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Abstract: In this paper we discuss the forced oscillation of nonlinear variable order fractional differential 

equations of the form  

(𝐷𝑎
𝛼(𝑡)

𝑦)(𝑡) + 𝐹1(𝑡, 𝑦(𝑡)) = 𝑉(𝑡) + 𝐹2(𝑡, 𝑦(𝑡)) 𝑓𝑜𝑟 𝑡 > 𝑎 ≥ 0 along with the initial conditions 

(𝐷𝑎
𝛼(𝑡)−𝑘𝑦)(𝑎) = 𝑏𝑘  𝑤ℎ𝑒𝑟𝑒 𝑘 = 1 𝑡𝑜 𝑚 − 1 and 𝑙𝑖𝑚

𝑡→𝑎+
( 𝐼𝑎

𝑚−𝛼(𝑡)
𝑦)(𝑡) = 𝑏𝑚, in which 𝐷𝑎

𝛼(𝑡)
𝑦 is the Riemann-

Liouville fractional derivative of order 𝛼(𝑡) of y, 𝑚 − 1 < 𝛼(𝑡) ≤ 𝑚, 𝑚 ≥ 1 is an integer, 𝐼𝑎
𝑚−𝛼(𝑡)

𝑦 is the 

Riemann-Liouville fractional integral of order 𝑚 − 𝛼(𝑡) 𝑜𝑓 𝑦, 𝑏𝑘  (𝑘 = 1,2, … 𝑚) are constants. We have given 

an example to illustrate our theoretical results. 

 

Keywords: Fractional differential equation, Variable order, Forced oscillation. 

 

1. Introduction 

Fractional order differential equations are an 

important tool in modeling many concepts of 

science and engineering. It has a wide range of 

applications in electrochemistry, viscoelasticity, 

control theory and many of physical problems, for 

example [1-6]. There has been a consistent 

development in partial and ordinary differential 

equations involving Caputo and Riemann-Liouville 

derivative of fractional order. Many books [7-10] 

elaborate the theories and applications of 

fractional derivatives and fractional integrals.  So 

many authors studied the aspects like existence, 

uniqueness, stability and oscillation of fractional 

derivatives. We refer [11-21] and the references 

quoted in them.  

 

In [20] authors discussed the forced oscillation of a differential equation of the form 

(𝐷𝑎
𝑞

𝑥)(𝑡) + 𝑓1(𝑡, 𝑥) = 𝑣(𝑡) + 𝑓2(𝑡, 𝑥), 𝑙𝑖𝑚
𝑡→𝑎+

( 𝐽𝑎
1−𝑞

𝑥)(𝑡) = 𝑏1 𝑤ℎ𝑒𝑟𝑒 𝐷𝑎
𝑞

 is the Riemann-Liouville differential 

operator of order 𝑞, 0 < 𝑞 ≤ 1 with the initial condition 𝑥𝑓𝑖(𝑡, 𝑥) > 0(𝑖 = 1,2), 𝑥 ≠ 0, 𝑡 ≥ 𝑎 𝑎𝑛𝑑 |𝑓1(𝑡, 𝑥)| ≥

𝑝1|𝑥|𝛽 𝑎𝑛𝑑 |𝑓2(𝑡, 𝑥)| ≤ 𝑝2|𝑥|𝛾 ,  

𝑤ℎ𝑒𝑟𝑒 𝑝1, 𝑝2 ∈ 𝐶([𝑎, ∞), 𝑅+)𝑎𝑛𝑑 𝛽, 𝛾 > 0. 

 

In [21] authors established the oscillation criteria by using Young’s Inequality for a fractional differential 

equation of the form  

(𝐷𝑎
𝑞

𝑥)(𝑡) + 𝑓1(𝑡, 𝑥) = 𝑣(𝑡) + 𝑓2(𝑡, 𝑥), 𝑡 > 𝑎 ≥ 0, 

(𝐷𝑎
𝑞−𝑘

𝑥)(𝑎) = 𝑏𝑘, (𝑘 = 1 𝑡𝑜 𝑚 − 1), 𝑙𝑖𝑚
𝑡→𝑎+

𝑡→𝑎+

( 𝐼𝑎
𝑚−𝑞

𝑥)(𝑡) = 𝑏𝑚   

𝑤ℎ𝑒𝑟𝑒 𝐷𝑎
𝑞

  is the Riemann-Liouville differential operator of order 𝑞, 𝑚 − 1 < 𝑞 ≤ 𝑚, 𝑚 ≥ 1  is an 

