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Abstract: Data analysis speed is of great significance in Big Data processing.  For big data analytics, one of the 

popular frameworks is Hadoop. Grounded on the MapReduce (MR) model, Hadoop runs applications on a cluster 

of huge commodities numbers along with less expensive computing nodes since it is a distributed computing 

framework. Owing to unbalanced load, inaccurate node selection, and unidentified straggler tasks, there remain 

challenges like high response time, runtime or execution time, and poor handling of resources. The work has 

developed a Straggler Task Prediction centered Balanced Hadoop (STP-BHADOOP) framework to rectify the 

existing problem. The computational infrastructure of Big Data’s efficiency is enhanced by this framework; thus, 

accelerating data processing to identify straggler tasks by Speculative Execution (SE). Using the ROS-Flubber 

(Random Over Sampler based flubber) technique, Hadoop computing is utilized here by distributing a balanced 

load, totally named Balanced Hadoop (BHadoop). To make a structured data format, extraction of task-centered 

features and preprocessing are eventuated. To predict the straggler task, the most relevant data is chosen by 

using the XI-MO technique.  Finally, using the HLAdagrad-ENN technique, the prediction is eventuated centered 

on selected data. The node-centered features are extracted after the straggler task prediction. If a straggler task 

is identified, nodes selection takes place using the LCV-ChOA technique with the aid of extracted node features. 

The proposed framework achieves a low runtime, and response time and predicts the straggler task with better 

precision and recall value, when analogized with prevailing methods is obtained from experimental outcomes. 

Keywords: Big data, Hadoop, MapReduce, Speculative execution, Straggler task, Straggler task prediction based 

balanced Hadoop ( STP-BHADOOP), Random Over Sampler based flubber ( ROS-Flubber), Xavier initialization 

based Mayfly optimization( XI-MO), Hinge loss adaptive gradient-based Elman neural network ( HLAdagrad-ENN 

), and linear coefficient vector based chimp optimization( LCV-ChOA) 

 

Introduction 

Over the last 12 years, the big data analysis 

platform has accumulated unprecedented amounts 

of gigantic data processing i.e. far beyond the 

storage capacity of any one machine. Popularized 

frameworks were applied by enterprises together 

with research institutes to handle large data 

volume that aids to extract applicable data. Apache 

Spark popularly known as an open-source MR 

programming platform is a typical example [1]. 

Spark spotlights the Resilient Distributed Dataset's 

(RDD) abstract when analogized with Apache 

Hadoop [3] along with other distributed computing 

schemes [4]. For efficient performance on high-

iterative jobs, it takes an in-memory computing 

advantage. Straggler is defined as the extension of 

the stage’s execution time by little slow-running 

tasks of the last wave tasks since more tasks run in  

 

corresponding to process elements in RDD 

partitions [5]. For numerous reasons, stragglers can 

arise but determining the ultimate one is tough [6]. 

Straggler is identified by MR systems along with 

speculative copy restarting on an alternative node 

termed SE. The last few slow-running tasks are 

simply backed up by Google. It was also observed 

that lessen in job execution time by 44% is made by 

SE [7]. SE is implemented specifically in Spark and 

others due to improvement in performance [8]. 

Regarding the map phase or the reduce phase, the 

SE is configured. For those straggling tasks, the 

master schedules the speculative tasks when the SE 

is enabled and arranges them in the queue [9].  

When there exist available slots, it will be launched. 
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Running at most one speculative task at a time is 

ensured by the scheduler for every original task. If 

the speculative task ends, the original task is ended 

and vice versa. As the performance is degraded, SE 

is disabled by some organizations on some jobs and 

tasks [10]. 

HadoopNaive is the original SE mechanism in 

Hadoop. As task progress is utilized to determine 

straggler tasks, it shows poor performance in 

heterogeneous environments. To optimize SE from 

further aspects, various optimized schemes are 

designed [17], such as LATE, MCP, ERUL, and so on. 

Centered on the real-time task’s remaining time 

estimation, straggler tasks are determined in the 

proposed scheme. But, improper node allocation is 

led by inaccurate estimation. The cluster's overall 

performance is affected by the SE performance if 

multiple "Straggler" occurs in the cluster at the 

same time. So, it is vital to schedule the backup 

tasks strategy [18]. The work has proposed an STP-

BHADOOP framework centered on SE challenges to 

tackle the existing issues. 

The paper’s structure is arranged as follows: the 

prevailing SE strategies and defects are presented 

in Section 2. The proposed strategy’s detail is 

signified in Section 3. Section 4 illustrates the 

experiments and analysis which support the 

contributions and, finally, the paper gets concluded 

in Section 5. 

2. Literature Survey 

Zhongming Fu et al. [19] developed a strategy 

named ETWR to enhance the efficacy of SE in Spark. 

To tackle the SE’s three key points: straggler 

identification, backup node selection, and 

effectiveness guarantee, a heterogeneous 

environment was measured. Initially, the task was 

fragmented into sub-phases centered on the task 

type classification. To find the straggler promptly, it 

utilized the processing speed together with the 

progress rate within a phase. Secondly, to estimate 

the task’s execution time, it utilized the Locally 

Weighted Regression model. Thirdly, to guarantee 

the speculative tasks' effectiveness, it presented 

the iMCP model. The experiment showed that 

when analogized with the Spark-2.2.0, the ETWR 

could diminish the job execution time by 23.8%, 

along with enhancing the cluster throughput by 

33.2%.  But, owing to the unbalanced MR load, 

execution time was high. 

