

 219

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Straggler Task Prediction Based Balanced Hadoop for Big Data Using

Hladagrad-Enn and Lcv-Choa Based Backup Node Selection

1Hetal A. Joshiara , 2Chirag S. Thaker

1Assistant Professor, L.D. College of Engineering, Gujarat Technological University

2Professor, L.D. College of Engineering, Gujarat Technological University

Abstract: Data analysis speed is of great significance in Big Data processing. For big data analytics, one of the

popular frameworks is Hadoop. Grounded on the MapReduce (MR) model, Hadoop runs applications on a cluster

of huge commodities numbers along with less expensive computing nodes since it is a distributed computing

framework. Owing to unbalanced load, inaccurate node selection, and unidentified straggler tasks, there remain

challenges like high response time, runtime or execution time, and poor handling of resources. The work has

developed a Straggler Task Prediction centered Balanced Hadoop (STP-BHADOOP) framework to rectify the

existing problem. The computational infrastructure of Big Data’s efficiency is enhanced by this framework; thus,

accelerating data processing to identify straggler tasks by Speculative Execution (SE). Using the ROS-Flubber

(Random Over Sampler based flubber) technique, Hadoop computing is utilized here by distributing a balanced

load, totally named Balanced Hadoop (BHadoop). To make a structured data format, extraction of task-centered

features and preprocessing are eventuated. To predict the straggler task, the most relevant data is chosen by

using the XI-MO technique. Finally, using the HLAdagrad-ENN technique, the prediction is eventuated centered

on selected data. The node-centered features are extracted after the straggler task prediction. If a straggler task

is identified, nodes selection takes place using the LCV-ChOA technique with the aid of extracted node features.

The proposed framework achieves a low runtime, and response time and predicts the straggler task with better

precision and recall value, when analogized with prevailing methods is obtained from experimental outcomes.

Keywords: Big data, Hadoop, MapReduce, Speculative execution, Straggler task, Straggler task prediction based

balanced Hadoop (STP-BHADOOP), Random Over Sampler based flubber (ROS-Flubber), Xavier initialization

based Mayfly optimization(XI-MO), Hinge loss adaptive gradient-based Elman neural network (HLAdagrad-ENN

), and linear coefficient vector based chimp optimization(LCV-ChOA)

Introduction

Over the last 12 years, the big data analysis

platform has accumulated unprecedented amounts

of gigantic data processing i.e. far beyond the

storage capacity of any one machine. Popularized

frameworks were applied by enterprises together

with research institutes to handle large data

volume that aids to extract applicable data. Apache

Spark popularly known as an open-source MR

programming platform is a typical example [1].

Spark spotlights the Resilient Distributed Dataset's

(RDD) abstract when analogized with Apache

Hadoop [3] along with other distributed computing

schemes [4]. For efficient performance on high-

iterative jobs, it takes an in-memory computing

advantage. Straggler is defined as the extension of

the stage’s execution time by little slow-running

tasks of the last wave tasks since more tasks run in

corresponding to process elements in RDD

partitions [5]. For numerous reasons, stragglers can

arise but determining the ultimate one is tough [6].

Straggler is identified by MR systems along with

speculative copy restarting on an alternative node

termed SE. The last few slow-running tasks are

simply backed up by Google. It was also observed

that lessen in job execution time by 44% is made by

SE [7]. SE is implemented specifically in Spark and

others due to improvement in performance [8].

Regarding the map phase or the reduce phase, the

SE is configured. For those straggling tasks, the

master schedules the speculative tasks when the SE

is enabled and arranges them in the queue [9].

When there exist available slots, it will be launched.

 220

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Running at most one speculative task at a time is

ensured by the scheduler for every original task. If

the speculative task ends, the original task is ended

and vice versa. As the performance is degraded, SE

is disabled by some organizations on some jobs and

tasks [10].

HadoopNaive is the original SE mechanism in

Hadoop. As task progress is utilized to determine

straggler tasks, it shows poor performance in

heterogeneous environments. To optimize SE from

further aspects, various optimized schemes are

designed [17], such as LATE, MCP, ERUL, and so on.

Centered on the real-time task’s remaining time

estimation, straggler tasks are determined in the

proposed scheme. But, improper node allocation is

led by inaccurate estimation. The cluster's overall

performance is affected by the SE performance if

multiple "Straggler" occurs in the cluster at the

same time. So, it is vital to schedule the backup

tasks strategy [18]. The work has proposed an STP-

BHADOOP framework centered on SE challenges to

tackle the existing issues.

The paper’s structure is arranged as follows: the

prevailing SE strategies and defects are presented

in Section 2. The proposed strategy’s detail is

signified in Section 3. Section 4 illustrates the

experiments and analysis which support the

contributions and, finally, the paper gets concluded

in Section 5.

2. Literature Survey

Zhongming Fu et al. [19] developed a strategy

named ETWR to enhance the efficacy of SE in Spark.

To tackle the SE’s three key points: straggler

identification, backup node selection, and

effectiveness guarantee, a heterogeneous

environment was measured. Initially, the task was

fragmented into sub-phases centered on the task

type classification. To find the straggler promptly, it

utilized the processing speed together with the

progress rate within a phase. Secondly, to estimate

the task’s execution time, it utilized the Locally

Weighted Regression model. Thirdly, to guarantee

the speculative tasks' effectiveness, it presented

the iMCP model. The experiment showed that

when analogized with the Spark-2.2.0, the ETWR

could diminish the job execution time by 23.8%,

along with enhancing the cluster throughput by

33.2%. But, owing to the unbalanced MR load,

execution time was high.