integer, 𝐼𝑎
𝑚−𝑞

 is the Riemann-Liouville fractional integral of order 𝑚 − 𝑞 , 𝑏𝑘 (𝑘 = 1,2, … 𝑚) are constants, 

with the initial condition 𝑥𝑓𝑖(𝑡, 𝑥) > 0(𝑖 = 1,2), 𝑥 ≠ 0, 𝑡 ≥ 𝑎 𝑎𝑛𝑑  

|𝑓1(𝑡, 𝑥)| ≤ 𝑝1|𝑥|𝛽  𝑎𝑛𝑑 |𝑓2(𝑡, 𝑥)| ≥ 𝑝2|𝑥|𝛾 𝑓𝑜𝑟 𝑥 ≠ 0, 𝑡 ≥ 𝑎  

𝑤ℎ𝑒𝑟𝑒 𝑝1, 𝑝2 ∈ 𝐶([𝑎, ∞), (0, ∞)) 𝑎𝑛𝑑 𝛽, 𝛾 > 0. 

 

In this paper, we established some forced oscillation results of variable order nonlinear fractional differential 

equation of the form  
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(𝐷𝑎
𝛼(𝑡)

𝑦)(𝑡) + 𝐹1(𝑡, 𝑦(𝑡)) = 𝑉(𝑡) + 𝐹2(𝑡, 𝑦(𝑡)) 𝑓𝑜𝑟 𝑡 > 𝑎 ≥ 0     (1.1) 

together with the initial conditions 

(𝐷𝑎
𝛼(𝑡)−𝑘𝑦)(𝑎) = 𝑏𝑘  𝑤ℎ𝑒𝑟𝑒 𝑘 = 1 𝑡𝑜 𝑚 − 1 and 𝑙𝑖𝑚

𝑡→𝑎+
( 𝐼𝑎

𝑚−𝛼(𝑡)
𝑦)(𝑡) = 𝑏𝑚,   (1.2) 

in which 𝐷𝑎
𝛼(𝑡)

𝑦 is the Riemann-Liouville fractional derivative of order 𝛼(𝑡) of y, 𝑚 − 1 < 𝛼(𝑡) ≤ 𝑚, 𝑚 ≥ 1 is 

an integer, 𝐼𝑎
𝑚−𝛼(𝑡)

𝑦 is the Riemann-Liouville fractional integral of order 𝑚 − 𝛼(𝑡) 𝑜𝑓 𝑦, 𝑏𝑘  (𝑘 = 1,2, … 𝑚) are 

constants. We improved our result with variable order nonlinear fractional differential equation along with the 

conditions 

𝑥𝐹𝑖(𝑡, 𝑦) > 0(𝑖 = 1,2), 𝑥 ≠ 0, 𝑡 ≥ 𝑎               (1.3) 

|𝐹1(𝑡, 𝑦)| ≥ 𝑃1|𝑦|𝛽 𝑎𝑛𝑑 |𝐹2(𝑡, 𝑦)| ≤ 𝑃2|𝑦|𝛾  𝑓𝑜𝑟 𝑦 ≠ 0, 𝑡 ≥ 𝑎    (1.4) 

and 

|𝐹1(𝑡, 𝑦)| ≤ 𝑃1|𝑦|𝛽 𝑎𝑛𝑑 |𝐹2(𝑡, 𝑦)| ≥ 𝑃2|𝑦|𝛾  𝑓𝑜𝑟 𝑦 ≠ 0, 𝑡 ≥ 𝑎     (1.5) 

𝑤ℎ𝑒𝑟𝑒 𝑃1, 𝑃2 ∈ 𝐶([𝑎, ∞), (0, ∞)) 𝑎𝑛𝑑 𝛽, 𝛾 > 0 are real numbers. 