Amir Javadpouret al. [20] developed a 

backpropagation neural network’s application on 

the Hadoop for the straggler task’s detection. It also 

estimated the tasks balance execution time which 

was vital in straggler task detection. To detect 

straggler tasks and achieve accurate estimation of 

execution time, outcomes attained were 

analogized with familiar algorithms in the specific 

domain such as LATE, ESAMR, and the real balance 

time for Word Count along with Sort benchmarks. 

The high challenge here was the straggler task node 

selection. 

MandanaFarhanget al. [21] illustrated a dynamic 

scheme to discover straggler tasks in 

heterogeneous environments. To estimate task 

execution’s stage weights for accurate estimation 

of task execution time, a neural network algorithm 

named SEWANN framework was utilized. To assess 

the balance execution time and enhance the big 

data's efficiency, an error was reduced. Both 

estimated with actual weights were computed 

along with implementing this method in Hadoop 

open-source software initially. SEWANN excelled 

over SVR, Decision Trees, ESAMR, and LATE as 

baseline methods at 99%, 81%, 85%, and 99%, 

respectively. Task execution time was enhanced by 

SEWANN when analogized with baseline method 

ESAMR by 15%, along with LATE by 24%. Though 

the work was executed well, diminish in test 

accuracy occurs due to underfitting led by task 

characteristic-based straggler prediction. 

Laiping Zhao et al. [22] presented Clio, a cross-layer 

interference-aware optimization scheme that could 

successfully diminish stragglers for data processing 

models. Both maps along with reduced tasks 

scheduling were supported by Clio. In proportion to 

each worker node’s actual computing ability, 

intermediate data was heuristically dispatched. To 

consider numerous straggler factors together with 

balancing the tasks completion times, it was much 

finely estimated. Clio was implemented in Apache 

Spark. Grounded on both synthetic and real 

datasets, its performance was evaluated. When 

analogized with prevailing models' experimental 

outcomes, Clio can accelerate the applications' 
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execution by up to 67%. However, high response 

time and estimated runtime had happened. 

Fengjun Shang et al. [23] developed a speculative 

task scheduling scheme centered on SDN 

technology. Grounded on ASD, a bandwidth-aware 

speculative task run-time evaluation strategy was 

initiated. It accurately speculated the backup task 

run-time along with providing bandwidth assurance 

for the speculative task. Finally, simulation 

experiments were authorized by BWRE. From 

experimental outcomes, the shortening job 

turnaround time was outperformed by BWRE at an 

average of 9.85%. For predicting tasks, it showed a 

low precision as well as recall. 

Haizhou Du et al. [24] systematically conducted the 

exploration of the elementary issue of automatic, 

adaptive straggler identification on a big data 

analytics platform. To solve the complex online 

optimal issue, Reinforcement Learning (RL) 

techniques were utilized. To recognize stragglers 

free from human intervention, employment of 

Reinforcement learning adaptively opted the 

optimal parameters. For launching speculative 

tasks on the heterogeneous cluster, the Hawkeye 

technique identified stragglers by reinforcement 

learning at runtime. Hawkeye managed to diminish 

the job completion time over the different 

applications type as per experimental outcomes. 

Centered on a 23% improvement on the current 

resolutions preciseness to the heterogeneous 

cluster, an instance revealed a 37% decrease in 

average job completion. For different scale data, it 

was highly complex.  

3. Proposed Straggler Task Prediction Based On 

Balanced Hadoop Frameworks 

Using the MR framework, distribution along with 

parallelization of large–scale data processing is 

carried out. The workload is divided into several MR 

jobs by this system and gets distributed over 

multiple nodes. For completing a task, a node’s 

poor performance makes the job consume more 

time for completion known as Straggler Task.  The 

overhead’s major source in parallel programs such 

as MR is Load imbalance.  Tasks with large data 

become stragglers owing to the input data’s uneven 

distribution. It may delay the overall job 

completion. As per the task progress, the task’s 

implementation is determined by the SE 

mechanism.  For SE, the load imbalance problem, 

choosing backup nodes relying on straggler task, 

node failure remains a great challenge. Using the 

STP-BHADOOP framework, a prediction-centered 

balanced SE in a heterogeneous environment is 

engendered which is illustrated in figure 1. 

 

Figure1: Proposed STP-BHADOOP framework 

3.1. Big data 
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Initially, for the work, large datasets collections that 

cannot be processed using traditional computing 

techniques are used. For example, the data volume 

needed by Facebook or YouTube is gathered and 

managed routinely.  

3.1.1. HADOOP 

Under Hadoop, data gathered is processed. The 

data goes through the following phases in Hadoop: 

Input phase 

Here, fragmenting the texts into fixed-size pieces is 

named input splits. It is utilized as an input chunk 

that gets preceded into the mapping process 

 n

n

n

i = |..........||| 3

3

2

2

1

1   
   (1)

 

Mapping 

Here, to generate output values, the split data is 

transferred to a mapping function.  From input slits, 

every word's frequency count is performed in the 

mapping phase.  

 n

n

n

i

n

i C = |..........||| 3

3

2

2

1

1  
   (2) 

 Shuffling 

From the mapping phase output, relevant records 

are consolidated by shuffling. The websites 

frequently obtained are clubbed together. 

