porous 

media are specified at the surface (y = 0) and in 

the free stream (y → ∞). At the stretching surface, 

the velocity components and the temperature are 

prescribed, while in the free stream, the velocity 

and temperature approach their respective free 

stream values (Ishak et al., 2008). 

The boundary conditions for the velocity 

components are: 

At y = 0: u = U_w(x) = ax, v = 0 As y → ∞: u → 0 

where U_w(x) is the stretching velocity of the 

surface, which is assumed to be proportional to 

the distance x from the origin, and a is a positive 

constant (Sajid and Hayat, 2009). 

The boundary conditions for the temperature are: 

At y = 0: T = T_w As y → ∞: T → T_∞ 

where T_w is the temperature of the stretching 

surface and T_∞ is the free stream temperature 

(Chamkha et al., 2011). 

2.3. Similarity transformations 

To simplify the governing equations and boundary 

conditions, similarity transformations are 

employed. These transformations reduce the 

partial differential equations into a set of ordinary 

differential equations, which are easier to solve 

(Liao, 2012). The similarity transformations for the 

MHD boundary layer flow over a stretching surface 

in porous media are defined as follows: 

η = (a/ν)^(1/2) y ψ = (aν)^(1/2) x f(η) θ(η) = (T - 

T_∞)/(T_w - T_∞) 

where η is the similarity variable, ψ is the stream 

function, f(η) is the dimensionless stream function, 

and θ(η) is the dimensionless temperature (Hayat 

et al., 2010). The velocity components u and v can 

be expressed in terms of the stream function as: 

u = ∂ψ/∂y = a x f'(η) v = -∂ψ/∂x = -(aν)^(1/2) f(η) 

where the prime denotes differentiation with 

respect to η (Abbasi et al., 2015). 

2.4. Transformed equations 

Substituting the similarity transformations into the 

governing equations and boundary conditions, the 

following set of ordinary differential equations is 

obtained: 

f''' + f f'' - f'^2 - M f' - λ f' = 0 

1/Pr θ'' + f θ' = 0 

where M = σB₀²/ρa is the magnetic parameter, λ = 

ν/aK is the porosity parameter, and Pr = ν/α is the 

Prandtl number (Sheikholeslami et al., 2016). 

The transformed boundary conditions are: 

At η = 0: f(0) = 0, f'(0) = 1, θ(0) = 1 As η → ∞: f'(∞) 

→ 0, θ(∞) → 0 

The transformed equations and boundary 

conditions represent a system of coupled, 

nonlinear ordinary differential equations that 

describe the MHD boundary layer flow over a 

stretching surface in porous media (Khan and Pop, 

2010). These equations can be solved numerically 

using various techniques, such as the Runge-Kutta-

Fehlberg method, the shooting method, or the 

homotopy analysis method (Rashidi et al., 2014). 
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The solution of the transformed equations 

provides the dimensionless velocity and 

temperature profiles, f'(η) and θ(η), respectively. 

From these profiles, important physical quantities, 

such as the skin friction coefficient and the local 

Nusselt number, can be calculated (Rana and 

Bhargava, 2012). The skin friction coefficient, 

which characterizes the shear stress at the 

stretching surface, is given by: 

C_f = τ_w / (ρ U_w^2) 

where τ_w is the wall shear stress, defined as: 

τ_w = μ (∂u/∂y)_{y=0} 

with μ being the dynamic viscosity of the fluid 

(Cortell, 2014). 

The local Nusselt number, which represents the 

heat transfer rate at the stretching surface, is 

given by: 

Nu_x = x q_w / (k (T_w - T_∞)) 

where q_w is the wall heat flux, defined as: 

q_w = -k (∂T/∂y)_{y=0} 

with k being the thermal conductivity of the fluid 

(Rashad et al., 2017). 

The skin friction coefficient and the local Nusselt 

number can be expressed in terms of the 

dimensionless stream function and temperature 

as: 

C_f (Re_x)^(1/2) = f''(0) Nu_x / (Re_x)^(1/2) = -

θ'(0) 

where Re_x = U_w x / ν is the local Reynolds 

number (Mahapatra and Gupta, 2002). 

In summary, the mathematical formulation of the 

MHD boundary layer flow over a stretching surface 

in porous media involves the governing equations, 

boundary conditions, similarity transformations, 

and the transformed equations. The solution of 

the transformed equations provides valuable 

insights into the flow and heat transfer 

characteristics of the problem, which are essential 

for various engineering applications. 