Amir Javadpouret al. [20] developed a

backpropagation neural network’s application on

the Hadoop for the straggler task’s detection. It also

estimated the tasks balance execution time which

was vital in straggler task detection. To detect

straggler tasks and achieve accurate estimation of

execution time, outcomes attained were

analogized with familiar algorithms in the specific

domain such as LATE, ESAMR, and the real balance

time for Word Count along with Sort benchmarks.

The high challenge here was the straggler task node

selection.

MandanaFarhanget al. [21] illustrated a dynamic

scheme to discover straggler tasks in

heterogeneous environments. To estimate task

execution’s stage weights for accurate estimation

of task execution time, a neural network algorithm

named SEWANN framework was utilized. To assess

the balance execution time and enhance the big

data's efficiency, an error was reduced. Both

estimated with actual weights were computed

along with implementing this method in Hadoop

open-source software initially. SEWANN excelled

over SVR, Decision Trees, ESAMR, and LATE as

baseline methods at 99%, 81%, 85%, and 99%,

respectively. Task execution time was enhanced by

SEWANN when analogized with baseline method

ESAMR by 15%, along with LATE by 24%. Though

the work was executed well, diminish in test

accuracy occurs due to underfitting led by task

characteristic-based straggler prediction.

Laiping Zhao et al. [22] presented Clio, a cross-layer

interference-aware optimization scheme that could

successfully diminish stragglers for data processing

models. Both maps along with reduced tasks

scheduling were supported by Clio. In proportion to

each worker node’s actual computing ability,

intermediate data was heuristically dispatched. To

consider numerous straggler factors together with

balancing the tasks completion times, it was much

finely estimated. Clio was implemented in Apache

Spark. Grounded on both synthetic and real

datasets, its performance was evaluated. When

analogized with prevailing models' experimental

outcomes, Clio can accelerate the applications'

 221

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

execution by up to 67%. However, high response

time and estimated runtime had happened.

Fengjun Shang et al. [23] developed a speculative

task scheduling scheme centered on SDN

technology. Grounded on ASD, a bandwidth-aware

speculative task run-time evaluation strategy was

initiated. It accurately speculated the backup task

run-time along with providing bandwidth assurance

for the speculative task. Finally, simulation

experiments were authorized by BWRE. From

experimental outcomes, the shortening job

turnaround time was outperformed by BWRE at an

average of 9.85%. For predicting tasks, it showed a

low precision as well as recall.

Haizhou Du et al. [24] systematically conducted the

exploration of the elementary issue of automatic,

adaptive straggler identification on a big data

analytics platform. To solve the complex online

optimal issue, Reinforcement Learning (RL)

techniques were utilized. To recognize stragglers

free from human intervention, employment of

Reinforcement learning adaptively opted the

optimal parameters. For launching speculative

tasks on the heterogeneous cluster, the Hawkeye

technique identified stragglers by reinforcement

learning at runtime. Hawkeye managed to diminish

the job completion time over the different

applications type as per experimental outcomes.

Centered on a 23% improvement on the current

resolutions preciseness to the heterogeneous

cluster, an instance revealed a 37% decrease in

average job completion. For different scale data, it

was highly complex.

3. Proposed Straggler Task Prediction Based On

Balanced Hadoop Frameworks

Using the MR framework, distribution along with

parallelization of large–scale data processing is

carried out. The workload is divided into several MR

jobs by this system and gets distributed over

multiple nodes. For completing a task, a node’s

poor performance makes the job consume more

time for completion known as Straggler Task. The

overhead’s major source in parallel programs such

as MR is Load imbalance. Tasks with large data

become stragglers owing to the input data’s uneven

distribution. It may delay the overall job

completion. As per the task progress, the task’s

implementation is determined by the SE

mechanism. For SE, the load imbalance problem,

choosing backup nodes relying on straggler task,

node failure remains a great challenge. Using the

STP-BHADOOP framework, a prediction-centered

balanced SE in a heterogeneous environment is

engendered which is illustrated in figure 1.

Figure1: Proposed STP-BHADOOP framework

3.1. Big data

 222

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Initially, for the work, large datasets collections that

cannot be processed using traditional computing

techniques are used. For example, the data volume

needed by Facebook or YouTube is gathered and

managed routinely.

3.1.1. HADOOP

Under Hadoop, data gathered is processed. The

data goes through the following phases in Hadoop:

Input phase

Here, fragmenting the texts into fixed-size pieces is

named input splits. It is utilized as an input chunk

that gets preceded into the mapping process

 n

n

n

i = |..........||| 3

3

2

2

1

1
 (1)

Mapping

Here, to generate output values, the split data is

transferred to a mapping function. From input slits,

every word's frequency count is performed in the

mapping phase.

 n

n

n

i

n

i C = |..........||| 3

3

2

2

1

1
 (2)

 Shuffling

From the mapping phase output, relevant records

are consolidated by shuffling. The websites

frequently obtained are clubbed together.

() n

i

n

i

n

i CSFS max=

 (3)

Reducing

Here, from the shuffling stage, the output values

are aggregated. From the shuffling phase, the

values are combined in this phase along with

frequently occurring websites and form into one.

This phase summarizes the complete dataset in

short.

 n

i

n

i SduceR Re=

 (4)

Centered on key/value pairs, the MR programming

matches the Map tasks’ output that is transported

to diminish the task modes. By a Reduce node, the

data with the same key can be processed. For most

of the data, the Reduce node task will engender an

unbalanced load, if the data matches a particular

key or various keys.