( ) n

i

n

i

n

i CSFS max=
   

  (3)
 

Reducing 

Here, from the shuffling stage, the output values 

are aggregated. From the shuffling phase, the 

values are combined in this phase along with 

frequently occurring websites and form into one. 

This phase summarizes the complete dataset in 

short. 

 n

i

n

i SduceR Re=
   

  (4)
 

Centered on key/value pairs, the MR programming 

matches the Map tasks’ output that is transported 

to diminish the task modes. By a Reduce node, the 

data with the same key can be processed. For most 

of the data, the Reduce node task will engender an 

unbalanced load, if the data matches a particular 

key or various keys. 

3.1.2. Load balancing 

For the same quantity of data provided for each 

task, the same amount of time is required to 

complete it.  No assurance is given for fair data 

division betwixt jobs or the same quantity of input 

data processing for a similar time period. For faster 

runtime, this work engendered a ROS-Flubber to 

balance the load. Except for the input size along 

with reducer processing, flubber is similar to the 

genuine user job. The actual input's parts will 

suffice to assume the considered sample 

summarizes the whole input, as the pre-job is 

mainly utilized for statistical estimation. From the 

input dataset, randomly picking up a bad 

proportion of sample records leads to Flubber’s 

poor sampling rate. ROS is used to avoid this. A copy 

of data sets ( data ) is executed in a minor 

distributed dataset (
oritymin  ). The increase in 

overfitting’s livelihood and the higher sampling rate 

are provided  

( ))( min oritysdatasamplerRandomover +=

   (5)
 

The user specifies the sample size   relative to the 

input size. Collecting statistics from the mapper's 

output is the succeeding phase after a run on the 

sample input. To retrieve the map output size ( n

o

), this is the simplest way. The reducer’s optimal 

number ( ) is formulated as: 













=

m

n

o

    

  (6)
 

Where, the reducer buffer size in Mb is denoted as

m . 

 The above phrase’s reasoning is given as follows. 

During the merging phase, the mapper output will 

be fragmented as the reducer buffer doesn't leak 

any records in an ideal world. The entire input 

data’s output size is 


1
 of the sample map output 

assuming the mapper's output is proportional to 
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the input’s size. The data amount each reducer 

processes is less than the reducer buffer size m  is 

how values are shared. The assumption of all keys 

having an equal number of values is made finally. A 

key, whose projected size exceeds the reducer 

memory buffer size is assigned by the reducer to 

avoid a straggler reducer node. The reducer’s 

optimal number required is computed to process 

the remaining keys. In the sample, the list of all the 

keys is assumed as .   Let   be the set of all the 

keys such that their projected value over the entire 

dataset is given as: 

( )
m

i

Size

Data k






    

  (7)
 

Where, in the set  , ik  is a key. For finding the 

reducers’ numbers the modified formula is as 

follows.  

( )


















+=
 −

m

k i

Size

Data
i

k


  

   (8)

 

 By the above formula, the keys numbers less than 

the reducers number are considered and 

computed.  This leads to the formulation, 



















= ,minO

   

  (9)

 

Among all reducers after completing the 

computation, the load is balanced. Generating 

partition mapping by load-balancing where each 

key with larger data is allocated to one reducer 

while the remaining reducer is assigned with 

smaller keys along with keys not included in the 

sample. The keys containing larger data quantities 

that are not jumbled up with smaller keys are 

ensured.  

3.2. Feature extraction for Task 

Data are processed under balanced Hadoop along 

with extracting various task features like 

competition for local disk, CPU, network 

bandwidth, memory, to analyze the task for 

straggler avoidance. Further, owing to faulty 

hardware along with misconfiguration, the 

straggler could also be caused. Stragglers are raised 

by the dynamically altering resource contention 

outline on an underlying node. Before task 

launching on a node, for memory, network, disk, 

CPU, along with other operating system level 

counters defining the degree of concurrency, the 

performance counters were collected centered on 

the findings. Multi broad categories spanned by the 

counters collected are as follows: 

1. CPU utilization ( )task

iCPU \
: CPU idle time ( )idtC , 

system time ( )ts , user time ( )tu  and speed of the 

CPU ( )Sp , etc.  

2. Network utilization ( )task

iNet \
: Number of bytes 

sent and received ( )Rs bandb , statistics of remote 

read and write statistics of RPCs 

( )wr RPCandRPC  etc.  

3. Disk utilization ( )task

iDisk \
: The local read and 

write statistics from the data nodes

( )wr dnanddn , amount of free space ( )SF , etc.  

4. Memory utilization ( )task

iMem\
 : Amount of 

virtual ( )Vm

iAmt \
, physical memory available

( )task

iPmem \
, amount of buffer space ( )m , cache 

space ( )cac

ispace\
, shared memory space available

( )ss

i\ , etc.  

5. System-level features ( )task

iSF\
: Number of 

threads in different states (waiting ( )tw , running

( )task

iMem\
, terminated ( )tt , blocked ( )tB , etc.), 

memory statistics at the system level. In total, 107 

distinct features are collected that characterize the 

state of the machine. 