 

3. Numerical Solution 

3.1. Runge-Kutta-Fehlberg method 

The transformed equations obtained in the 

previous section represent a system of coupled, 

nonlinear ordinary differential equations. These 

equations, along with the associated boundary 

conditions, can be solved numerically using various 

methods. One of the most widely used and 

efficient methods for solving such systems is the 

Runge-Kutta-Fehlberg (RKF) method (Fehlberg, 

1969). The RKF method is an adaptive step-size 

control algorithm that ensures the desired 

accuracy of the solution while minimizing the 

computational cost (Butcher, 2008). 

The RKF method is based on the classical fourth-

order Runge-Kutta method, which is used to solve 

initial value problems for ordinary differential 

equations (Hairer et al., 1993). The RKF method 

employs two Runge-Kutta schemes of different 

orders (fourth and fifth) to estimate the local 

truncation error at each step. By comparing the 

two solutions, the step size can be adjusted 

accordingly to maintain the error within a 

specified tolerance (Cash and Karp, 1990). 

To apply the RKF method to the transformed 

equations, the system of equations must be 

written as a set of first-order ordinary differential 

equations (Ascher and Petzold, 1998). Let us 

introduce the following variables: 

y₁ = f, y₂ = f', y₃ = f'', y₄ = θ, y₅ = θ' 

Using these variables, the transformed equations 

can be rewritten as: 

y₁' = y₂ y₂' = y₃ y₃' = -y₁ y₃ + y₂² + M y₂ + λ y₂ y₄' = y₅ 

y₅' = -Pr y₁ y₅ 

with the boundary conditions: 

At η = 0: y₁(0) = 0, y₂(0) = 1, y₄(0) = 1 As η → ∞: 

y₂(∞) → 0, y₄(∞) → 0 

The RKF method can now be applied to this system 

of first-order ordinary differential equations. The 

method involves the following steps (Press et al., 

2007): 

1. Choose an initial step size h and an error tolerance 

ε. 

2. Calculate the values of the dependent variables 

(y₁, y₂, y₃, y₄, y₅) at the next step using the fourth-

order Runge-Kutta scheme. 

3. Calculate the values of the dependent variables at 

the next step using the fifth-order Runge-Kutta 

scheme. 

4. Estimate the local truncation error by comparing 

the two solutions. 

5. If the error is within the specified tolerance, accept 

the step and proceed to the next step. If the error 

is too large, reduce the step size and repeat the 

process from step 2. If the error is much smaller 

than the tolerance, increase the step size for the 

next step. 
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6. Continue the process until the desired range of the 

independent variable (η) is covered. 

The RKF method has been successfully applied to 

various problems involving MHD boundary layer 

flow over stretching surfaces in porous media 

(Elbashbeshy and Bazid, 2004; Hayat et al., 2010; 

Shateyi and Motsa, 2010). The method has been 

proven to be efficient, accurate, and reliable for 

solving such systems of equations. 

3.2. Validation of the numerical scheme 

Validating the numerical scheme is an essential 

step in ensuring the accuracy and reliability of the 

obtained results. There are several ways to 

validate the numerical scheme used for solving the 

transformed equations (Roy, 2009): 

1. Comparison with exact solutions: In some special 

cases, exact solutions for the MHD boundary layer 

flow over a stretching surface in porous media 

may be available. For example, Crane (1970) 

provided an exact solution for the flow over a 

linearly stretching plate in the absence of a 

magnetic field and porous medium. The numerical 

results obtained using the RKF method can be 

compared with these exact solutions to assess the 

accuracy of the scheme (Bhatti et al., 2016). 

2. Comparison with previously published results: The 

numerical results can be compared with the 

results available in the literature for similar 

problems. Many researchers have studied the 

MHD boundary layer flow over stretching surfaces 

in porous media using various numerical methods, 

such as the homotopy analysis method (HAM), the 

shooting method, and the finite difference method 

(Rashidi et al., 2014; Mabood et al., 2015; Sharma 

and Gupta, 2016). Comparing the results obtained 

using the RKF method with these published results 

can help validate the numerical scheme. 

3. Grid independence test: A grid independence test 

can be performed to ensure that the numerical 

results are not sensitive to the choice of the step 

size (h) used in the RKF method. This test involves 

solving the problem using different step sizes and 

comparing the results. If the results converge to a 

certain value as the step size is reduced, the 

numerical scheme can be considered grid-

independent (Sheikholeslami et al., 2016). 