3.1.2. Load balancing

For the same quantity of data provided for each

task, the same amount of time is required to

complete it. No assurance is given for fair data

division betwixt jobs or the same quantity of input

data processing for a similar time period. For faster

runtime, this work engendered a ROS-Flubber to

balance the load. Except for the input size along

with reducer processing, flubber is similar to the

genuine user job. The actual input's parts will

suffice to assume the considered sample

summarizes the whole input, as the pre-job is

mainly utilized for statistical estimation. From the

input dataset, randomly picking up a bad

proportion of sample records leads to Flubber’s

poor sampling rate. ROS is used to avoid this. A copy

of data sets (data) is executed in a minor

distributed dataset (
oritymin). The increase in

overfitting’s livelihood and the higher sampling rate

are provided

())(min oritysdatasamplerRandomover +=

 (5)

The user specifies the sample size  relative to the

input size. Collecting statistics from the mapper's

output is the succeeding phase after a run on the

sample input. To retrieve the map output size (n

o

), this is the simplest way. The reducer’s optimal

number () is formulated as:













=

m

n

o

 (6)

Where, the reducer buffer size in Mb is denoted as

m .

 The above phrase’s reasoning is given as follows.

During the merging phase, the mapper output will

be fragmented as the reducer buffer doesn't leak

any records in an ideal world. The entire input

data’s output size is


1
 of the sample map output

assuming the mapper's output is proportional to

 223

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

the input’s size. The data amount each reducer

processes is less than the reducer buffer size m is

how values are shared. The assumption of all keys

having an equal number of values is made finally. A

key, whose projected size exceeds the reducer

memory buffer size is assigned by the reducer to

avoid a straggler reducer node. The reducer’s

optimal number required is computed to process

the remaining keys. In the sample, the list of all the

keys is assumed as . Let  be the set of all the

keys such that their projected value over the entire

dataset is given as:

()
m

i

Size

Data k






 (7)

Where, in the set  , ik is a key. For finding the

reducers’ numbers the modified formula is as

follows.

()


















+=
 −

m

k i

Size

Data
i

k


 (8)

 By the above formula, the keys numbers less than

the reducers number are considered and

computed. This leads to the formulation,



















= ,minO

 (9)

Among all reducers after completing the

computation, the load is balanced. Generating

partition mapping by load-balancing where each

key with larger data is allocated to one reducer

while the remaining reducer is assigned with

smaller keys along with keys not included in the

sample. The keys containing larger data quantities

that are not jumbled up with smaller keys are

ensured.

3.2. Feature extraction for Task

Data are processed under balanced Hadoop along

with extracting various task features like

competition for local disk, CPU, network

bandwidth, memory, to analyze the task for

straggler avoidance. Further, owing to faulty

hardware along with misconfiguration, the

straggler could also be caused. Stragglers are raised

by the dynamically altering resource contention

outline on an underlying node. Before task

launching on a node, for memory, network, disk,

CPU, along with other operating system level

counters defining the degree of concurrency, the

performance counters were collected centered on

the findings. Multi broad categories spanned by the

counters collected are as follows:

1. CPU utilization ()task

iCPU \
: CPU idle time ()idtC ,

system time ()ts , user time ()tu and speed of the

CPU ()Sp , etc.

2. Network utilization ()task

iNet \
: Number of bytes

sent and received ()Rs bandb , statistics of remote

read and write statistics of RPCs

()wr RPCandRPC etc.

3. Disk utilization ()task

iDisk \
: The local read and

write statistics from the data nodes

()wr dnanddn , amount of free space ()SF , etc.

4. Memory utilization ()task

iMem\
 : Amount of

virtual ()Vm

iAmt \
, physical memory available

()task

iPmem \
, amount of buffer space ()m , cache

space ()cac

ispace\
, shared memory space available

()ss

i\ , etc.

5. System-level features ()task

iSF\
: Number of

threads in different states (waiting ()tw , running

()task

iMem\
, terminated ()tt , blocked ()tB , etc.),

memory statistics at the system level. In total, 107

distinct features are collected that characterize the

state of the machine.

6. Remaining time of task ()task

im\Re : (Process

speed ()Speed

i\ + Remaining data to process

()task

ir\
+ Sum of the remaining time left in each

Phase ()t

tmRe)

 224

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

() () += 
t

t

task

t

task

t

task

i mEstBwrm Re/Re \\

 (10)

Where,

() ()data

n

idata

n

i avg = /

 (11)

7. Remaining time of Shuffle phase ()n

it SmRe

separately (To avoid speed fluctuation)

 () ()n

ispeed

f

i

f

i

n

it StaskSSm /%%Re −=

 (12)

Where, the finished map task's percentage is

denoted as f

i% and f

iS% denotes the finished

shuffle task’s percentage.

From each workload’s jobs, multiple tasks may run

on every single node. To make a simpler notation,

the extracted data are formed into a data frame.

() n

n

it

task

i

task

i

task

i

task

i

task

i

task

ii SmmSFDiskMemNetCPU +++++++=ReRe

(13)

3.2.1. Preprocessing

Converting the extracted unstructured features

into a structured data format is eventuated by

preprocessing along with diminishing the error

probability. By removing repeated data, noises

caused due to outlier, missing values, etc, the data

is cleaned. Major preprocessing of data like

handling of missing and Nan values, data time

variables handling, and data scaling are executed by

this work.

3.2.1.1. Handling of missing and Nan values

Nan values signify 'Not a Number' which is a

numeric data type member that can be read as a

value. It is undefined or unrepresentable while

missing values illustrated 'no data present' or

'blank' for a certain feature or group of features.

Eliminating the missing and Nan data in the dataset

may destroy the valuable data along with

diminishes the straggler task prediction's accuracy.

It is necessary to deal with the missing and Nan

Value to have a successful conclusion.

)(Y

jifxnpre =

 (14)

Where, the function handling missing and Nan

values are denoted as
fxn . Grounded on

categorical and numerical values, the methods are

selected. Some common methods are Median,

Mode, Backward Fill, Forward Fill, Imputation, etc,
Y

ji illustrated the
thi row and

thj column in the

dataset. Without Nan value and missing value, the

dataset is obtained and framed into the data frame

i.e.

