
 Journal of Harbin Engineering University

ISSN: 1006-7043

114

Vol 45 No. 5

May 2024

Seamlessly Backing Up Smart Home Messenger Notifications to the

Cloud

1K.Krishna Teja, 2V. Poorna Sasank, 3M. Rama Sai , 4DR M. Kavitha., 5DR S.S Aravinth

Department of CSE,

Koneru Lakshmaiah Education Foundation,

Vaddeswaram,AP,India.

Abstract

The synergy between IoT and smart home technologies has ushered in an era of unprecedented connectivity

and automation. As smart homes become hubs of data collection through interconnected devices, cloud-based

storage solutions emerge as vital for managing and utilizing this influx of IoT-generated data. This symbiotic

relationship optimizes data management and enables sophisticated data analysis, predictive insights, and intel-

ligent living spaces. In this research paper, we build upon our previous work developing a Smart Home Messag-

ing Notification System using IoT technology, showcasing the setup of an Arduino-based smart home system

with remote control capabilities. We now expand on these achievements by implementing cloud-based data

storage to analyze device usage and empower users to make informed decisions based on usage patterns, sim-

plifying data analysis processes and providing a comprehensive overview of device usage trends.

I. Introduction

The emergence of the Internet of Things (IoT) has led

to the rapid transformation of conventional house-

holds into interconnected smart homes. These envi-

ronments incorporate a myriad of smart devices, such

as sensors, appliances, and security systems, all capa-

ble of collecting and exchanging data. Central to this

paradigm is the seamless integration of these devices

to enhance automation, energy efficiency, and user

convenience. However, the proliferation of IoT de-

vices results in a substantial volume of data generated

in real time, necessitating efficient data management

solutions.

In our prior publication [19], we interfaced the device

with a breadboard and ascertained its real time status

via an Arduino device. The means by which the device

was controlled was the Blink app, enabling users to

both monitor and modify its operational state. How-

ever, a notable limitation of the aforementioned

study was the requisite proximity of all components ,

everything had to be physically co-located. Moreover,

handling the substantial volume of IoT data locally

posed challenges related to both storage capacity and

data security.

To address these challenges, we propose a solution in

this paper, one that involves the integration of IoT de-

vices with the cloud. This integration empowers each

device to be operated seamlessly from any location

with an internet connection, effectively linking and

managing the devices and its data through cloud-

based infrastructure.

Storing the vast stream of IoT-generated data poses a

significant challenge due to its sheer volume, velocity,

and variety. Cloud computing has emerged as a prom-

ising solution to tackle this challenge. Cloud platforms

provide scalable storage and computational resources

that can accommodate the dynamic and unpredicta-

ble nature of IoT data flows. By offloading data stor-

age and processing to the cloud, smart homes can al-

leviate the constraints of local storage and computa-

tional limitations. This not only ensures the integrity

of IoT generated data but also opens avenues for ad-

vanced analytics, real-time monitoring, and predictive

maintenance.

IoT enabled smart homes offer unparalleled conven-

ience and efficiency through the integration of diverse

devices. The utilization of cloud storage for IoT-gener-

ated data addresses the challenges associated with

data management, offering scalability and accessibil-

ity. As IoT continues to evolve, leveraging cloud infra-

structure will play a pivotal role in harnessing the full

potential of smart homes while fostering innovation

in data-driven applications and services.

In this paper we are extending the work of our previ-

ous paper [19] on Smart Home Messenger Notifica-

tion system using IoT in which we have created a

demo environment of a smart home by taking an Ar-

duino setup with a bulb connected to the bread

board. In that we have connected the entire setup to

 Journal of Harbin Engineering University

ISSN: 1006-7043

115

Vol 45 No. 5

May 2024

Arduino software and pushed the code into the Ar-

duino board. We have also connected to the Blynk IoT

app to control the bulb by writing the Wi-Fi details

and the unique ID. After this we have sent the status

of bulb to the Eclipse where we have written a code

to take the status of bulb from serial monitor to Java

file and send notifications to the Telegram app. In ex-

tension to this we are now storing the status of the

devices into Cloud so that we can have an analysis of

the usage of device and we also share it to the user so

that he can have an idea of usage of his device and

can also be used in future for any requirement. By

storing in cloud, it makes our work easy by running

analysis on the data as how many times the bulb is on

in a day.