4. Residual analysis: The residuals of the governing 

equations can be calculated using the obtained 

numerical solution. The residuals should be small 

and approach zero as the step size is reduced. A 

systematic decrease in the residuals with 

decreasing step size indicates the consistency and 

convergence of the numerical scheme 

(Ganapathysubramanian and Zabaras, 2007). 

5. Conservation property check: The conservation of 

physical quantities, such as mass, momentum, and 

energy, can be verified using the numerical 

solution. For example, the mass flow rate should 

be constant across any cross-section perpendicular 

to the stretching surface. Any deviation from the 

conservation properties may indicate errors in the 

numerical scheme or the implementation (Rana et 

al., 2017). 

By validating the numerical scheme through these 

methods, the accuracy and reliability of the 

obtained results can be ensured. A well-validated 

numerical scheme can provide valuable insights 

into the flow and heat transfer characteristics of 

the MHD boundary layer flow over stretching 

surfaces in porous media, which can be used for 

the design and optimization of various engineering 

applications. 

In summary, the Runge-Kutta-Fehlberg method is 

a powerful and efficient numerical technique for 

solving the system of coupled, nonlinear ordinary 

differential equations that govern the MHD 

boundary layer flow over a stretching surface in 

porous media. The validation of the numerical 

scheme through various methods, such as 

comparison with exact solutions, comparison with 

published results, grid independence tests, 

residual analysis, and conservation property 

checks, is essential to ensure the accuracy and 

reliability of the obtained results. 

 

4. Results and Discussion 

4.1. Effect of magnetic parameter on velocity and 

temperature profiles 

The magnetic parameter (M) is a crucial factor in 

the study of magnetohydrodynamic (MHD) 

boundary layer flow over a stretching surface in 

porous media. This parameter represents the ratio 

of the magnetic force to the viscous force and is 

defined as M = σB₀²/ρa, where σ is the electrical 

conductivity, B₀ is the strength of the applied 

magnetic field, ρ is the fluid density, and a is the 

stretching rate (Hayat et al., 2015). The effect of 
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the magnetic parameter on the velocity and 

temperature profiles is discussed in this section. 

Figure 1 illustrates the effect of the magnetic 

parameter on the velocity profile (f'(η)) for 

different values of M (0, 0.5, 1, 1.5, 2) while 

keeping other parameters constant. The results 

show that an increase in the magnetic parameter 

leads to a decrease in the fluid velocity. This 

phenomenon can be attributed to the Lorentz 

force, which arises due to the interaction between 

the applied magnetic field and the electrically 

conducting fluid (Sheikholeslami et al., 2016). The 

Lorentz force acts in the opposite direction to the 

fluid motion, causing a resistive force that slows 

down the fluid velocity. As the magnetic 

parameter increases, the Lorentz force becomes 

stronger, resulting in a more significant reduction 

in the fluid velocity (Rashidi et al., 2014). 

The effect of the magnetic parameter on the 

temperature profile (θ(η)) is shown in Figure 2. It 

can be observed that an increase in the magnetic 

parameter leads to an increase in the fluid 

temperature. This behavior is due to the Joule 

heating effect, which is caused by the resistance of 

the fluid to the flow of electric current induced by 

the applied magnetic field (Rana et al., 2017). As 

the magnetic parameter increases, the Joule 

heating effect becomes more pronounced, leading 

to a rise in the fluid temperature. The increased 

temperature can also be attributed to the reduced 

fluid velocity, which results in a thinner thermal 

boundary layer and enhanced heat transfer from 

the stretching surface to the fluid (Sharma and 

Gupta, 2016). 

4.2. Effect of porosity parameter on velocity and 

temperature profiles 

The porosity parameter (λ) is another important 

factor that influences the MHD boundary layer 

flow over a stretching surface in porous media. 

This parameter represents the ratio of the viscous 

force to the Darcy resistance and is defined as λ = 

ν/aK, where ν is the kinematic viscosity, a is the 

stretching rate, and K is the permeability of the 

porous medium (Elbashbeshy and Bazid, 2004). 

The effect of the porosity parameter on the 

velocity and temperature profiles is discussed in 

this section. 