In [20] the authors gave many results on oscillation by reducing the given equation into an equivalent Volterra 

fractional integral equation of the form 

𝑦(𝑡) = ∑
𝑏𝑘(𝑡−𝑎)𝛼(𝑡)−𝑘

𝛤(𝛼(𝑡)−𝑘+1)

𝑚
𝑘=1 +

1

𝛤(𝛼(𝑡))
∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 

𝑡

𝑎
    (1.6) 

for 𝑡 > 𝑎. 

 

2. Preliminaries 

Here we give some basic definitions of fractional integrals and derivatives and also the Young’s Inequality. We 

can get more information about the fractional calculus from [7-10]. 

 

Definition 2.1: A solution of a differential equation is said to be oscillatory if it has arbitrarily many zeros. If all 

the solutions of an equation are oscillatory, then the differential equation is said to be oscillatory. 

 

Definition 2.2: The Riemann-Liouville fractional derivative of order 𝑞 > 0 for the function 𝑥: [𝑎, ∞) → 𝑅 is 

given by (𝐷𝑎
𝑞

𝑥)(𝑡) =
𝑑𝑚

𝑑𝑡𝑚 (𝐼𝑎
𝑚−𝑞

𝑥)(𝑡),      (2.1) 

whereas the right hand side is defined pointwise on [𝑎, ∞), where 𝑚 − 1 < 𝑞 ≤ 𝑚, 𝑚 ≥ 1  is an integer. Also, 

we set 𝐷𝑎
0𝑥 = 𝑥. 

 

Definition 2.3: The Riemann-Liouville fractional integral of order 𝑞 > 0 for the function 𝑥: [𝑎, ∞) → 𝑅 is given 

by (𝐼𝑎
𝑞

𝑥)(𝑡) =
1

𝛤(𝑞)
∫ (𝑡 − 𝑠)𝑞−1𝑥(𝑠)𝑑𝑠,

𝑡

𝑎
     (2.2) 

whereas the right hand side is defined pointwise on [𝑎, ∞), and 𝛤 is a Gamma function defined by 𝛤(𝑛) =

∫ 𝑥𝑛−1𝑒−𝑥𝑑𝑥 for 𝑡 > 0
∞

0
. Also, we set 𝐼𝑎

0𝑥 = 𝑥. 

 

Definition 2.4: The variable order Riemann–Liouville integral of function 𝑓(𝑢) is given by  

𝐼𝑅𝐿
⬚

0,𝑡
−𝛼(𝑡)

𝑓(𝑢) =
1

𝛤(𝛼(𝑡))
∫ (𝑢 − 𝜆)𝛼(𝑡)−1𝑓(𝜆

𝑡

0
)𝑑𝜆,     𝑡 > 0, 𝛼(𝑡) > 0                 (2.3) 

 

Definition 2.5: The variable order Riemann–Liouville derivative function 𝑓(𝑢) is given by 

𝐷𝑅𝐿
⬚

0,𝑡
𝛼(𝑡)

𝑓(𝑢) =
1

𝛤(𝑛−𝛼(𝑡))

𝑑𝑛

𝑑𝑡𝑛 ∫ (𝑢 − 𝜆)𝑛−𝛼(𝑡)−1𝑓(𝜆
𝑡

0
)𝑑𝜆,   𝑡 > 0, 𝛼(𝑡) > 0       (2.4) 

 

Definition 2.6: The Caputo fractional derivative with order 𝑞 > 0 for the function 𝑥: [𝑎, ∞) → 𝑅 is given by  

( 𝐷𝐶
⬚

𝑎
𝑞

𝑥)(𝑡) = (𝐼𝑎
𝑚−𝑞

𝑥(𝑚))(𝑡)            (2.5) 

whereas the right hand side is defined pointwise on [𝑎, ∞) and 𝑚 − 1 < 𝛼(𝑡) ≤ 𝑚, 𝑚 ≥ 1 is an integer, 𝑥(𝑚) 

is usual derivative of integer order m. Also, we set 𝐷𝐶
⬚

𝑎
0𝑥 = 𝑥. 
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Definition 2.7: (Young’s Inequality) (a) Let 𝑋, 𝑌 ≥ 0, 𝑢 > 1 𝑎𝑛𝑑 
1

𝑢
+

1

𝑣
= 1, 𝑡ℎ𝑒𝑛 𝑋𝑌 ≤

1

𝑢
𝑋𝑢 +

1

𝑣
𝑌𝑣 , where the 

equality holds if and only if 𝑌 = 𝑋𝑢−1. 