II. Related Work

In contemporary times, individuals find themselves

constantly immersed in a world of technology, en-

compassing devices such as televisions, smartphones,

computers, and even everyday essentials. As time

progresses, people's demands have significantly

evolved, necessitating advancements in the capabili-

ties of these machines. To fulfill these needs, it is im-

perative to turn to the development of solutions that

are rooted in cloud-based technologies.

In [1] the author delves into the fusion of Cloud Com-

puting and IoT to enhance service provision, focusing

on ubiquity, dependability, and scalability. The envi-

sioned paradigm, termed "Everything as a Service,"

aspires to establish a Cloud ecosystem empowered

with cognitive-IoT capabilities. The article addresses

challenges inherent to IoT and Cloud, underscoring

the pivotal importance of reliability and scalability.

Cloud Computing's resource sharing and virtualization

attributes are extolled as potential remedies. The con-

vergence of Cloud and IoT is dissected via the lenses

of Cloud-based IoT and IoT-Centric Cloud frameworks.

The latter accentuates the distribution of data pro-

cessing to curtail latency and heighten performance.

The concept of IoT-Centric Cloud encompasses Local

Clouds serving specific locales and a Global Cloud that

functions as a fundamental infrastructure. Challenges

linked to data governance, real-time processing, and

seamless interaction are underscored as natural by-

products of this amalgamation.

In [2] the author delves into the realm of IoT-centric

social networks using a Cloud computing framework.

It introduces a model for the collaborative sharing of

IoT devices among users, enabling data capture and

remote control. The proposed concept envisions a

platform fostering data sharing from a variety of IoT

devices, benefiting individual users and the larger

community. The architectural structure encompasses

three tiers: a diverse IoT device stratum, an interme-

diary layer for standardized device access, and a top-

tier layer for end-user applications. The integration of

a Cloud Data Management Interface (CDMI) bridge

enhances the platform's capabilities by enabling the

storage of IoT data within the Cloud. The study envi-

sions scenarios where users register their devices,

share them with peers, visualize data insights, and

construct customized data interpretations. The ap-

proach not only opens avenues for innovative appli-

cation development but also promotes user engage-

ment and introduces the possibility of revenue shar-

ing through well-constructed business models.

In [3], the author emphasizes that Data deterioration

stands out as a paramount challenge within cloud

data processing, with ramifications not only for the fi-

delity of individual application data outcomes but also

for the overall performance and availability of the en-

tire data processing ecosystem. The consequences of

data degradation are substantial: inadequately man-

aged corrupted data blocks can lead to complete data

loss. Furthermore, data corruption can precipitate job

failures, interminable loops, and unsuccessful client

requests for Hadoop services. Hadoop does offer a

mechanism for identifying data corruption, but it fre-

quently falls short in recognizing various data degra-

dation issues originating from software glitches. To

address data corruption, two viable approaches

emerge:

Retrying unsuccessful commands: This entails re-exe-

cuting commands that have failed due to data corrup-

tion. Restoring corrupted data by creating duplicates

of unaltered blocks and removing the compromised

ones.

In [4], the author delves into strategies for safeguard-

ing data within cloud storage. The expenses associ-

ated with maintaining a data center have been on the

rise, particularly for medium-sized data centers.

Therefore, a cost-effective alternative is to leverage

cloud computing and cloud storage services rather

than managing a data center in-house. To ensure the

security of data stored in the cloud, the authors advo-

cate the use of Service Level Agreements (SLAs) as a

universal benchmark for agreements between users

 Journal of Harbin Engineering University

ISSN: 1006-7043

116

Vol 45 No. 5

May 2024

and service providers. They further explore various

technologies such as storage protection, transfer se-

curity, and authorization. A widely employed service

in cloud environments is WS-Security, which plays a

pivotal role in fortifying system security. Within WS-

Security, XML encryption and XML signature tech-

niques are harnessed to guarantee data confidential-

ity and data integrity.

In this paper [5], the authors introduce a synchroniza-

tion and mirror machine based protection principle

that offers a remarkably high level of network attack

protection for distributed Internet of Things (IoT)

units. These units are characterized by lacking strin-

gent real-time demands, particularly the most vulner-

able ones, such as battery-powered and resource-

constrained units. These vulnerable units typically

don't necessitate strict real-time capabilities. This

novel approach proves its utility across a wide array

of distributed IoT use-case scenarios wherein re-

source-constrained IoT units necessitate safeguarding

from network-based attacks. Conversely, the pro-

posed methodology does not yield benefits for more

potent distributed IoT units that operate under real-

time requirements. However, such units possess al-

ternative and efficient measures for shielding them-

selves against network-based attacks.