6. Remaining time of task ( )task

im\Re  : (Process 

speed ( )Speed

i\  + Remaining data to process 

( )task

ir\
+ Sum of the remaining time left in each 

Phase ( )t

tmRe )  
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( ) ( ) += 
t

t

task

t

task

t

task

i mEstBwrm Re/Re \\

   (10)
 

Where, 

( ) ( )data

n

idata

n

i avg = /
  

  (11)
 

7. Remaining time of Shuffle phase ( )n

it SmRe

separately (To avoid speed fluctuation) 

  ( ) ( )n

ispeed

f

i

f

i

n

it StaskSSm /%%Re −=

   (12)
 

Where, the finished map task's percentage is 

denoted as f

i% and f

iS%  denotes the finished 

shuffle task’s percentage.                          

From each workload’s jobs, multiple tasks may run 

on every single node. To make a simpler notation, 

the extracted data are formed into a data frame. 

( ) n

n

it

task

i

task

i

task

i

task

i

task

i

task

ii SmmSFDiskMemNetCPU +++++++= .....ReRe

(13)
 

3.2.1. Preprocessing 

Converting the extracted unstructured features 

into a structured data format is eventuated by 

preprocessing along with diminishing the error 

probability. By removing repeated data, noises 

caused due to outlier, missing values, etc, the data 

is cleaned. Major preprocessing of data like 

handling of missing and Nan values, data time 

variables handling, and data scaling are executed by 

this work. 

3.2.1.1. Handling of missing and Nan values 

Nan values signify 'Not a Number' which is a 

numeric data type member that can be read as a 

value. It is undefined or unrepresentable while 

missing values illustrated 'no data present' or 

'blank' for a certain feature or group of features. 

Eliminating the missing and Nan data in the dataset 

may destroy the valuable data along with 

diminishes the straggler task prediction's accuracy. 

It is necessary to deal with the missing and Nan 

Value to have a successful conclusion. 

)( Y

jifxnpre =
   

  (14) 

Where, the function handling missing and Nan 

values are denoted as
fxn . Grounded on 

categorical and numerical values, the methods are 

selected. Some common methods are Median, 

Mode, Backward Fill, Forward Fill, Imputation, etc, 
Y

ji illustrated the 
thi row and 

thj  column in the 

dataset.  Without Nan value and missing value, the 

dataset is obtained and framed into the data frame 

i.e. 

 DS

n

DSDSDSDSDS

n = ,.....,,, 4321  

   
(15) 

3.2.1.2. Handling of date-time variables 

For task handling, date and time comprise the 

informative data. Investigate task trends in space 

and time, it provides a valuable information source 

to be used. It studies how Spatio-temporal 

information can be incorporated to utilize in 

modeling and forecasting straggler. To turn them 

into valuable information, the data-time variables 

require some conversion. Some valuable 

information is lost by ignoring data and time 

variables. 

)( DS

nDatetimeDT =
   

  (16)
 

Where, the function that handles the date and time 

variables is represented as Datetime  . 

3.2.1.3. Scaling 

To obtain the same units dataset feature that 

normalizes the independent variables range or data 

features, features scaling is done. To scale down the 

features, the Minmax Scaler is utilized within a 

similar range. It calculates the feature vector 

betwixt the range of 0 and 1. The Minmax scaler is 

formulated as: 

( )
( ) ( )

jiji

jiji

Sca





−

−
=

minmax

min

 

    (17)

 

Thus, to obtain healthier data for diminishing error 

rate, the data is being preprocessed. 
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3.2.2. Backup Node selection 

To avoid the curse of dimensionality, feature 

selection chooses the most relevant features from 

the extracted features.  It leads to informative data 

loss for predicting straggler tasks. Centered on 

mayfly social behavior, the most vital trait is chosen 

by the feature selection model, notably their 

mating process. After emerging from the egg, 

mayflies are thought to be adults. The fittest 

mayflies stay alive despite the duration they live. 

The problem’s solution is represented by every 

mayfly in the search space. The current Mayfly 

optimization becomes caught in the local optimal 

solution during the positive attraction constant 

value.  While updating the male and female 

mayflies’ positions, the search speed gradually 

slows down.  The work has developed Xavier 

initialization-based Mayfly optimization (XI-MO) to 

avoid the trap down. It maintains the fly 

population's variance and defines the minimum and 

maximum value to maintain the balance between 

local optimum and global optimum. To find out the 

coefficient vector 1 and 2  , Xavier initialization 

is used that gives a balanced exploration as well as 

exploitation rate aiding to attain a faster 

convergence rate. The selection process is speeded 

by the developed FS technique that performs 

accurately with less error probability. The 

developed algorithm works as follows;  

The male and female mayfly populations (extracted 

features) are generated randomly initially. The 

dataset is also split as 50 % for males and 50 % for 

females centered on the flies. For each problem in 

the population search space, each fly (best feature) 

is represented as a candidate solution that is a d-

dimensional vector n= ....,,, 321 , and 

the performance is estimated on objective function 

( )( iObj ).  