 DS

n

DSDSDSDSDS

n = ,.....,,, 4321

(15)

3.2.1.2. Handling of date-time variables

For task handling, date and time comprise the

informative data. Investigate task trends in space

and time, it provides a valuable information source

to be used. It studies how Spatio-temporal

information can be incorporated to utilize in

modeling and forecasting straggler. To turn them

into valuable information, the data-time variables

require some conversion. Some valuable

information is lost by ignoring data and time

variables.

)(DS

nDatetimeDT =

 (16)

Where, the function that handles the date and time

variables is represented as Datetime .

3.2.1.3. Scaling

To obtain the same units dataset feature that

normalizes the independent variables range or data

features, features scaling is done. To scale down the

features, the Minmax Scaler is utilized within a

similar range. It calculates the feature vector

betwixt the range of 0 and 1. The Minmax scaler is

formulated as:

()
() ()

jiji

jiji

Sca





−

−
=

minmax

min

 (17)

Thus, to obtain healthier data for diminishing error

rate, the data is being preprocessed.

 225

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

3.2.2. Backup Node selection

To avoid the curse of dimensionality, feature

selection chooses the most relevant features from

the extracted features. It leads to informative data

loss for predicting straggler tasks. Centered on

mayfly social behavior, the most vital trait is chosen

by the feature selection model, notably their

mating process. After emerging from the egg,

mayflies are thought to be adults. The fittest

mayflies stay alive despite the duration they live.

The problem’s solution is represented by every

mayfly in the search space. The current Mayfly

optimization becomes caught in the local optimal

solution during the positive attraction constant

value. While updating the male and female

mayflies’ positions, the search speed gradually

slows down. The work has developed Xavier

initialization-based Mayfly optimization (XI-MO) to

avoid the trap down. It maintains the fly

population's variance and defines the minimum and

maximum value to maintain the balance between

local optimum and global optimum. To find out the

coefficient vector 1 and 2 , Xavier initialization

is used that gives a balanced exploration as well as

exploitation rate aiding to attain a faster

convergence rate. The selection process is speeded

by the developed FS technique that performs

accurately with less error probability. The

developed algorithm works as follows;

The male and female mayfly populations (extracted

features) are generated randomly initially. The

dataset is also split as 50 % for males and 50 % for

females centered on the flies. For each problem in

the population search space, each fly (best feature)

is represented as a candidate solution that is a d-

dimensional vector n=,,, 321 , and

the performance is estimated on objective function

()(iObj).

For each mayfly, the position change along with the

flying direction for the individual as well as social

flying experience is given by the velocity

n,,, 321= . Particularly toward its

personal best position (p

i), each mayfly adjusts

its trajectory. The best position attained by any

swarm’s mayfly is (g

i).

Centered on its own experience, the male mayfly

movement is evaluated as that of its neighbors. The

mayfly's current position i in the search space at

time step 𝑡 is represented as t

i . The position is

modified to the current position by adding a

velocity 1+t

i as,

11 ++ += t

i

t

i

t

i 

 (18)

With ()maxmin

0 ,~  Ui

The male mayflies’s velocity gets down under the

nuple dance scenario. Finally, the male mayfly’s

velocity i is calculated as:

() ()t

ij

g

ij

rt

ij

p

ij

rt

ij

t

ij
PP ee −+−+=

−−+ 
22

21

1  

 (19)

11

6
++

−=
t

i

t

i



 (20)

12

6
++

=
t

i

t

i



 (21)

Where, the mayfly’s velocities in dimension at a

time step is modeled as
t

ij , the mayfly’s positions

i in dimension j at a time step t is interpreted as

t

ij , 1 and 2 are positive attraction coefficient

vectors that are used to scale the contribution of

the cognitive and social components respectively.

Furthermore, the mayfly’s best position i had ever

visited is p

i . The personal best position
p

ij at the

subsequent time step 1+t , is computed

considering minimization problems as:

() ()


 

=
++

otherwisesamethekeptis

ffif p

i

t

i

t

ip

i
,

, 11



 (22)

Where, the objective function RRnf →:

estimates the solution’s quality. At time step 𝑡, the

global best position 𝑔𝑏𝑒𝑠𝑡 is defined as,

 226

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

() 
() () () () p

n

ppp

cp

n

pppg

i

ffff

bestf





,.....,,,min

|,....,,

321

321

=



 (23)

Where, the male mayflies’ total number in the

swarm is denoted as n .

Finally, in eq. (19) a fixed visibility coefficient  is

utilized to limit a mayfly’s visibility to others, while

the Cartesian distance between ic and p

i is

denoted as
pr and the Cartesian distance between

ic and g

i is notated as Gr . These distances are

calculated as

() −=−
2n

ijij

n

ii

 (24)

Where, the
thj element of mayfly i is notated as

ij and i corresponds to p

i or g

i .

To function the model properly, the swarm’s best

mayflies execute their up-and-down nuptial dance.

Finally, changing their velocities constantly is made

by the best mayflies which are calculated as,

RDt

ij

t

ij .1 +=+ 

 (25)

Where, the nuptial dance coefficient is denoted by

D and R along with [-1, 1] random value range. A

stochastic element is introduced by this up and

down movement to the algorithm. As the female

flies don’t gather instead fly approach males to

breed, unlike the male flies. Hence, the female

mayflies' movement is computed. The female

mayflies' i current position in the 𝑦search space is

assumed as t

ix at a time step t . By summing

velocity 1+t

i to the i current position, the position

is changed, i.e.