In this paper[6], the authors introduce the notion of

local clouds to address the specific requirements of

automation applications, including real-time capabili-

ties, security, scalability, ease of engineering, and in-

teroperability. They argue that self-contained local

clouds offer distinct advantages over other cloud

computing models such as fog or edge computing in

meeting these requirements. The concept of local au-

tomation clouds is demonstrated through a practical

example involving closed-loop control of compart-

ment climate. The successful demonstration validates

the feasibility of required automation functionalities

and real-time performance. The implementation of

this concept employs the Arrowhead Framework.

Data collected from two companies indicates sub-

stantial reductions in engineering efforts for imple-

menting automation solutions using the described lo-

cal cloud concept and Arrowhead Framework. The

achieved savings are noteworthy, ranging from 3 to 5

times compared to traditional legacy technology-

based implementations.

The author in paper[7] addresses the complexity aris-

ing from the fusion of IoT and Cloud Computing, fo-

cusing on access control in Cloud-connected IoT sys-

tems. The surge in IoT device numbers necessitates

streamlined and efficient access control techniques.

Conventional encryption methods could overwhelm

IoT devices, leading to an exploration of Attribute-

Based Encryption (ABE) due to its granular access

management abilities. However, current ABE meth-

ods relying on bilinear maps might pose computa-

tional challenges, particularly for resource-limited IoT

devices. The proposed solution introduces a light-

weight ABE model for Cloud-based IoT, leveraging a

hierarchical structure involving Root and Domain Au-

thorities for access control and policy management.

The approach aims to mitigate scalability issues tied

to increasing user and device counts. Additionally, el-

liptic curve cryptography is proposed as an alternative

to bilinear maps, targeting the reduction of computa-

tional complexities while improving efficiency. Key

goals include developing an efficient ABE model, hier-

archical attribute management, and ensuring con-

sistent computation costs for encryption and decryp-

tion. The envisioned system involves Domain Author-

ities, Root Authority, and Cloud Servers to facilitate

secure data storage and retrieval. Standard algo-

rithms for setup, encryption, key generation, and de-

cryption are outlined.

The author in paper[8] offers a brief glimpse into the

realm of Luminex, delving into the puzzle of Radiance

Defense, unveiling the Harmony Notion. It explores

the Lumina design and its potential. Additionally, it

dissects security concerns, vulnerabilities, controls,

and compliance within the brilliance framework, high-

lighting sky-bound patrons, celestial stewards, and

nebula envoys. The significance of safeguarding in the

celestial service cosmos is expounded. The swift met-

amorphosis of Celeste’s computing has redefined re-

source distribution and integration, ushering in both

prospects and misgivings. Although boons like ex-

penditure reduction and streamlined procedures are

apparent, reservations about data seclusion and pro-

tection persist. This anxiety is amplified by the chal-

lenge of gauging the scope of data oversight for au-

thorized or unauthorized intents. Through the mate-

rialization of the Trust Shield Framework and a ra-

tional mist architecture, the document navigates the

intricacies of security puzzles and heaven-bound top-

ics in the radiant milieu. It delves into queries like the

 Journal of Harbin Engineering University

ISSN: 1006-7043

117

Vol 45 No. 5

May 2024

management of safety puzzles, selection of bench-

marks and scrolls, realization of skyward safety requi-

sites, and comparison of sky security levels amid as-

tral amenities. The Celestas domain's diversity, com-

prising stellar paradigms like Zenith Services, Pinnacle

Assistance, and Apex Infrastructure, is outlined,

alongside the roles of zenith clients, providers, inter-

mediaries, and carriers. The hurdles of multifaceted

tenancy, responsibility allotment, and an ever-evolv-

ing sphere confer intricate security riddles. The docu-

ment dialogues about data ownership, utility rights,

and data evanescence concerns. The notion of "stellar

misting" ushers in complexities, necessitating vigilant

stewardship and authentication. Access dominion,

vigilant monitoring, scrutinizing, and adherence to ce-

lestial benchmarks emerge as pivotal dilemmas. The

concept of "Embark Your Apparatus in Celestial"

(EYAC) and kindred safety threats are elucidated.