For each mayfly, the position change along with the 

flying direction for the individual as well as social 

flying experience is given by the velocity

n ....,,, 321= . Particularly toward its 

personal best position ( p

i ), each mayfly adjusts 

its trajectory. The best position attained by any 

swarm’s mayfly is ( g

i ). 

Centered on its own experience, the male mayfly 

movement is evaluated as that of its neighbors. The 

mayfly's current position i  in the search space at 

time step 𝑡 is represented as t

i . The position is 

modified to the current position by adding a 

velocity 1+t

i  as,
 

 

11 ++ += t

i

t

i

t

i      

  (18) 

With ( )maxmin

0 ,~  Ui
 

The male mayflies’s velocity gets down under the 

nuple dance scenario. Finally, the male mayfly’s 

velocity i  is calculated as: 

( ) ( )t

ij

g

ij

rt

ij

p

ij

rt

ij

t

ij
PP ee −+−+=

−−+ 
22

21

1    

  (19) 

11

6
++

−=
t

i

t

i


   

 (20) 

    

 
12

6
++

=
t

i

t

i


  

  
 (21)

 

Where, the mayfly’s velocities in dimension at a 

time step is modeled as
t

ij , the mayfly’s positions 

i  in dimension j at a time step t  is interpreted as

t

ij , 1  and 2 are positive attraction coefficient 

vectors that are used to scale the contribution of 

the cognitive and social components respectively. 

Furthermore, the mayfly’s best position i  had ever 

visited is p

i . The personal best position 
p

ij  at the 

subsequent time step 1+t , is computed 

considering minimization problems as: 

( ) ( )


 

=
++

otherwisesamethekeptis

ffif p

i

t

i

t

ip

i
,

, 11

  

   (22) 

Where, the objective function RRnf →:  

estimates the solution’s quality. At time step 𝑡, the 

global best position 𝑔𝑏𝑒𝑠𝑡 is defined as, 
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( ) 
( ) ( ) ( ) ( ) p

n

ppp

cp

n

pppg

i

ffff

bestf





,.....,,,min

|,....,,

321

321

=


 

   (23) 

Where, the male mayflies’ total number in the 

swarm is denoted as n .  

Finally, in eq. (19) a fixed visibility coefficient   is 

utilized to limit a mayfly’s visibility to others, while 

the Cartesian distance between ic  and p

i  is 

denoted as 
pr  and the Cartesian distance between 

ic  and g

i is notated as Gr . These distances are 

calculated as 

( ) −=−
2n

ijij

n

ii     

  (24) 

Where, the 
thj  element of mayfly i  is notated as 

ij  and i  corresponds to p

i  or g

i . 

To function the model properly, the swarm’s best 

mayflies execute their up-and-down nuptial dance. 

Finally, changing their velocities constantly is made 

by the best mayflies which are calculated as, 

RDt

ij

t

ij .1 +=+       

  (25) 

Where, the nuptial dance coefficient is denoted by 

D  and R  along with [-1, 1] random value range. A 

stochastic element is introduced by this up and 

down movement to the algorithm.  As the female 

flies don’t gather instead fly approach males to 

breed, unlike the male flies. Hence, the female 

mayflies' movement is computed.  The female 

mayflies' i current position in the 𝑦search space is 

assumed as t

ix  at a time step t . By summing 

velocity 1+t

i to the i  current position, the position 

is changed, i.e. 

11 ++ += t

i

t

i

t

i yy 
   

  
 (26) 

With ( )maxmin

0 ,~ yyUyi  

Towards the best male, the best female flies get 

attracted. Taking into account the minimization 

problems, consequently, the velocities are 

computed as: 

( )
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



 

   (27) 

 

Where, the female mayfly’s velocity i  in  dimension 

nj ...,4,3,2,1=  at a time step t  is modeled as 

t

ij  , the female mayfly’s position i  in dimension 

j  at a time step t  is depicted as 
t

ij , the positive 

attraction coefficient vector and fixed visibility 

coefficient are denoted as 2  and  , while the 

Cartesian distance betwixt male and female 

mayflies is signified as
 mfr . Finally, when a female 

is not fascinated by a male,
 fl  is a random walk 

coefficient utilized. Thus, it flies at random and R

is a random value in the range [- 1, 1]. 

After, the fly takeovers mating that is crossover 

operator:  from the male population together with 

the female population, one parent is chosen. 

Similarity occurs in the process of choosing parents 

and the process of females being attracted to the 

males. Either randomly or centered on their fitness 

function, the selection is eventuated. Later, the 

best male is bred by the best female; the second-

best male is bred by the second-best female, and so 

on. Two offspring are produced by the crossover as 

follows, 

( ) )(1)(1 ii yff −+=   

   (28) 

( ) )(1)(2 ii fyf −+=
 

   (29) 

Where, the male parent is proffered as )( if  , the 

female parent is notated as )( iyf  and a random 

value within a specific range is illustrated as . 

Zero is set as the initial velocity for Offspring. 

Replacing the worst solution with the best ones, 

pbest and gbest values are updated.  

 w

n

wwwwwwwwFS = ...,,,,, 76543211
 

   (30)  
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3.3. STRAGGLER TASK PREDICTION  

Under the proposed HLAdagrad –ENN, the selected 

features are trained to identify the task as a 

straggler or not. Due to overfitting and underfitting, 

the prevailing ENN methods led to a high error rate. 