(b) Let 𝑋 ≥ 0, 𝑌 > 0, 0 < 𝑢 < 1 𝑎𝑛𝑑 
1

𝑢
+

1

𝑣
= 1, 𝑡ℎ𝑒𝑛  𝑋𝑌 ≥

1

𝑢
𝑋𝑢 +

1

𝑣
𝑌𝑣 , where the equality holds if and only if 

𝑌 = 𝑋𝑢−1. 

 

3. Oscillation results 

Theorem 3.1: Let 𝐾(𝑠) = (
𝛽

𝛾−𝛼
) [

𝛾𝑝2(𝑠)

𝛽
]

𝛽

𝛽−𝛾
𝑝1

𝛾

𝛾−𝛽(𝑠) and assume that for 𝛽 > 𝛾 (1.3) and (1.4) holds. If 

 lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 = −∞
𝑡

𝑇
      (3.1) 

and lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) − 𝐾(𝑠)]𝑑𝑠 = +∞
𝑡

𝑇
         (3.2) 

for sufficiently large value of 𝑇, then each solution of (1.1)(1.2) is oscillatory. 

 

Proof: Assume that 𝑦 be the non oscillatory solution of equation (1.1). If we assume 𝑦 is an eventually positive 

solution of (1.1), then there exists 𝑇1 > 𝑎 such that 𝑦(𝑡) > 0 for 𝑡 ≥ 𝑇1. 

Let 𝑠 ≥ 𝑇1 and take 𝑋 = |𝑦|𝛾(𝑠), 𝑌 =
𝛾𝑃2(𝑠)

𝛽𝑃1(𝑠)
, 𝑢 =

𝛽

𝛾
 𝑎𝑛𝑑 𝑣 =

𝛽

𝛽−𝛾
, then by (a) of definition 2.7 we can conclude 

that 

𝑃2(𝑠)|𝑦|𝛾(𝑠) − 𝑃1(𝑠)|𝑦|𝛽(𝑠) =
𝛽𝑃1(𝑠)

𝛾
[|𝑦|𝛾(𝑠)

𝛾𝑃2(𝑠)

𝛽𝑃1(𝑠)
−

1

(
𝛽
𝛾

)
(|𝑦|𝛾(𝑠))

𝛽
𝛾] 

=
𝛽𝑃1(𝑠)

𝛾
[𝑋𝑌 −

1

𝑢
𝑋𝑢] 

≤
𝛽𝑃1(𝑠)

𝛾

1

𝑣
𝑌𝑣 = 𝐾(𝑠) 𝑓𝑜𝑟 𝑠 ≥ 𝑇1                                                                                          (3.3) 

From (1.3), (1.4), (1.5) and (3.3), we get 

𝛤(𝛼(𝑡))𝑦(𝑡) = 𝛤(𝛼(𝑡)) ∑
𝑏𝑘(𝑡 − 𝑎)𝛼(𝑡)−𝑘

𝛤(𝛼(𝑡) − 𝑘 + 1)

𝑚

𝑘=1

+ ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎

+ ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑡

𝑇1

 

≤ 𝜑(𝑡) + 𝜓(𝑡, 𝑇1) + ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝑃2(𝑠)𝑦𝛾(𝑠) − 𝑃1(𝑠)𝑦𝛽(𝑠)]𝑑𝑠 
𝑡

𝑇1

 

≤ 𝜑(𝑡) + 𝜓(𝑡, 𝑇1) + ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 
𝑡

𝑇1
 𝑓𝑜𝑟 𝑡 ≥ 𝑇1    (3.4) 

where 𝜑(𝑡) = 𝛤(𝛼(𝑡)) ∑
𝑏𝑘(𝑡−𝑎)𝛼(𝑡)−𝑘

𝛤(𝛼(𝑡)−𝑘+1)

𝑚
𝑘=1          (3.5) 

𝜓(𝑡, 𝑇1) = ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎
     (3.6) 

By multiplying (3.4) by 𝑡1−𝛼(𝑡), 𝑓𝑜𝑟 𝑡 ≥ 𝑇1 we have  

0 < 𝑡1−𝛼(𝑡)𝛤(𝛼(𝑡))𝑦(𝑡) 

≤ 𝑡1−𝛼(𝑡)𝜑(𝑡) + 𝑡1−𝛼(𝑡)𝜓(𝑡, 𝑇1) + 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠  
𝑡

𝑇1
     (3.7) 

Take 𝑇2 > 𝑇1. We consider the following cases with 0 < 𝛼(𝑡) ≤ 1 𝑎𝑛𝑑 𝛼(𝑡) > 1. 