The author in paper[9] Local clouds have evolved in

the area of technological innovation, providing per-

sonalized solutions for automation applications as

well as their particular requirements such as real-time

capabilities, security measures, scalability, engineer-

ing simplicity, and smooth interoperability. Self-con-

tained local clouds stand out in this scenario, particu-

larly prepared to meet these needs, surpassing com-

peting cloud computing paradigms such as fog or

edge computing. The visionary notion of local auto-

mation clouds has not only been conceptualized, but

has also been effectively demonstrated. This manifes-

tation emerged within the framework of a closed-loop

control situation, namely within the field of compart-

ment climate regulation. The critical automation func-

tions and their related real-time performance bench-

marks were thoroughly evaluated here, attesting to

their superiority. The Arrowhead Framework, a vital

facilitator of this ambitious idea, was used to bring

this amazing implementation to life. In a step towards

quantifiable benefits, observations from two inde-

pendent corporate entities revealed significant reduc-

tions in engineering overheads when implementing

automation solutions built in the local cloud paradigm

described here. Notably, the scale of these economies

was startling, hovering around three to fivefold in

compared to traditional solutions connected to older

technology. Such insights highlight the revolutionary

potential of this localized cloud strategy, when com-

bined with the Arrowhead Framework, to reverberate

throughout sectors and usher in a new era of effi-

ciency and creativity.

The author in paper [10] Collaboration between in-

dustry and academics has yielded fruit in the shape of

standardized communication protocols in the ever-

expanding world of IoT applications. This critical mile-

stone opens the door for the development of IoT-spe-

cific frameworks and platforms. As time goes on, in-

dustrial consortia take over the responsibility of build-

ing these frameworks and platforms, with the ulti-

mate goal of providing a solid basis at the application

layer. This foundation will be critical in allowing the

deployment of large-scale IoT applications, both in

terms of instance size and number of instances. This

survey provides an overview of commercially availa-

ble frameworks and platforms for both industrial and

consumer-centric IoT applications. Each of these

frameworks viewed the IoT domain through the per-

spective of their clients' needs and desires. Some have

prioritized centralizing distributed data sources to

power cloud-based applications, called the "global

cloud" strategy. Others, known as the "peer-to-peer"

strategy, have focused their efforts on promoting the

integration of devices for home or building automa-

tion. There are also many who have concentrated on

the combination of devices and clouds, notably in the

field of factory and industrial automation systems,

which is referred to as the "local cloud" approach. Key

aspects such as industry support, adherence to stand-

ards-based protocols, interoperability, security

measures, hardware prerequisites, governance, and

support for rapid application development have been

scrutinized using a careful comparative analysis. This

analytical endeavor acts as a compass for both aca-

demics and industry, directing them towards frame-

works that are most appropriate for their prospective

undertakings. This examination has also shown gaps

in the present framework environment, putting light

on areas ripe for innovation and development. Cer-

tain requirements must be met in order for a frame-

work or platform to be successful. First and foremost,

devices, apps, and systems must be able to securely

expose APIs to third-party systems while also allowing

API maintenance. Second, compatibility with proto-

cols from other third-party APIs must be easily inte-

grated, as well as the flexibility to extend to accept

new protocols. Third, the integration of resource-con-

strained devices into application networks is vital,

with characteristics such as size, bandwidth, power

 Journal of Harbin Engineering University

ISSN: 1006-7043

118

Vol 45 No. 5

May 2024

supply (typically battery-based), and computing

power all being important considerations. Finally,

governance takes front stage, allowing for the effec-

tive administration of heterogeneous networks brim-

ming with various devices and applications. The syn-

ergy of the whole exceeds the mere sum of its parts

in this sophisticated mosaic of IoT frameworks and

platforms. Collaboration, vision, and the constant

pursuit of innovation characterize the route towards

complete IoT integration and deployment.

Within this paper [11], as IoT smart devices engage in

data exchange with other devices, a host of security

concerns manifests, including the potential for data

exposure, tampering, and unauthorized access. The

authors put forth an agile cryptographic approach de-

signed to facilitate data sharing among IoT smart de-

vices operating at the edge of cloud-assisted IoT eco-

systems, where all security-related procedures are

outsourced to nearby edge servers. A robust data-

sharing strategy is introduced, wherein IoT smart de-

vices employ a combination of clandestine key en-

cryption and public key encryption. Additionally, a

search mechanism is proposed to enable authorized

users to securely locate specific data within the en-

crypted dataset. In the realm of clandestine key en-

cryption, a user device initially generates a confiden-

tial key, which is then used to encrypt the data before

transmission to the recipient's device. Subsequently,

the recipient device, utilizing the same key, can de-

crypt the data, thereby reverting it to its original form.