It also consumes more time to diminish the error 

that leads to inaccurate straggler tasks 

identification. Figure 2 shows the HLAdagrad 

optimizer used with ENN to solve the issue. The 

proposed work undergoes data training inside 

imperative layers, say input layer (IL), Hidden Layer 

(HL), undertake layer together with Output Layer 

(OL) before following those conditions. 

 

Figure2: Proposed HLAdagrad –ENN   architecture 

Suppose with the input n  ,
 nh  is the number of 

HL ,
 UNh  is the undertake neurons, 1w is the 

weight of IL to HL, 2w , 3w , 4w  is the weight of 

undertake layer to HL , the weight of HL to OL is 5w

, the neural network’s input is proffered as 

)1( − , the output of HL is depicted as
 

)(nh , 

the output of undertake layer is denoted as
 

)(UNh , and the output of neural network is  

proffered as 
 

)( ; then, 

( )( ))1()()()()( 1234 −+++=  whwhwhwh UNUNUNn

  (31)
 

Where, 

( ) ))1( −= hhUN    
  (32)

 

Where, the hidden layer transfer feature is signified 

as  , utilized largely in the S-type function, i.e. 

1)1()( −−+= e    
  (33)

  

  signifies the OL transfer function, which is often 

a linear function, that is, 

))(()( 5 = hw
   

  (34) 

To revise weights, BP is utilized by Elman NN. 

Assessing the weights is centered on the entropy 

that is the network's error is rendered by,

 

 

2
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))()(ˆ( −=
=

Ye
m
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  (35) 

Wherein, for detecting the user the output vector is 

signified as . BP is not required when the )(ˆ 
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error value is zero; however, using the Hinge loss 

Adagrad optimizer (HLAdagrad), the BP is 

formulated for an error value.  With low 

computation time, the optimizer updates the 

weight and minimizes the loss. To avoid overfitting 

of data, the hinge loss with Adagrad optimizer helps 

and data underfitting is not allowed. For frequently 

occurring features’ parameters, smaller updates 

are performed. For infrequently occurring features’ 

parameters, larger updates are executed. The 

HLAdagrad optimizer is given by: 


=

+ +




+
−=

k

i

i

iit

itit e
e

w
ww

1,

,,1 




 

   (36)

 

 Where, the hinge loss with  as constant is 

denoted as 
=

k

i

ie
1

  and the sum of the overall loss 

is denoted as
 ie , the update weight at iteration i 

denoted as
 itw ,1+

, the current weight is illustrated
 

itw ,
, the learning rate is represented  , regarding 

weight,
 

the sum of the gradients of the past 

gradients is denoted as
 iit , , the constant that is 

chosen very small i.e.0.001is depicted as   and the 

weight's partial derivative is denoted as 
e

w





concerning loss. 

As a result, the highest priority is identified for the 

task having the longest remaining time i.e. SE (Back-

Up). In figure 3, the straggler task prediction's 

outline is illustrated in the form of pseudo-code. 

 

Figure3: Pseudo code for HLAdagrad-ENN for STP 

3.4

. NODE FEATURE EXTRACTION REPORT 
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Grounded on the mp- reduce nodes, the feature 

extraction report gathers the information that aids 

to choose the backup node for the respective 

straggler task. The features extracted such as 

1. Job success rate: ( )tPROGRESSJ ISR = /  

2. Jobs’ Priority and the resource’s default priority 

are selected to execute the job:











=

t

Slowtask
i i

J )ˆ(Pr  

3. Choosing resource’s capacity and the resources 

available to execute high priority jobs:

( )mem

iiJ sallotedtaskmems Re)ˆ(Re −=  

4. Progress rate centered map task: 

( )
INreadtaskmap Cogress = /Pr /

 

5. Progress rate between reduce and task:

( )( )
INreadstagetaskreduce RCogress /3/1Pr / +=  

6. Average progress rate:














=

=

kRunningtas

num

j

jAVG NPROGRESSogress /Pr
1

 

7. Left time:

( )( )iii ogressRatePROGRESSlt Pr/1−=    

To choose the best backup node for the straggler 

task, many more features are extracted. For further 

proceedings, the features are framed into a data 

frame. 










+++

++++
=

niAVGtaskreduce

taskmapJJSR

i
Nltogressogress

ogresssiJ
N

.....PrPr

PrRePr

/

/

  (37)
 

3.4.1. Node selection 

For the jobs’ execution or straggler tasks, the 

appropriate node selection issue is addressed by 

the developed node selection algorithm. Grounded 

on the individual intelligence’s social behavior and 

Chimps’ sexual motivation during their hunting 

process, a linear coefficient vector-centered Chimp 

Optimization (LCV-ChOA) Algorithm is developed 

here. The coefficient vector’s updation leads to 

incorrect model driving along with prey chasing in 

the prevailing ChOA. Due to this, irrelevant 

selection of the exact resource for the tasks' 

execution is done. To solve that, LCV is utilized in 

updating the vectors. The node selection is held 

grounded on the tasks' priority. The node is 

selected, when a high-priority task is available. 

Along with, the task failing chances are diminished. 

Centered on the straggler prediction model, each 

task's priority is assigned. 