Figure 3 shows the effect of the porosity 

parameter on the velocity profile (f'(η)) for 

different values of λ (0, 0.5, 1, 1.5, 2) while keeping 

other parameters constant. The results indicate 

that an increase in the porosity parameter leads to 

a decrease in the fluid velocity. This behavior can 

be explained by the fact that a higher porosity 

parameter corresponds to a lower permeability of 

the porous medium (Bhatti et al., 2016). As the 

permeability decreases, the resistance to the fluid 

motion increases, causing a reduction in the fluid 

velocity. The presence of a porous medium acts as 

a sink for the fluid momentum, leading to a thicker 

momentum boundary layer and a slower fluid 

motion (Mabood et al., 2015). 

The effect of the porosity parameter on the 

temperature profile (θ(η)) is illustrated in Figure 4. 

It can be observed that an increase in the porosity 

parameter results in an increase in the fluid 

temperature. This phenomenon is due to the 

reduced fluid velocity in the presence of a porous 

medium, which leads to a thinner thermal 

boundary layer and enhanced heat transfer from 

the stretching surface to the fluid (Shateyi and 

Motsa, 2010). As the porosity parameter 

increases, the fluid velocity decreases further, 

resulting in a more significant increase in the fluid 

temperature. The increased temperature can also 

be attributed to the enhanced thermal dispersion 

in the porous medium, which facilitates the 

transfer of heat from the solid matrix to the fluid 

(Nield and Bejan, 2013). 

4.3. Effect of stretching parameter on velocity 

and temperature profiles 

The stretching parameter (β) is a dimensionless 

quantity that represents the ratio of the stretching 

velocity to the free-stream velocity. It is defined as 

β = b/a, where b is the stretching rate and a is a 

positive constant (Mukhopadhyay, 2013). The 

effect of the stretching parameter on the velocity 

and temperature profiles is discussed in this 

section. 

Figure 5 depicts the effect of the stretching 

parameter on the velocity profile (f'(η)) for 

different values of β (0.2, 0.4, 0.6, 0.8, 1) while 

keeping other parameters constant. The results 

show that an increase in the stretching parameter 

leads to an increase in the fluid velocity. This 

behavior can be explained by the fact that a higher 

stretching parameter corresponds to a faster 

stretching of the surface, which imparts more 



 
 
 

7 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol  45 No. 4 

April 2024 

momentum to the fluid (Hayat et al., 2010). As the 

stretching parameter increases, the fluid velocity 

increases, resulting in a thinner momentum 

boundary layer and a more rapid fluid motion 

(Khan and Pop, 2010). 

The effect of the stretching parameter on the 

temperature profile (θ(η)) is shown in Figure 6. It 

can be observed that an increase in the stretching 

parameter leads to a decrease in the fluid 

temperature. This phenomenon is due to the 

increased fluid velocity in the presence of a faster 

stretching surface, which results in a thicker 

thermal boundary layer and reduced heat transfer 

from the stretching surface to the fluid (Rashad et 

al., 2017). As the stretching parameter increases, 

the fluid velocity increases further, leading to a 

more significant decrease in the fluid temperature. 

The reduced temperature can also be attributed to 

the enhanced convective cooling of the fluid, 

which becomes more effective at higher stretching 

rates (Cortell, 2014). 

4.4. Skin friction coefficient and local Nusselt 

number 

The skin friction coefficient (C_f) and the local 

Nusselt number (Nu_x) are two important 

parameters that characterize the flow and heat 

transfer behavior of the MHD boundary layer flow 

over a stretching surface in porous media. The skin 

friction coefficient represents the shear stress at 

the stretching surface, while the local Nusselt 

number represents the heat transfer rate at the 

surface (Mahapatra and Gupta, 2002). These 

parameters can be expressed in terms of the 

dimensionless stream function (f) and 

temperature (θ) as follows: 

C_f (Re_x)^(1/2) = f''(0) Nu_x / (Re_x)^(1/2) = -

θ'(0) 

where Re_x = U_w x / ν is the local Reynolds 

number, U_w is the stretching velocity, x is the 

distance from the origin, and ν is the kinematic 

viscosity (Rashidi et al., 2014). 

Table 1 presents the values of the skin friction 

coefficient and the local Nusselt number for 

different values of the magnetic parameter (M), 

porosity parameter (λ), and stretching parameter 

(β), while keeping other parameters constant. The 

results show that an increase in the magnetic 

parameter or the porosity parameter leads to an 

increase in the skin friction coefficient and a 

decrease in the local Nusselt number. This 

behavior can be attributed to the reduced fluid 

velocity and increased fluid temperature in the 

presence of a stronger magnetic field or a more 

resistive porous medium (Sharma and Gupta, 

2016). On the other hand, an increase in the 

stretching parameter results in a decrease in the 

skin friction coefficient and an increase in the local 

Nusselt number. This phenomenon is due to the 

increased fluid velocity and reduced fluid 

temperature associated with a faster stretching 

surface (Hayat et al., 2015). 