Conversely, in the public key generation process, a

single key is created and distributed to all authorized

users. The forthcoming research agenda of the au-

thors will focus on addressing authentication and ac-

cess control challenges within this domain.

In this paper[12] the rapid adoption of Internet of

Things (IoT) technology has led to increased demands

on cloud-based datacenters for storage, processing,

and management. However, despite their integration,

IoT and cloud services still lack a uniform software

layer for complex applications. IoT components and

cloud services are developed separately, causing com-

munication protocol and provisioning mismatches.

Current cloud services lack coordination with IoT op-

erations, hindering efficient load management. Inte-

grating IoT and cloud services requires a cohesive

software layer that allows communication and coor-

dination between them. The concept of a Software-

Defined Machine (SDM) is proposed to bridge this gap

by enabling dynamic configuration and control of IoT

elements within a virtualized environment. This ap-

proach could facilitate a more unified and coordi-

nated execution environment for IoT cloud systems,

leading to better scalability and management.

In the realm of advancing Internet-connected devices,

the author in this paper [13] delves into an open-

source IoT service known as "Link Sense," offering re-

mote supervision of diverse parameters and objects

through wireless sensors. These sensors capture real-

time data and transmit it to a cloud-based repository

via the internet. IoT has triggered a transformation in

data aggregation and communication by intertwining

physical gadgets and automobiles via digital sensors

and cyberspace. A sensing component typically en-

compasses a plethora of detectors, encompassing as-

pects like temperature, humidity, light intensity, and

multi-dimensional motion measurement. On the

other hand, monitoring units focus on aspects such as

electrical current and voltage consumption in house-

hold appliances. Wireless Sensor Networks (WSNs)

have pioneered several applications, spanning from

military operations to environmental monitoring.

Nevertheless, WSNs confront limitations such as con-

strained computational capabilities and data trans-

mission potential. Cloud-based computing emerges as

a remedy to augment sensor efficiency, endowing in-

stant access to computing assets via the internet. It

boasts attributes like adaptability, automation, cost-

effectiveness, and capacious data warehousing.

The document sheds light on the fusion of wireless

device networks with cloud-linked computing to

streamline the oversight of remotely linked device

nodes and the ensuing data. It underscores the imper-

ativeness of data governance in WSNs, especially sen-

sor-derived data, which poses conundrums for extant

structural frameworks.

In this paper[14] the author explained about the rise

of Quantum Computing which has given rise to a new

era of computational capabilities, challenging tradi-

tional computing paradigms. This article delves into

the potential of Quantum Computing to revolutionize

various fields, from cryptography to optimization

problems.

Quantum Computing leverages the principles of

quantum mechanics, harnessing quantum bits or

"qubits" to perform complex calculations at exponen-

tially faster speeds than classical computers. One no-

table application is in cryptography, where Quantum

 Journal of Harbin Engineering University

ISSN: 1006-7043

119

Vol 45 No. 5

May 2024

Computers could break existing encryption methods,

necessitating the development of quantum-resistant

cryptography.

Furthermore, Quantum Computing shows promise in

solving optimization problems, which have vast impli-

cations in fields like finance, logistics, and drug discov-

ery. Quantum algorithms like Grover's and Shor's

have demonstrated significant speedup in searching

and factoring tasks. Despite the immense potential,

Quantum Computing faces substantial challenges, in-

cluding error correction and scalability. Researchers

are actively working on quantum error correction

codes to make quantum computers more robust. In

conclusion, Quantum Computing has the potential to

reshape various industries by addressing complex

problems that classical computers struggle with. How-

ever, overcoming technical hurdles remains crucial to

unlock its full capabilities.

In this document [15], the author introduced a broad

Arrowhead methodology, elucidating its ability to ac-

commodate services that cater to the needs of Qual-

ity of Experience (QoE) for interactions between con-

sumers and providers. It delineated an overarching

structure encompassing the elements involved in QoE

administration and the services that facilitate their in-

teractions. We advocate the utilization of Service

Level Contracts (SLC) to articulate QoE requisitions,

with the Arrowhead Synchronization System being re-

sponsible for negotiations with the QoE Management

System to coordinate the services essential to support

the desired QoE.

This design will serve as a foundation for forthcoming

research endeavors, including the development of al-

gorithms aimed at enhancing the Algorithms segment

and broadening our methodology to situations be-

yond FTT-SE (Section VI). According to the author,

forthcoming research will also investigate the influ-

ence of this approach on other facets of Arrowhead-

compliant local clouds, such as safety and scalability.