11 ++ += t

i

t

i

t

i yy 

 (26)

With ()maxmin

0 ,~ yyUyi

Towards the best male, the best female flies get

attracted. Taking into account the minimization

problems, consequently, the velocities are

computed as:

()






+

−+
=

+

−

+

)()(*

)()(
1

21

2

ii

t

i

ii

t

ij

t

ij

rt

ijt

i

fyfifRfl

fyfifye mf








 (27)

Where, the female mayfly’s velocity i in dimension

nj ...,4,3,2,1= at a time step t is modeled as

t

ij , the female mayfly’s position i in dimension

j at a time step t is depicted as
t

ij , the positive

attraction coefficient vector and fixed visibility

coefficient are denoted as 2 and  , while the

Cartesian distance betwixt male and female

mayflies is signified as
 mfr . Finally, when a female

is not fascinated by a male,
 fl is a random walk

coefficient utilized. Thus, it flies at random and R

is a random value in the range [- 1, 1].

After, the fly takeovers mating that is crossover

operator: from the male population together with

the female population, one parent is chosen.

Similarity occurs in the process of choosing parents

and the process of females being attracted to the

males. Either randomly or centered on their fitness

function, the selection is eventuated. Later, the

best male is bred by the best female; the second-

best male is bred by the second-best female, and so

on. Two offspring are produced by the crossover as

follows,

())(1)(1 ii yff −+=

 (28)

())(1)(2 ii fyf −+=

 (29)

Where, the male parent is proffered as)(if  , the

female parent is notated as)(iyf and a random

value within a specific range is illustrated as .

Zero is set as the initial velocity for Offspring.

Replacing the worst solution with the best ones,

pbest and gbest values are updated.

 w

n

wwwwwwwwFS = ...,,,,, 76543211

 (30)

 227

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

3.3. STRAGGLER TASK PREDICTION

Under the proposed HLAdagrad –ENN, the selected

features are trained to identify the task as a

straggler or not. Due to overfitting and underfitting,

the prevailing ENN methods led to a high error rate.

It also consumes more time to diminish the error

that leads to inaccurate straggler tasks

identification. Figure 2 shows the HLAdagrad

optimizer used with ENN to solve the issue. The

proposed work undergoes data training inside

imperative layers, say input layer (IL), Hidden Layer

(HL), undertake layer together with Output Layer

(OL) before following those conditions.

Figure2: Proposed HLAdagrad –ENN architecture

Suppose with the input n ,
 nh is the number of

HL ,
 UNh is the undertake neurons, 1w is the

weight of IL to HL, 2w , 3w , 4w is the weight of

undertake layer to HL , the weight of HL to OL is 5w

, the neural network’s input is proffered as

)1(− , the output of HL is depicted as

)(nh ,

the output of undertake layer is denoted as

)(UNh , and the output of neural network is

proffered as

)( ; then,

()())1()()()()(1234 −+++=  whwhwhwh UNUNUNn

 (31)

Where,

()))1(−= hhUN
 (32)

Where, the hidden layer transfer feature is signified

as  , utilized largely in the S-type function, i.e.

1)1()(−−+= e
 (33)

 signifies the OL transfer function, which is often

a linear function, that is,

))(()(5 = hw

 (34)

To revise weights, BP is utilized by Elman NN.

Assessing the weights is centered on the entropy

that is the network's error is rendered by,

2

1

))()(ˆ(−=
=

Ye
m

K

 (35)

Wherein, for detecting the user the output vector is

signified as . BP is not required when the)(ˆ 

 228

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

error value is zero; however, using the Hinge loss

Adagrad optimizer (HLAdagrad), the BP is

formulated for an error value. With low

computation time, the optimizer updates the

weight and minimizes the loss. To avoid overfitting

of data, the hinge loss with Adagrad optimizer helps

and data underfitting is not allowed. For frequently

occurring features’ parameters, smaller updates

are performed. For infrequently occurring features’

parameters, larger updates are executed. The

HLAdagrad optimizer is given by:


=

+ +




+
−=

k

i

i

iit

itit e
e

w
ww

1,

,,1 




 (36)

 Where, the hinge loss with  as constant is

denoted as 
=

k

i

ie
1

 and the sum of the overall loss

is denoted as
 ie , the update weight at iteration i

denoted as
 itw ,1+

, the current weight is illustrated

itw ,
, the learning rate is represented  , regarding

weight,

the sum of the gradients of the past

gradients is denoted as
 iit , , the constant that is

chosen very small i.e.0.001is depicted as  and the

weight's partial derivative is denoted as
e

w





concerning loss.

As a result, the highest priority is identified for the

task having the longest remaining time i.e. SE (Back-

Up). In figure 3, the straggler task prediction's

outline is illustrated in the form of pseudo-code.

Figure3: Pseudo code for HLAdagrad-ENN for STP

3.4

. NODE FEATURE EXTRACTION REPORT

 229

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Grounded on the mp- reduce nodes, the feature

extraction report gathers the information that aids

to choose the backup node for the respective

straggler task. The features extracted such as

1. Job success rate: ()tPROGRESSJ ISR = /

2. Jobs’ Priority and the resource’s default priority

are selected to execute the job:











=

t

Slowtask
i i

J)ˆ(Pr

3. Choosing resource’s capacity and the resources

available to execute high priority jobs:

()mem

iiJ sallotedtaskmems Re)ˆ(Re −=

4. Progress rate centered map task:

()
INreadtaskmap Cogress = /Pr /

5. Progress rate between reduce and task:

()()
INreadstagetaskreduce RCogress /3/1Pr / +=

6. Average progress rate:














=

=

kRunningtas

num

j

jAVG NPROGRESSogress /Pr
1

7. Left time:

()()iii ogressRatePROGRESSlt Pr/1−=

To choose the best backup node for the straggler

task, many more features are extracted. For further

proceedings, the features are framed into a data

frame.