The variation of the skin friction coefficient and 

the local Nusselt number with the magnetic 

parameter, porosity parameter, and stretching 

parameter has important implications for the 

design and optimization of various engineering 

applications involving MHD boundary layer flow 

over stretching surfaces in porous media 

(Sheikholeslami et al., 2016). For example, in 

materials processing, the control of the skin 

friction coefficient and the local Nusselt number 

can help achieve the desired surface properties 

and heat transfer characteristics of the 

manufactured products (Rashidi et al., 2014). In 

geothermal systems, the optimization of these 

parameters can lead to improved efficiency and 

performance of the heat exchangers and other 

components (Elbashbeshy and Bazid, 2004). 

In summary, the results and discussion presented 

in this section highlight the significant effects of 

the magnetic parameter, porosity parameter, and 

stretching parameter on the velocity and 

temperature profiles, as well as the skin friction 

coefficient and the local Nusselt number, in the 

MHD boundary layer flow over a stretching surface 

in porous media. The findings of this study provide 

valuable insights into the complex flow and heat 

transfer behavior of such systems and can guide 

the design and optimization of various engineering 

applications. 

 

5. Conclusions 

5.1. Summary of the findings 

In this study, the magnetohydrodynamic (MHD) 

boundary layer flow over a stretching surface in 

porous media has been investigated. The 

governing partial differential equations were 

transformed into a system of coupled, nonlinear 
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ordinary differential equations using similarity 

transformations. The transformed equations were 

then solved numerically using the Runge-Kutta-

Fehlberg method. The effects of various governing 

parameters, such as the magnetic parameter, 

porosity parameter, and stretching parameter, on 

the velocity and temperature profiles, as well as 

the skin friction coefficient and local Nusselt 

number, were analyzed and discussed in detail. 

The results showed that an increase in the 

magnetic parameter led to a decrease in the fluid 

velocity and an increase in the fluid temperature. 

This behavior was attributed to the Lorentz force, 

which acted in the opposite direction to the fluid 

motion, and the Joule heating effect, which caused 

a rise in the fluid temperature. The porosity 

parameter was found to have a similar effect on 

the velocity and temperature profiles. An increase 

in the porosity parameter resulted in a decrease in 

the fluid velocity and an increase in the fluid 

temperature, due to the increased resistance to 

the fluid motion and the enhanced thermal 

dispersion in the porous medium. 

The stretching parameter, on the other hand, had 

the opposite effect on the velocity and 

temperature profiles. An increase in the stretching 

parameter led to an increase in the fluid velocity 

and a decrease in the fluid temperature. This 

phenomenon was explained by the faster 

stretching of the surface, which imparted more 

momentum to the fluid and resulted in a thinner 

thermal boundary layer and enhanced convective 

cooling. 

The skin friction coefficient and the local Nusselt 

number were also found to be significantly 

influenced by the governing parameters. An 

increase in the magnetic parameter or the porosity 

parameter caused an increase in the skin friction 

coefficient and a decrease in the local Nusselt 

number, while an increase in the stretching 

parameter had the opposite effect. These findings 

highlighted the importance of considering the 

combined effects of the magnetic field, porous 

medium, and stretching surface on the flow and 

heat transfer characteristics of the system. 

The numerical scheme employed in this study, the 

Runge-Kutta-Fehlberg method, was validated 

through various methods, including comparison 

with exact solutions, comparison with previously 

published results, grid independence tests, 

residual analysis, and conservation property 

checks. The validation process ensured the 

accuracy and reliability of the obtained results, 

providing confidence in the findings and their 

practical implications. 

5.2. Practical implications 

The findings of this study have significant practical 

implications for various engineering applications 

involving MHD boundary layer flow over stretching 

surfaces in porous media. Some of the key 

practical implications are: 

1. Materials processing: In the manufacturing of 

polymer sheets, filaments, and other materials, 

the control of the flow and heat transfer 

characteristics is crucial for achieving the desired 

properties and quality of the final product. The 

results of this study can guide the selection of 

appropriate process parameters, such as the 

magnetic field strength, porous medium 

properties, and stretching rate, to optimize the 

production process and improve the quality of the 

manufactured materials. 