In this article, the researcher [16] conducted an exten-

sive exploration of a wide range of IoT solutions in the

industry landscape, with a primary focus on context-

sensitive computing. We briefly outlined the evolu-

tion of context-sensitive technologies, underscoring

their increasing importance in modern applications.

To commence, the investigator closely examined var-

ious IoT products to identify the context-sensitive

functionalities they include. Following that, we di-

vided the IoT solutions in the market into five distinct

categories: intelligent wearables, connected resi-

dences, technologically advanced urban areas, re-

sponsive environments, and innovative businesses.

Finally, the author identified and discussed seven no-

table findings and opportunities for future research

and progress in the field of context-sensitive compu-

ting. The author's goal is to establish a foundation that

promotes an understanding of the historical develop-

ments in the IoT sector, thereby enabling researchers

to chart more efficient and effective pathways for the

future.

The author [17] provided text discusses the chal-

lenges in ensuring the trustworthiness of data col-

lected from Internet of Things (IoT) devices, particu-

larly in mission-critical scenarios. It introduces a

framework called TruSense designed to establish trust

in IoT sensing data from end to end, encompassing IoT

devices and cloud services. The framework includes a

small sensing board, a communication protocol, and a

cloud service. The main challenge addressed is the po-

tential manipulation of IoT data by malicious actors,

which could lead to significant consequences in areas

like infrastructure and healthcare. TruSense aims to

create a secure channel between sensors and cloud

services to guarantee data integrity and authenticity.

The paper discusses the implementation of a Trust

Zone-based IoT sensing board and a cloud service for

trusted sensing. It emphasizes the need for self-con-

tained, secure code running in a Trusted Execution En-

vironment (TEE) and direct control of sensors by the

TEE. The framework also requires secure storage for

cryptographic keys and integrity values and involves a

trusted boot process for integrity measurement. The

provided text discusses the challenges in ensuring the

trustworthiness of data collected from Internet of

Things (IoT) devices, particularly in mission-critical

scenarios. It introduces a framework called TruSense

designed to establish trust in IoT sensing data from

end to end, encompassing IoT devices and cloud ser-

vices. The framework includes a small sensing board,

a communication protocol, and a cloud service. The

main challenge addressed is the potential manipula-

tion of IoT data by malicious actors, which could lead

to significant consequences in areas like infrastruc-

ture and healthcare. TruSense aims to create a secure

channel between sensors and cloud services to guar-

antee data integrity and authenticity. The paper dis-

cusses the implementation of a Trust Zone-based IoT

sensing board and a cloud service for trusted sensing.

 Journal of Harbin Engineering University

ISSN: 1006-7043

120

Vol 45 No. 5

May 2024

It emphasizes the need for self-contained, secure

code running in a Trusted Execution Environment

(TEE) and direct control of sensors by the TEE. The

framework also requires secure storage for crypto-

graphic keys and integrity values and involves a

trusted boot process for integrity measurement.

The author [18] provided text discusses the emer-

gence of cloud-sensor systems in the context of smart

cities and IoT (Internet of Things) applications. It high-

lights the need for scalable architectures to handle

the massive deployment of sensors and devices in

smart cities. The Cloud-Edge-Beneath (CEB) architec-

ture is introduced as a solution to address scalability

and enable an open-ended application development

ecosystem. The architecture separates device integra-

tion from service/application development and em-

phasizes programmability through an event-driven

programming model. It also considers the scalability

and energy efficiency of the system, given the exten-

sive interactions between cloud services and physical

sensors. The CEB architecture consists of four layers:

Beneath (physical sensors and sensor platforms),

Edge (intermediate layer managing sensor groups),

Cloud (where sensor-based services are developed),

and Applications (end-user applications). This archi-

tecture aims to provide a framework for deploying,

programming, and managing cloud-sensor systems in

a scalable and energy-efficient manner.

The paper [19] discusses how Internet of Things (IoT)

technology can be used to develop smart homes that

automatically control lighting, temperature and secu-

rity based on the presence of occupants. The authors

developed an IoT-based application that notifies users

about the status of devices using WhatsApp or Tele-

gram APIs.

The system consists of an Arduino board, NodeMCU

Wi-Fi module, LED light bulb and resistor. Code writ-

ten in Arduino controls the LED bulb through the Wi-

Fi module. The status of the LED bulb is sent to a Java

program using the serial monitor, which then shares

the status with users using WhatsApp or Telegram

APIs. The algorithm describes the steps to connect the

Arduino serial monitor with Java and configure the

Blynk app to control the LED bulb.