Initially, the chimps population (i.e., the extracted 

features iN ) that live in a fission-fusion society is 

classified as, 

 a) Drivers, 

 b) Barrier,  

c) Chaser, and  

d) Attackers (best solutions).  

The exploration stage and the exploitation stage are 

the two stages in the chimps' hunting process. 

Driving, blocking, and chasing are included in the 

exploration stage whereas the exploitation stage 

comprises attacking the prey (nodes).  

In driving, the driver does not attempt to catch the 

prey but rather only to follow it. In blocking, the 

chimps positioned themselves in trees along with 

prey's gateway route is hindered. In chasing, 

running after the prey to catch is made by chasers. 

For attacking the prey, the attackers predict the 

optimal route in exploitation. 

The prey’s driving and chasing can be 

mathematically modelled as, 

|)(.)(.| tNtNCD cp −=   

   (38) 

DAtNtN pc .)()1( −=+
  

   
(39) 

Where, the coefficient vectors are mentioned as A  

and C , with respect to various chaotic maps the 

chaotic vector is computed as  , the position of 

the prey and a chimp at the number of current 

iterations q  are given as
 )(tN p

 and )(tNc . 

During the hunting process, the sexual motivation 

of the chimps’ effect is expressed by the chaotic 

vector . Using LCV, the coefficient vectors are 

calculated as, 
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   (40) 

= 2C
    

 
  (41) 

Where, using robust confidence intervals

),(. IntCon , and are the parameters 

updated to balance the exploration and 

exploitation rate. The robust confidence intervals 

are calculated as, 

i
n N

medIntCon


 
)1,

2
(

),(.
−

=  

   (42) 

Where, the confidence coefficient is notated as
 
 , 

the confidence interval’s percentage point is 

signified as  , the sample standard deviation is 

expressed as  , and the sample median is denoted 

as med . Centered on the calculation time along 

with the system's accuracy, fitness is evaluated. 

The attackers find the prey's position with the aid 

of a driver, barrier, and chasers for attacking the 

prey. Centered on chaotic strategy, the prey is 

attacked by the chimps. Exploring the prey’s 

location and encircling the prey are the two 

approaches employed here. The attacker, driver, 

barrier, and chaser update the prey’s position since 

the prey’s initial position is unknown. The position 

updation can be expressed as, 

|**| 11ker NCNR Aattac −= 
  

   
(43) 

|**| 22 NCNR Chchaser −= 
  

   
(44) 

|**| 33 NCNR Bbarrier −= 
  

   
(45) 

|**| 44 NCNR Ddriver −= 
  

   
(46) 

To update their solutions, four optimal resolutions 

are stored along with other chimps. The chimp's 

next position can be at any current position middle 

and prey’s position, if the random vectors of
 


 
lies 

in [1,-1]. The chimp’s location is updated as, 

ker1.)1( attacA RANN −=
  

   
(47) 

chaserCh RANN .)2( 2−=
  

   
(48) 

barrierB RANN .)3( 3−=
  

   
(49) 

driverD RANN .)4( 4−=
  

   
(50) 

The chimp’s position can be updated from the 

obtained location as,  

4

)4()3()2()1(
)1(

NNNN
tN

+++
=+

    
(51) 

By the social benefits like support and sex, the 

chimps' hunting process can be affected. To forget 

their involvement in the hunting process, chimps 

get motivated by this. In the prey attacking final 

stage, chaotic maps are utilized that aids chimps in 

diminishing the local optima together with slow 

convergence rate issues.  The parameter )1,0(  

determined the probability of selecting the normal 

position updation along with chaotic map centered 

position updation as, 









−+
=+

)5.0(

)5.0(.)1(
)1(

)( 



if

ifRAtN
tN

posm

p

c

   

(52) 

Where, the chaotic map-centered position 

updation process is proffered as m . The attackers 

attack the prey grounded on an updated position. 

When the prey's movement stops, the hunting 

process also gets stopped. The best nodes for the 

straggler task are obtained finally. 

4. RESULTS AND DISCUSSION 

In a heterogeneous Hadoop environment, this 

section validates the proposed STP-BHADOOP 

framework. It refers to a Hadoop cluster where 

each node’s hardware resources are diverse. These 

hardware resources comprise a disk, memory, CPU, 

and so forth. For creating a heterogeneous 

dispersed Hadoop environment, the four nodes 

were virtual out with dissimilar hardware resources 
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using VMware virtual machine. Grounded on 

Runtime, response time, data locality, estimated 

runtime in the mapping phase, estimated runtime 

in reduced phase, precision, and recall, the 

validation is carried out. Clio, Hawkeye, Spark-

Speculative, SE Algorithm centered on Decision 

Tree (SECDT) and longest approximation time to 

end (LATE) are some prevailing models analogized 

with the proposed work’s attained outcome. With a 

128 MB block size HDFS distributed file system, all 

tests are centered on three blocks. For each Map 

and Reduce task, two slaves are considered in this 

work. Grounded on the t-word counting program, 

the results are generated. 