Case (i): Let 0 < 𝛼(𝑡) ≤ 1.  

We get 𝑚 = 1, 𝜑(𝑡) = 𝑏1(𝑡 − 𝑎)𝛼(𝑡)−1 

|𝑡1−𝛼(𝑡) 𝜑(𝑡)| = |𝑏1|𝑡1−𝛼(𝑡)(𝑡 − 𝑎)𝛼(𝑡)−1 ≤ |𝑏1| (
𝑇2

𝑇2−𝑎
)

1−𝛼(𝑡)

= 𝐶1(𝑇2) 𝑓𝑜𝑟 𝑡 ≥ 𝑇2 (3.8) 

and 

 |𝑡1−𝛼(𝑡) 𝜓(𝑡, 𝑇1)| = |𝑡1−𝛼(𝑡)| ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎
 

≤ ∫ 𝑡1−𝛼(𝑡)(𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎
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≤ ∫ (
𝑇2

𝑇2 − 𝑠
)

1−𝛼(𝑡)

[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎

 

= 𝐶2(𝑇1, 𝑇2)  𝑓𝑜𝑟 𝑡 ≥ 𝑇2          (3.9) 

From (3.7), (3.8) and (3.9) we can conclude that  

𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠  
𝑡

𝑇1

>  −[𝐶1(𝑇2) + 𝐶2(𝑇1, 𝑇2)] 𝑓𝑜𝑟 𝑡 ≥ 𝑇2. 

Hence, we get 

lim
𝑡→∞

𝑖𝑛𝑓𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 ≥  −[𝐶1(𝑇2) + 𝐶2(𝑇1, 𝑇2)] > −∞
𝑡

𝑇1

 

which is a contradiction for (3.1). 

Case (ii): Let 𝛼(𝑡) > 1. 

We get 𝑚 ≥ 2. 

|𝑡1−𝛼(𝑡)𝜑(𝑡)| = |𝑡1−𝛼(𝑡)𝛤(𝛼(𝑡)) ∑
𝑏𝑘(𝑡 − 𝑎)𝛼(𝑡)−𝑘

𝛤(𝛼(𝑡) − 𝑘 + 1)

𝑚

𝑘=1

| 

≤ 𝛤(𝛼(𝑡)) ∑
|𝑏𝑘|𝑡1−𝛼(𝑡)(𝑡 − 𝑎)𝛼(𝑡)−𝑘

𝛤(𝛼(𝑡) − 𝑘 + 1)

𝑚

𝑘=1

 

≤ 𝛤(𝛼(𝑡)) ∑
|𝑏𝑘|(𝑇2 − 𝑎)1−𝑘

𝛤(𝛼(𝑡) − 𝑘 + 1)

𝑚

𝑘=1

 

= 𝐶3(𝑇2) 𝑓𝑜𝑟 𝑡 ≥ 𝑇2           

 (3.10) 

and  

|𝑡1−𝛼(𝑡) 𝜓(𝑡, 𝑇1)| = |𝑡1−𝛼(𝑡)| ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎

 

≤ ∫ 𝑡1−𝛼(𝑡)(𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎

 

≤ ∫ [𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 
𝑇1

𝑎
=  𝐶4(𝑇1) 𝑓𝑜𝑟 𝑡 ≥ 𝑇2     (3.11) 

It follows from (3.7), (3.10) and (3.11) we can conclude that 

𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠  
𝑡

𝑇1

>  −[𝐶3(𝑇2) + 𝐶4(𝑇1)] 𝑓𝑜𝑟 𝑡 ≥ 𝑇2. 

Hence, we get 

lim
𝑡→∞

𝑖𝑛𝑓𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 ≥  −[𝐶3(𝑇2) + 𝐶4(𝑇1)] > −∞
𝑡

𝑇1
. 

which is again a contradiction for (3.1). 