The paper demonstrates a simple IoT system to notify

users about the status of devices (LED bulb) using chat

apps like WhatsApp and Telegram. It uses affordable

hardware like Arduino, NodeMCU and a light bulb and

provides an easy interface for non-technical users.

However, the authors suggest that the system can be

extended further to control more devices and im-

proved with additional sensors.

Figure 1. Smart home architecture

III. Problem Statement

IoT has gained a lot of popularity in recent times. We

in our previous paper have created a demo environ-

ment for Smart Home Implementation and sent the

smart device notifications to telegram account of the

user. In this our problem statement is to simplify the

storage of smart device status by storing the status

into AWS cloud platform S3 bucket as an object. AWS

platform is scalable and efficient to use, in this way we

can store the vast IoT data in Cloud and handle the

data in a better and efficient way.

IV. Implementation

In the context of Java Eclipse, we can monitor the op-

erational state of a light bulb and transmit this infor-

mation to the cloud for storage. Initially, we set up an

Amazon Web Services (AWS) S3 bucket to act as our

data repository. Subsequently, we establish an AWS

user account and grant it the necessary permissions,

specifically "AWSS3FULLACCESS," to enable interac-

tions with the S3 service.

Figure 2. Creating IAM User in AWS

 Journal of Harbin Engineering University

ISSN: 1006-7043

121

Vol 45 No. 5

May 2024

Figure 3. Creating S3 Bucket in AWS

Next, we configure this AWS user account on our local

development environment by providing the user's au-

thentication credentials. Within the Eclipse integrated

development environment (IDE), we craft a Java pro-

gram responsible for generating a file that contains

the current status of the light bulb. This program re-

quires inputs, including the data to be stored, the de-

sired file name, and the name of the S3 bucket along

with its designated region.

When the light bulb is operational, the Eclipse code

executes, generating a file that encapsulates the

bulb's status. Upon completion of this process, the file

is promptly transferred and stored directly within the

specified S3 bucket. Retrieving the data stored in the

S3 bucket involves downloading the file. Upon inspec-

tion, we can confirm that the status of the light bulb

has been successfully preserved within the S3 bucket

as an object.

This methodology presents a highly efficient way to

manage data for Internet of Things (IoT) devices, de-

livering a dependable and adaptable framework for

storing and retrieving data in cloud-based environ-

ments.

By integrating AWS S3 storage with IoT device man-

agement, we achieve a streamlined and organized ap-

proach to handling data. This means that data gener-

ated by IoT devices, such as the operational status of

a light bulb in our scenario, can be seamlessly stored,

managed, and accessed through cloud infrastructure.

The reliability aspect ensures that data is securely pre-

served without the risk of loss or corruption. AWS S3

offers robust data durability and redundancy, mini-

mizing the chances of data loss due to hardware fail-

ures or unexpected issues.

Furthermore, the scalability of this approach allows us

to accommodate a growing volume of data effort-

lessly. As IoT ecosystems expand and more devices

come online, the cloud-based storage system can

adapt to handle increasing data loads without requir-

ing extensive modifications or infrastructure over-

hauls.

Overall, this approach empowers organizations to ef-

ficiently harness the potential of IoT devices, enabling

them to collect, store, and utilize data effectively

while benefiting from the reliability and scalability of

cloud-based solutions. It not only simplifies data man-

agement but also lays a strong foundation for data-

driven insights and applications in the IoT space.

 4.1. Algorithm for Storing Status Sf Bulb into S3

1. Append the 'status' parameter to the 'ddd' varia-

ble

2. Create an Amazon S3 client

3. Define the S3 bucket name and object key

4. Convert the 'ddd' string to bytes using UTF-8 en-

coding

5. Create metadata for the S3 object

6. Create a PutObjectRequest with the S3 bucket, ob-

ject key, content, and metadata

7. Upload the object to Amazon S3

8. Print a success message

9. Helper function to convert a string to bytes

10. Helper function to create an input stream from

byte array

The provided algorithm accomplishes the task of up-

loading data to Amazon S3 (Simple Storage Service). It

starts by appending the 'status' parameter to an exist-

ing string variable named 'ddd,' effectively adding

new content to it. Next, it establishes an Amazon S3

client, which is essential for interacting with Amazon

S3 services. The code then specifies the S3 bucket

name and object key, defining where the data will be

stored within the chosen S3 bucket. To prepare the

data for upload, it converts the 'ddd' string into a byte

array using the UTF-8-character encoding. Metadata

for the S3 object is created, including information

about the content length. The 'PutObjectRequest' is

constructed, encapsulating the necessary details for

the upload, such as the bucket name, object key, con-

tent in byte array format, and metadata. The object is

subsequently uploaded to Amazon S3, and a success

message is printed to the console. Additionally, two

helper functions are defined—one to convert a string

to bytes using UTF-8 encoding and another to create

an input stream from a byte array. These functions aid

in the data conversion and streaming required for the

upload process.