+++

++++
=

niAVGtaskreduce

taskmapJJSR

i
Nltogressogress

ogresssiJ
N

.....PrPr

PrRePr

/

/

 (37)

3.4.1. Node selection

For the jobs’ execution or straggler tasks, the

appropriate node selection issue is addressed by

the developed node selection algorithm. Grounded

on the individual intelligence’s social behavior and

Chimps’ sexual motivation during their hunting

process, a linear coefficient vector-centered Chimp

Optimization (LCV-ChOA) Algorithm is developed

here. The coefficient vector’s updation leads to

incorrect model driving along with prey chasing in

the prevailing ChOA. Due to this, irrelevant

selection of the exact resource for the tasks'

execution is done. To solve that, LCV is utilized in

updating the vectors. The node selection is held

grounded on the tasks' priority. The node is

selected, when a high-priority task is available.

Along with, the task failing chances are diminished.

Centered on the straggler prediction model, each

task's priority is assigned.

Initially, the chimps population (i.e., the extracted

features iN) that live in a fission-fusion society is

classified as,

 a) Drivers,

 b) Barrier,

c) Chaser, and

d) Attackers (best solutions).

The exploration stage and the exploitation stage are

the two stages in the chimps' hunting process.

Driving, blocking, and chasing are included in the

exploration stage whereas the exploitation stage

comprises attacking the prey (nodes).

In driving, the driver does not attempt to catch the

prey but rather only to follow it. In blocking, the

chimps positioned themselves in trees along with

prey's gateway route is hindered. In chasing,

running after the prey to catch is made by chasers.

For attacking the prey, the attackers predict the

optimal route in exploitation.

The prey’s driving and chasing can be

mathematically modelled as,

|)(.)(.| tNtNCD cp −=

 (38)

DAtNtN pc .)()1(−=+

(39)

Where, the coefficient vectors are mentioned as A

and C , with respect to various chaotic maps the

chaotic vector is computed as  , the position of

the prey and a chimp at the number of current

iterations q are given as
)(tN p

 and)(tNc .

During the hunting process, the sexual motivation

of the chimps’ effect is expressed by the chaotic

vector . Using LCV, the coefficient vectors are

calculated as,

 230

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024









+=

max

1
log

4

1

i
iA

 (40)

= 2C

 (41)

Where, using robust confidence intervals

),(. IntCon , and are the parameters

updated to balance the exploration and

exploitation rate. The robust confidence intervals

are calculated as,

i
n N

medIntCon


 
)1,

2
(

),(.
−

=

 (42)

Where, the confidence coefficient is notated as

 ,

the confidence interval’s percentage point is

signified as  , the sample standard deviation is

expressed as  , and the sample median is denoted

as med . Centered on the calculation time along

with the system's accuracy, fitness is evaluated.

The attackers find the prey's position with the aid

of a driver, barrier, and chasers for attacking the

prey. Centered on chaotic strategy, the prey is

attacked by the chimps. Exploring the prey’s

location and encircling the prey are the two

approaches employed here. The attacker, driver,

barrier, and chaser update the prey’s position since

the prey’s initial position is unknown. The position

updation can be expressed as,

|**| 11ker NCNR Aattac −= 

(43)

|**| 22 NCNR Chchaser −= 

(44)

|**| 33 NCNR Bbarrier −= 

(45)

|**| 44 NCNR Ddriver −= 

(46)

To update their solutions, four optimal resolutions

are stored along with other chimps. The chimp's

next position can be at any current position middle

and prey’s position, if the random vectors of



lies

in [1,-1]. The chimp’s location is updated as,

ker1.)1(attacA RANN −=

(47)

chaserCh RANN .)2(2−=

(48)

barrierB RANN .)3(3−=

(49)

driverD RANN .)4(4−=

(50)

The chimp’s position can be updated from the

obtained location as,

4

)4()3()2()1(
)1(

NNNN
tN

+++
=+

(51)

By the social benefits like support and sex, the

chimps' hunting process can be affected. To forget

their involvement in the hunting process, chimps

get motivated by this. In the prey attacking final

stage, chaotic maps are utilized that aids chimps in

diminishing the local optima together with slow

convergence rate issues. The parameter)1,0(

determined the probability of selecting the normal

position updation along with chaotic map centered

position updation as,









−+
=+

)5.0(

)5.0(.)1(
)1(

)(



if

ifRAtN
tN

posm

p

c

(52)

Where, the chaotic map-centered position

updation process is proffered as m . The attackers

attack the prey grounded on an updated position.

When the prey's movement stops, the hunting

process also gets stopped. The best nodes for the

straggler task are obtained finally.

4. RESULTS AND DISCUSSION

In a heterogeneous Hadoop environment, this

section validates the proposed STP-BHADOOP

framework. It refers to a Hadoop cluster where

each node’s hardware resources are diverse. These

hardware resources comprise a disk, memory, CPU,

and so forth. For creating a heterogeneous

dispersed Hadoop environment, the four nodes

were virtual out with dissimilar hardware resources

 231

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

using VMware virtual machine. Grounded on

Runtime, response time, data locality, estimated

runtime in the mapping phase, estimated runtime

in reduced phase, precision, and recall, the

validation is carried out. Clio, Hawkeye, Spark-

Speculative, SE Algorithm centered on Decision

Tree (SECDT) and longest approximation time to

end (LATE) are some prevailing models analogized

with the proposed work’s attained outcome. With a

128 MB block size HDFS distributed file system, all

tests are centered on three blocks. For each Map

and Reduce task, two slaves are considered in this

work. Grounded on the t-word counting program,

the results are generated.

Figure 4: Demonstration of Runtime with two slaves

The proposed methods' runtime is validated in

figure 4. The total time taken by the Map and

reduce to execute a task is named Runtime. High

efficiency was normally attained for low runtime

models. Grounded on the various task of various GB

ranging from 0.251 to 11.5, the runtime analysis is

eventuated. A runtime of 110s for 0.251G and 399s

for 11.5G is attained by the proposed framework

whereas a runtime ranging between 139s-168s for

0.251G and 411s-488s for 11.5G is shown by the

proposed schemes. When analogized with the

existing models, less runtime is attained by the

proposed framework. When analogized with the

prevailing models, faster-balanced task distribution

is eventuated in the proposed work

.