Hence if we assume 𝑦 is an eventually negative solution of (1.1) and (1.2). We can get a contradiction for (3.2) 

by using the similar arguments. This completes the proof. 

 

Theorem 3.2: Let 𝛼(𝑡) ≥ 1 and assume that (1.3) and (1.5) hold with 𝛽 < 𝛾. If 

If  lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 = +∞
𝑡

𝑇
       (3.12) 

and lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) − 𝐾(𝑠)]𝑑𝑠 = −∞
𝑡

𝑇
         (3.13) 

for sufficiently large value of 𝑇 𝑎𝑛𝑑 𝐾 is defined as in theorem 3.1, then every bounded solution of (1.1) (1.2) 

is oscillatory. 

 

Proof: Let 𝑦 be a bounded and nonoscillatory solution of equation (1.1). 

Therefore there exists constants 𝑀1 𝑎𝑛𝑑 𝑀2 such that  

𝑀1  ≤ 𝑦(𝑡) ≤  𝑀2 𝑓𝑜𝑟 𝑡 > 𝑎              (3.14) 

First we assume that 𝑦 is a eventually positive bounded solution of (1.1). Then there exists 𝑇1 > 𝑎 such that 

𝑦(𝑡) > 0 𝑓𝑜𝑟 𝑡 > 𝑇1.       
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By the similar proof of (3.3) and by condition (b) of definition 2.7, we find  

 𝑃2(𝑠)|𝑦|𝛾(𝑠) − 𝑃1(𝑠)|𝑦|𝛽(𝑠) ≥ 𝐾(𝑠) 𝑓𝑜𝑟 𝑠 > 𝑇1          (3.15) 

where 𝐾(𝑠) is defined as in theorem 3.1.  

Also, 𝜑 𝑎𝑛𝑑 𝜓 takes the same value as in (3.5) and (3.6) respectively. By taking the similar procedure of (3.7), 

and from (1.3), (1.5), (3.15), for 𝑡 > 𝑇1 we get 

𝑡1−𝛼(𝑡)𝛤(𝛼(𝑡))𝑦(𝑡) 

≥ 𝑡1−𝛼(𝑡)𝜑(𝑡) + 𝑡1−𝛼(𝑡)𝜓(𝑡, 𝑇1) + 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠  
𝑡

𝑇1
  (3.16) 

By taking  𝑇2 > 𝑇1, we consider the following cases with 𝛼(𝑡) = 1 𝑎𝑛𝑑 𝛼(𝑡) > 1. 

Case (i): Let 𝛼(𝑡) = 1. In this case (3.8) and (3.9) are still true. Hence, (3.8), (3.9), (3.14) and (3.16) implies that  

𝑀2 𝛤(𝛼(𝑡)) ≥  −[𝐶1(𝑇2) + 𝐶2(𝑇1, 𝑇2)] + 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠  
𝑡

𝑇1
𝑓𝑜𝑟 𝑡 ≥ 𝑇2. 

Thus,  

lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 ≤ [𝐶1(𝑇2) + 𝐶2(𝑇1, 𝑇2)] + 𝑀2 𝛤(𝛼(𝑡)) < +∞
𝑡

𝑇1
  

This is the contradiction for (3.12). 

Case (ii): Let 𝛼(𝑡) > 1. In this case (3.10) and (3.11) are still true. Hence, (3.10), (3.11), (3.14) and (3.16) implies 

that  

𝑀2𝛤(𝛼(𝑡))𝑡1−𝛼(𝑡) ≥ −[𝐶3(𝑇2) + 𝐶4(𝑇1)] + 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 
𝑡

𝑇1

for  

𝑡 ≥ 𝑇2. Since we know that  lim
𝑡→∞

𝑡1−𝛼(𝑡) = 0, we can conclude that 

lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 ≤ [𝐶3(𝑇2) + 𝐶4(𝑇1)] < +∞
𝑡

𝑇1
.  

This is again a contradiction for (3.12). 

Similarly, if we assume that 𝑦 as a eventually bounded negative solution of (1.1) and (1.2), then by using the 

similar arguments we will get a contradiction for (3.13). 

Hence the theorem is proved. 