 

Figure 4: Demonstration of Runtime with two slaves 

The proposed methods' runtime is validated in 

figure 4. The total time taken by the Map and 

reduce to execute a task is named Runtime. High 

efficiency was normally attained for low runtime 

models. Grounded on the various task of various GB 

ranging from 0.251 to 11.5, the runtime analysis is 

eventuated.  A runtime of 110s for 0.251G and 399s 

for 11.5G is attained by the proposed framework 

whereas a runtime ranging between 139s-168s for 

0.251G and 411s-488s for 11.5G is shown by the 

proposed schemes.  When analogized with the 

existing models, less runtime is attained by the 

proposed framework. When analogized with the 

prevailing models, faster-balanced task distribution 

is eventuated in the proposed work

. 
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Figure 5: Graphical representation of proposed method based on (a) data locality (b) Response time 

The proposed framework's data locality measures 

are described in figure 5(a). Data locality refers to 

the fact that the task's executing mode and the 

task's data blocks storing node are similar nodes. 

The time taken to transfer data blocks to the 

execution node is diminished by data locality. 

Finally, the scheduling algorithm's reasonableness 

is indicated by the proportion of data locality jobs. 

A scalable model is indicated by upholding a high 

percentage of data localities i.e. scalable to 

different data scales. A data locality of 89% for 100 

scales of data and there is a decrease of 12% for the 

900 scales of data is attained by the proposed work. 

However, the prevailing models normally obtain a 

low data locality for 100 scales of data i.e. ranging 

between 69%-82% and a range of 55% -61% for 900 

scales of data. Better data locality is maintained by 

the proposed work since a huge difference occurs 

between the proposed work and the existing work. 

The proposed framework's response time is 

represented in figure 5(b). The time taken by the 

task to respond from a node is termed Response 

time. To eliminate data congestion, response time 

should be low. The proposed method's response 

time diminishes as the tasks’ number increases. i.e. 

for the 10 tasks, the response time was 7s but as 

the task number increases the time also increases 

with a light margin of 25s as shown in the figure. For 

the overall task, a high RT ranging between 9s-58s 

is achieved by the prevailing methods that lead to 

data traffic between nodes.  
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Figure 6: Difference in estimated runtime in (a) Map phase (b) Reduce Phase 

Figures 6(a) and 6(b) depict the MR phase’s 

predicted runtime. Importantly, a huge impact on 

the job’s runtime is made by each node’s condition. 

Every run may account for a variable time amount 

if the working of the node is held as a background 

task. Grounded on the input data quantity along 

with the kind of application for further assessment, 

different runtimes are kept in the database. The 

projected runtime should be error-free for the 

previous task. A better MR runtime estimation with 

a 5% error rate is attained by the proposed method. 

That is, a Map runtime of 28s for 15 tasks and a 

Reduce runtime of 24s are attained. Inaccurate SE 

has resulted from the attainment of a wide error 

rate of about 30-35 percent by the prevailing 

methods.  
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Figure 7: Inner data congestion of backup task 

The backup data traffic in the interim state is 

illustrated in figure 7. Throughout job execution, 

intermediate data across nodes is retrieved from 

the result. The volume is counted by the network 

management software's monitor. From nearby 

backup nodes, the data may be read by the 

proposed framework's backup jobs, lower 

communication time cost reduces backup task 

time, and finally diminishes stage execution time. 

Fast nodes and backup task efficacy are ignored by 

the current technique. 

Table1: Statistic for runtime based on precision and recall 

Strategy/ 

metrics Precision (%) Recall (%) Average Find Time(sec) 

Clio 65 67.84 98 

Hawkeye 78 79.99 87 

Spark-Speculative 68 69.78 89 

LATE 61 61.98 95 

SECDT 63 65.45 102 

Proposed STP-BHADOOP 85 86.66 43 

 

Using precision, recall, and average find time, the 

stragglers' occurrences in each approach are 

calculated along with runtime statistics verified for 

suggested frameworks. Table 1 signifies the 

investigation findings. For locating the straggler, the 

proposed approach is more accurate than the 

existing models. The STP-BHADOOP improves 

accuracy and recall to over 85 % and 86.66 %, 

respectively with an average search time of 43 sec. 

This occurs owing to the optimization methods 

speculative strategy's set, which includes precise 

straggler identification, optimal node selection, and 

efficacy assurance. A range of 61 % to 79.99 % for 

low precision and recall is achieved by the 

prevailing approaches along with a long average 

finding time. 

5. CONCLUSION 

A huge impact on Hadoop clusters is made by MR 

jobs scheduling and resource allocation in 

heterogeneous environments. For heterogeneous 

jobs and resources, complexity occurs in Big data 

analytics as well as workload management. The SE 

strategy is made challenging by the tasks 

characteristics and the runtime environments 

complexity. The work has developed the STP-
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BHADOOP framework to offset this issue. For 

straggler task prediction, an HLAdagrad-ENNand 

LCV-ChOA for backup node selection was utilized in 

this framework. Straggler identification, backup 

node selection, along with effectiveness guarantee 

is provided by this work. A balanced load between 

Mapper and Reducer is provided in this work.  High 

runtime and traffic congestion between the nodes 

are avoided.  The task characteristic's uncertain 

change is also handled by the proposed framework. 

Overall, an average data locality of 82.8%, a 

response time of 25s for performing 500 tasks, and 

a runtime of 399s for the maximum data size were 

attained here. It also achieves a precision of 85%, 

recall of 86.66% for predicting the straggler task as 

analogized to the state-of-the-art methods. 
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