 232

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Figure 5: Graphical representation of proposed method based on (a) data locality (b) Response time

The proposed framework's data locality measures

are described in figure 5(a). Data locality refers to

the fact that the task's executing mode and the

task's data blocks storing node are similar nodes.

The time taken to transfer data blocks to the

execution node is diminished by data locality.

Finally, the scheduling algorithm's reasonableness

is indicated by the proportion of data locality jobs.

A scalable model is indicated by upholding a high

percentage of data localities i.e. scalable to

different data scales. A data locality of 89% for 100

scales of data and there is a decrease of 12% for the

900 scales of data is attained by the proposed work.

However, the prevailing models normally obtain a

low data locality for 100 scales of data i.e. ranging

between 69%-82% and a range of 55% -61% for 900

scales of data. Better data locality is maintained by

the proposed work since a huge difference occurs

between the proposed work and the existing work.

The proposed framework's response time is

represented in figure 5(b). The time taken by the

task to respond from a node is termed Response

time. To eliminate data congestion, response time

should be low. The proposed method's response

time diminishes as the tasks’ number increases. i.e.

for the 10 tasks, the response time was 7s but as

the task number increases the time also increases

with a light margin of 25s as shown in the figure. For

the overall task, a high RT ranging between 9s-58s

is achieved by the prevailing methods that lead to

data traffic between nodes.

 233

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Figure 6: Difference in estimated runtime in (a) Map phase (b) Reduce Phase

Figures 6(a) and 6(b) depict the MR phase’s

predicted runtime. Importantly, a huge impact on

the job’s runtime is made by each node’s condition.

Every run may account for a variable time amount

if the working of the node is held as a background

task. Grounded on the input data quantity along

with the kind of application for further assessment,

different runtimes are kept in the database. The

projected runtime should be error-free for the

previous task. A better MR runtime estimation with

a 5% error rate is attained by the proposed method.

That is, a Map runtime of 28s for 15 tasks and a

Reduce runtime of 24s are attained. Inaccurate SE

has resulted from the attainment of a wide error

rate of about 30-35 percent by the prevailing

methods.

 234

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

Figure 7: Inner data congestion of backup task

The backup data traffic in the interim state is

illustrated in figure 7. Throughout job execution,

intermediate data across nodes is retrieved from

the result. The volume is counted by the network

management software's monitor. From nearby

backup nodes, the data may be read by the

proposed framework's backup jobs, lower

communication time cost reduces backup task

time, and finally diminishes stage execution time.

Fast nodes and backup task efficacy are ignored by

the current technique.

Table1: Statistic for runtime based on precision and recall

Strategy/

metrics Precision (%) Recall (%) Average Find Time(sec)

Clio 65 67.84 98

Hawkeye 78 79.99 87

Spark-Speculative 68 69.78 89

LATE 61 61.98 95

SECDT 63 65.45 102

Proposed STP-BHADOOP 85 86.66 43

Using precision, recall, and average find time, the

stragglers' occurrences in each approach are

calculated along with runtime statistics verified for

suggested frameworks. Table 1 signifies the

investigation findings. For locating the straggler, the

proposed approach is more accurate than the

existing models. The STP-BHADOOP improves

accuracy and recall to over 85 % and 86.66 %,

respectively with an average search time of 43 sec.

This occurs owing to the optimization methods

speculative strategy's set, which includes precise

straggler identification, optimal node selection, and

efficacy assurance. A range of 61 % to 79.99 % for

low precision and recall is achieved by the

prevailing approaches along with a long average

finding time.

5. CONCLUSION

A huge impact on Hadoop clusters is made by MR

jobs scheduling and resource allocation in

heterogeneous environments. For heterogeneous

jobs and resources, complexity occurs in Big data

analytics as well as workload management. The SE

strategy is made challenging by the tasks

characteristics and the runtime environments

complexity. The work has developed the STP-

 235

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

BHADOOP framework to offset this issue. For

straggler task prediction, an HLAdagrad-ENNand

LCV-ChOA for backup node selection was utilized in

this framework. Straggler identification, backup

node selection, along with effectiveness guarantee

is provided by this work. A balanced load between

Mapper and Reducer is provided in this work. High

runtime and traffic congestion between the nodes

are avoided. The task characteristic's uncertain

change is also handled by the proposed framework.

Overall, an average data locality of 82.8%, a

response time of 25s for performing 500 tasks, and

a runtime of 399s for the maximum data size were

attained here. It also achieves a precision of 85%,

recall of 86.66% for predicting the straggler task as

analogized to the state-of-the-art methods.

Reference

1. Maotong Xu, Sultan Alamro, Tian Lan and Suresh

Subramaniam, “Chronos a unifying optimization

framework for speculative execution of deadline-

critical mapreduce jobs”, 38th International

Conference on Distributed Computing Systems, 2-6

July Vienna, Austria, 2018.

2. Zhongming Fu and Zhuo Tang, “Optimizing

speculative execution in spark heterogeneous

environments”, IEEE Transactions on Could

Computing, 2019,

Doi: 10.1109/TCC.2019.2947674.

3. Kamalakant Laxman Bawankule,

Rupesh Kumar Dewang and Anil Kumar Singh,

“Historical data based approach for straggler

avoidance in a heterogeneous hadoop cluster”,

Journal of Ambient Intelligence and Humanized

Computing, vol. 12, no. 3, pp. 1-17, 2021.