 

4. Oscillation results with Caputo Fractional Derivative 

In this section, we establish the oscillation result for (1.1) when the by replacing the Riemann-Liouville 

fractional differential operator by the Caputo Fractional differential operator. That is, here we will study the 

oscillation of the initial value problem 

( 𝐷⬚
𝑐

𝑎
𝛼(𝑡)

𝑦)(𝑡) + 𝐹1(𝑡, 𝑦(𝑡)) = 𝑉(𝑡) + 𝐹2(𝑡, 𝑦(𝑡)) 𝑓𝑜𝑟 𝑡 > 𝑎 ≥ 0     (4.1) 

together with the initial conditions 

𝑦(𝑘)(𝑎) = 𝑏𝑘  (𝑘 = 0 𝑡𝑜 𝑚 − 1)        (4.2) 

Here 𝐷⬚
𝑐

𝑎
𝛼(𝑡)

 is the Caputo fractional order derivative of order 𝛼(𝑡) of 𝑦 defined by (2.5), 𝑚 − 1 < 𝛼(𝑡) ≤

𝑚, 𝑚 ≥ 1 is an integer, 𝑏𝑘  (𝑘 = 0 𝑡𝑜 𝑚 − 1) are constants, 𝐹𝑖: [𝑎, +∞) × 𝑅 → 𝑅 (𝑖 = 1,2) are continuous 

functions, and 𝑉: [𝑎, +∞) → 𝑅 is a continuous function. 

The Volterra fractional integral equation corresponding to this is given by 

𝑦(𝑡) = ∑
𝑏𝑘(𝑡−𝑎)𝛼(𝑡)−𝑘

𝑘!

𝑚−1
𝑘=0 +

1

𝛤(𝑞)
∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐹2(𝑠, 𝑦(𝑠)) − 𝐹1(𝑠, 𝑦(𝑠))]𝑑𝑠 

𝑡

𝑎
for 𝑡 > 𝑎. 

We can prove the following theorems by using the same procedure as in theorem 3.1 and theorem 3.2 

 

Theorem 4.1: Assume that for 𝛽 > 𝛾 (1.3) and (1.4) holds. If  

lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝑚 ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 = −∞
𝑡

𝑇
        (4.3) 

and lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝑚 ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) − 𝐾(𝑠)]𝑑𝑠 = +∞
𝑡

𝑇
         (4.4) 

for sufficiently large value of 𝑇 and if we define 𝐾 as in Theorem 3.1, then every solution of (4.1) (4.2) is 

oscillatory. 

 

Theorem 4.2: Assume that 𝛼(𝑡) ≥ 1 and (1.3), (1.5) hold with 𝛽 < 𝛾.  
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If  lim
𝑡→∞

𝑠𝑢𝑝 𝑡1−𝑚 ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 = +∞
𝑡

𝑇
       (4.5) 

and lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝑚 ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) − 𝐾(𝑠)]𝑑𝑠 = −∞
𝑡

𝑇
         (4.6) 

for sufficiently large value of 𝑇 𝑎𝑛𝑑 𝐾 is defined as in theorem 3.1, then every bounded solution of (4.1) (4.2) 

is oscillatory. 

 

5. Example  

In this section, we will give an example to show that the condition (3.1) cannot be dropped. If we drop the 

condition (3.1) we will get a non oscillatory solution. 

 

Example 5.1: 

Consider the following Riemann-Liouville nonlinear fractional order differential equation 

(𝐷0
𝛼(𝑡)

𝑦)(𝑡) + 𝑦5(𝑡)𝐼𝑛(𝑒 + 𝑡) =
2𝑡2−𝛼(𝑡)

𝛤(3−𝛼(𝑡))
+ (𝑡10 − 𝑡

2

3) 𝐼𝑛(𝑒 + 𝑡) + 𝑥
1

3(𝑡)𝐼𝑛(𝑒 + 𝑡),       (5.1)  

𝑡 > 0             

lim
𝑡→0+

(𝐼0
1−𝛼(𝑡)

𝑦)(𝑡) = 0,   𝑤ℎ𝑒𝑟𝑒 0 < 𝛼(𝑡) < 1.      (5.2) 

In this example we take 𝑎 = 0, 𝑚 = 1, 𝐹1(𝑡, 𝑦) = 𝑦5(𝑡)𝐼𝑛(𝑒 + 𝑡),  

𝑉(𝑡) =
2𝑡2−𝛼(𝑡)