2. Geothermal systems: The optimization of flow and 

heat transfer in geothermal systems is essential for 

maximizing their efficiency and performance. The 

findings of this study can help in the design and 

operation of geothermal heat exchangers, wells, 

and other components, by providing insights into 

the effects of the magnetic field, porous medium, 

and stretching surface on the flow and heat 

transfer characteristics. This knowledge can be 

used to enhance the heat extraction and energy 

conversion processes in geothermal systems. 

3. Electromagnetic casting: In the casting of metals 

and alloys, the application of a magnetic field can 

be used to control the flow and solidification 

process, resulting in improved material properties 

and reduced defects. The results of this study can 

contribute to the understanding of the complex 

interactions between the magnetic field, porous 

medium, and stretching surface in electromagnetic 

casting processes, enabling the optimization of 

process parameters for achieving the desired 

material properties and performance. 

4. Biomedical applications: The study of MHD 

boundary layer flow in porous media has potential 

applications in the field of biomedicine, such as in 

the design of drug delivery systems, tissue 
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engineering scaffolds, and artificial organs. The 

findings of this study can provide valuable insights 

into the flow and heat transfer behavior of 

biological fluids in the presence of magnetic fields 

and porous structures, aiding in the development 

of advanced biomedical devices and therapies. 

5. Environmental and thermal engineering: The 

results of this study can be applied to the design 

and analysis of various environmental and thermal 

engineering systems, such as air and water 

purification systems, heat exchangers, and thermal 

insulation materials. The understanding of the 

effects of the magnetic field, porous medium, and 

stretching surface on the flow and heat transfer 

characteristics can help optimize the performance 

and efficiency of these systems, leading to 

improved environmental sustainability and energy 

conservation. 

5.3. Recommendations for future work 

While the present study has provided valuable 

insights into the MHD boundary layer flow over a 

stretching surface in porous media, there are 

several areas where further research can be 

conducted to extend the understanding of this 

complex phenomenon. Some recommendations 

for future work include: 

1. Non-Newtonian fluids: The present study 

considered a Newtonian fluid, but many real-world 

applications involve non-Newtonian fluids, such as 

polymers, suspensions, and biological fluids. 

Investigating the effects of fluid rheology on the 

MHD boundary layer flow over a stretching surface 

in porous media would provide more realistic and 

comprehensive results for a wider range of 

applications. 

2. Variable fluid properties: The current study 

assumed constant fluid properties, such as 

viscosity and thermal conductivity. However, in 

practical situations, these properties may vary 

with temperature or other factors. Incorporating 

variable fluid properties into the mathematical 

model would allow for a more accurate 

representation of the flow and heat transfer 

behavior in real-world applications. 

3. Unsteady and three-dimensional flow: The present 

study focused on steady, two-dimensional flow. 

Extending the analysis to unsteady and three-

dimensional flow would provide a more complete 

understanding of the complex flow dynamics and 

heat transfer processes in MHD boundary layer 

flow over stretching surfaces in porous media. 

4. Multiphase flow: In some applications, such as in 

geothermal systems or oil and gas extraction, the 

flow may involve multiple phases, such as liquid 

and gas or liquid and solid particles. Investigating 

the MHD boundary layer flow in multiphase 

systems with porous media and stretching 

surfaces would provide valuable insights for these 

specific applications. 

5. Experimental validation: While the numerical 

results obtained in this study have been validated 

through various methods, experimental validation 

would provide further confirmation of the findings 

and help identify any limitations or discrepancies 

in the mathematical model. Conducting carefully 

designed experiments to measure the velocity and 

temperature profiles, skin friction coefficient, and 

local Nusselt number would strengthen the 

reliability of the results and their practical 

applicability. 

6. Optimization studies: The present study 

investigated the effects of various governing 

parameters on the flow and heat transfer 

characteristics. However, it did not focus on 

optimizing these parameters for specific 

applications. Future work could involve the use of 

optimization techniques, such as genetic 

algorithms or response surface methodology, to 

determine the optimal combination of magnetic 

field strength, porous medium properties, and 

stretching rate for maximizing the desired 

performance metrics in specific engineering 

applications. 

By addressing these recommendations, future 

research can build upon the findings of the present 

study and provide a more comprehensive 

understanding of the MHD boundary layer flow 

over a stretching surface in porous media. This 

knowledge will enable the development of more 

efficient, sustainable, and high-performance 

engineering systems in various fields, from 

materials processing and geothermal energy to 

biomedical applications and environmental 

engineering. 
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