4. Fengjun Shang, Xuanling Chen, Chenyun Yan,

Luzhong Li and Yuting Zhao, “The bandwidth-aware

backup task scheduling strategy using sdn in

hadoop”, Cluster Computing, vol. 22, no. 1, pp. 1-

11, 2019.

5. Khushboo Kalia and Neeraj Gupta, “Analysis of

hadoop mapreduce scheduling in heterogeneous

environment”, Ain Shams Engineering Journal,

2020, Doi: 10.1016/j.asej.2020.06.009

6. Xue Ouyang, Peter Garraghan, Bernhard Primas,

David Mckee, Paul Townend and Jie Xu, “Adaptive

speculation for efficient internetware application

execution in clouds, ACM Transactions on Internet

Technology, vol. 18, no. 2, pp. 1-22, 2018.

7. Neeraja J Yadwadkar, Bharath Hariharan, Joseph E

Gonzalez and Randy Katz, “Multi-task learning for

straggler avoiding predictive job scheduling”,

Journal of Machine Learning Research, vol. 17, pp.

1-37, 2016.

8. Ibrahim Adel Ibrahim and Mostafa Bassiouni,

“Improving mapreduce performance with progress

and feedback based speculative execution”,

International Conference on Smart Cloud, 3-5

November, New York, NY, USA, 2017.

9. Xiaodong Liu and Qi Liu, “An optimized speculative

execution strategy based on local data prediction in

a heterogeneous hadoop environment”,

International Conference on Computational

Science and Engineering (CSE) and IEEE

International Conference on Embedded and

Ubiquitous Computing (EUC), 21-24 July,

Guangzhou, China, 2017.

10. Chunlin Li, Mingyang Song, Qingchuan Zhang and

YoulongLuo, “Cluster load based content

distribution and speculative execution for

geographically distributed cloud environment”,

Computer Networks, vol. 186, pp-1-22, 2021.

11. Haizhou Du, Shaohua Zhang, Ping Han, Keke Zhang

and Bin Xu, “Cheetah a dynamic performance

optimization approach on heterogeneous big data

analytics cluster”, 5th International Conference on

Big Data Computing and Communications

(BIGCOM), 9-11 August, Qing Dao, China, 2019.

12. Shyam Deshmukh, Komati Thirupathi Rao and

Mohammad Shabaz, “Collaborative learning based

straggler prevention in large-scale distributed

computing framework”, Security and

Communication Networks, 2021, Doi:

10.1155/2021/8340925.

13. Reshma S Gaykar, Nalini C and Joshi S. D,

“Identification of straggler node in distributed

environment using soft computing

algorithms”, International Conference on Emerging

Smart Computing and Informatics (ESCI), 5-7

March, Pune, India, 2021.

14. Neda Maleki, Hamid Reza Faragardi, Amir Masoud

Rahmani, Mauro Conti and Jay Lofstead, “Tmar

a two-stage mapreduce scheduler

 236

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 45 No. 4

April 2024

for heterogeneous environments”, Human-centric

Computing and Information Sciences, vol. 10, no.

42, pp. 1-26, 2020.

15. Abolfazl Gandomi, Ali Movaghar, Midia Reshadi

and Ahmad Khademzadeh, “Designing

a mapreduce performance model in distributed

heterogeneous platforms based on benchmarking

approach”, The Journal of Supercomputing, vol. 76,

no. 12, pp. 1-27, 2020.

16. Qi Liu, Weidong Cai, Jian Shen, Zhangjie Fu,

Xiaodong Liu and Nigel Linge, “A speculative

execution strategy based on node classification and

hierarchy index mechanism for heterogeneous

hadoop systems”, ICACT Transactions on Advanced

Communications Technology (TACT), vol. 5, no. 4,

pp. 889-894, 2016.

17. Rathinaraja Jeyaraj, Ananthanarayana V. S and

Anand Pau, “Improving map reduce scheduler for

heterogeneous workloads in a heterogeneous

environment”, Concurrency and Computation

Practice and Experience, vol. 32, no. 9, pp. 1-10,

2019.

18. Ihsan Ullah, Muhammad Sajjad Khan, Muhammad

Amir, Junsu Kim and Su Min Kim, “lstpd least slack

time-based preemptive deadline constraint

scheduler for hadoop clusters”, IEEE Access, vol. 8,

pp. 111751-111762, 2017.

19. Zhongming Fu and Zhuo Tang, “Optimizing

speculative execution in spark heterogeneous

environments”, IEEE Transactions on Could

Computing, vol. 99, pp. 1-15, 2019.

20. Amir Javadpour, Guojun Wang, Samira Rezaei and

Kuan-Ching Li, “Detecting straggler mapreduce

tasks in big data processing infrastructure by neural

network”, The Journal of Supercomputing”, vol. 76,

pp. 6969-6993, 2020.

21. Mandana Farhang and Faramarz Safi-Esfahani,

“Recognizing mapreduce straggler tasks in big data

infrastructures using artificial neural networks”,

Journal of Grid Computing, vol. 18, no. 3, pp. 1-23,

2020.

22. Laiping Zhao, Yiming Li, Francoise Fogelman-Soulie

and Keqiu Li, “A holistic cross-layer optimization

approach for mitigating stragglers in in-memory

data processing”, Journal of Systems Architecture,

vol. 111, pp. 1-12, 2020.

23. Fengjun Shang, Xuanling Chen, Chenyun Yan,

uzhong Li and Yuting Zhao, “The bandwidth-aware

backup task scheduling strategy using SDN in

hadoop”, Cluster Computing, vol. 22, no. 1, pp. 1-

11, 2019.

24. Haizhou Du and Shaohua Zhang, “Hawkeye

adaptive straggler identification on heterogeneous

spark cluster with reinforcement learning”, IEEE

Access, vol. 8, pp. 57822-57832, 2020.