𝛤(3 − 𝛼(𝑡))
+ (𝑡10 − 𝑡

2
3) 𝐼𝑛(𝑒 + 𝑡), 𝐹2(𝑡, 𝑦) = 𝑥

1
3(𝑡)𝐼𝑛(𝑒 + 𝑡), 𝑏1 = 0 𝑎𝑛𝑑  

𝛼(𝑡) =
𝑡

2
 𝑤𝑖𝑡ℎ 1 < 𝑡 < 2 𝑎𝑛𝑑 𝑠𝑜 0 <  𝛼(𝑡) < 1. 

Taking 𝑃1(𝑡) = 𝑃2(𝑡) = 𝐼𝑛(𝑒 + 𝑡), 𝛽 = 5, 𝛾 = 1/3, we find that the conditions (1.3) and (1.4) are satisfied.  

Defining 𝐾 as in theorem 3.1 and 𝑉(𝑡) > 0, we have 

lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1[𝑉(𝑠) + 𝐾(𝑠)]𝑑𝑠 ≥
𝑡

𝑇

lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1𝐾(𝑠)𝑑𝑠
𝑡

𝑇

 

= lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ (𝑡 − 𝑠)𝛼(𝑡)−1 (
5

1
3

− 1) [

1
3
5

𝐼𝑛(𝑒 + 𝑡)]
5

5−1/3[𝐼𝑛(𝑒 + 𝑡)]
1
3

(
1
3

−5)𝑑𝑠
𝑡

𝑇

 

= lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ 14(𝑡 − 𝑠)𝛼(𝑡)−115−15/14𝐼𝑛(𝑒 + 𝑡)𝑑𝑠
𝑡

𝑇

 

≥ lim
𝑡→∞

𝑖𝑛𝑓 𝑡1−𝛼(𝑡) ∫ 14(𝑡 − 𝑠)𝛼(𝑡)−115−15/14𝑑𝑠
𝑡

𝑇

 

= lim
𝑡→∞

𝑖𝑛𝑓
15−15/1414𝑡1−𝛼(𝑡)(𝑡 − 𝑇)𝛼(𝑡)

𝛼(𝑡)
 

= ∞ 

This shows that the condition (3.1) is not satisfied for sufficiently large 𝑇 ≥ 1 𝑎𝑛𝑑 𝑡 ≥ 𝑇. 

By taking 𝑦(𝑡) = 𝑡2, we get 

(𝐼0
𝛼(𝑡)

𝑦)(𝑡) =
1

𝛤(1 − 𝛼(𝑡))
∫ (𝑡 − 𝑠)−𝛼(𝑡)𝑠2𝑑𝑠

𝑡

0

 

By integrating we obtain 

(𝐼0
𝛼(𝑡)

𝑦)(𝑡) =
1

𝛤(1−𝛼(𝑡))

2𝑡3−𝛼(𝑡)

(1−𝛼(𝑡))(2−𝛼(𝑡))(3−𝛼(𝑡))
      (5.3) 

Hence, (𝐷0
𝛼(𝑡)

𝑦)(𝑡) =
𝑑

𝑑𝑡
(𝐼0

𝛼(𝑡)
𝑦)(𝑡) =

1

𝛤(1−𝛼(𝑡))

2𝑡2−𝛼(𝑡)

(1−𝛼(𝑡))(2−𝛼(𝑡))
=

2𝑡2−𝛼(𝑡)

𝛤(3−𝛼(𝑡))
 

This shows that 𝑦(𝑡) = 𝑡2 satisfies (5.1). Also, by (5.3) we have lim
𝑡→0+

(𝐼0
1−𝛼(𝑡)

𝑦)(𝑡) = 0. 

This shows that 𝑦(𝑡) = 𝑡2 satisfies (5.2). 

Hence we conclude that 𝑦(𝑡) = 𝑡2 is a non oscillatory solution of (5.1) (5.2). 
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6. Conclusion 

In this paper, we established the oscillation criteria 

of variable order nonlinear fractional differential 

equation given in (1.1) (1.2) and we improved our 

result by providing the result for Caputo fractional 

order derivative. 
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