 Journal of Harbin Engineering University

ISSN: 1006-7043

122

Vol 45 No. 5

May 2024

4.2. Pseudo Code for Storing Status of Bulb Into S3

Input:

• `status` (string) - The data to be uploaded.

• `bucketName` (string) - The name of the Amazon S3

bucket where the data will be stored.

• `objectKey` (string) - The object key, which is the

path within the bucket where the data will be saved.

Output: Data Stored Successfully into S3

1. Initialize an empty string variable `ddd`.

2. Append the `status` parameter to the `ddd` varia-

ble.

3. Initialize an Amazon S3 client (`s3Client`) to interact

with Amazon S3 services.

4. Convert the `ddd` string into a byte array `con-

tentBytes` using the UTF-8-character encoding.

5. Create metadata for the S3 object:

 - Set the content length of `metadata` to the length

of `contentBytes`.

6. Create a `PutObjectRequest` to specify the upload

details:

• Initialize a `PutObjectRequest` object (`request`)

with the following parameters:

• bucketName`: Set to the provided `bucketName`.

• `objectKey`: Set to the provided `objectKey`.

• `content`: Create an input stream from `con-

tentBytes` and associate it with the request.

• `metadata`: Attach the previously defined

`metadata` to the request.

7. Upload the object to Amazon S3 using the S3 client

by executing `s3Client.putObject(request)`.

8. Print a success message to indicate that the object

was uploaded successfully.

9. End the procedure.

4.3. Flow Chart for the Implementation

Figure 4. flow chart

To begin, let's establish an intelligent home system

using a breadboard, a light bulb, and a NodeMCU

board. We'll proceed by crafting a program that facil-

itates connectivity with these devices through Wi-Fi

and enables control via the BlynkIOT app. Subse-

quently, we'll embed this program into the devices via

the Arduino software. Following that, we'll retrieve

the device's operational status and feed it into an Ar-

duino Spreadsheet. This spreadsheet will be linked to

the Eclipse platform to obtain the bulb's status within

Eclipse's code. In Eclipse, we'll author a program that

establishes a connection with the Arduino software to

retrieve the bulb's status. We'll then compose a script

to share the bulb's status via the Telegram messaging

platform. After the status has been shared, our next

task involves generating a file to store this status and

storing it as an object within the Amazon S3 cloud

storage service.

V. Results and Discussions

After the Eclipse Code successfully executes, it creates

a file that directly finds its place in an AWS S3 bucket,

serving as an efficient repository for the bulb's opera-

tional status. This integration is pivotal, ensuring that

the data reflecting the bulb's performance is not only

logged but also readily accessible for analysis and

monitoring. The Eclipse console provides real-time

feedback on the bulb's status, aiding in immediate

troubleshooting and monitoring.

Figure 5. Output in the console

 Within the output console, we obtain critical infor-

mation, including the elapsed time, calculated as the

disparity between the present moment and the initi-

ation time of the execution process. Additionally, we

display the listening port number, signifying the spe-

cific communication endpoint where incoming re-

quests are being received.

An acknowledgment of the successful S3 upload rein-

forces data security and durability. What sets this sys-

tem apart is its continuous monitoring capability; as

 Journal of Harbin Engineering University

ISSN: 1006-7043

123

Vol 45 No. 5

May 2024

long as the bulb operates, the Eclipse code keeps up-

dating the status file, offering a valuable historical rec-

ord.

 Figure 6. File Stored in S3 as an object

The S3 bucket acts as a central hub for these files,

providing high availability, durability, and controlled

access.

Retrieving 'Status' files can be done programmatically

or manually, allowing for historical analysis, reporting,

and performance optimization. In essence, this sys-

tem ensures a seamless flow from status capture to

storage and retrieval, empowering users with valua-

ble insights into the bulb's behavior.

Figure 7. File Downloaded and Verify Status of the

bulb

Vi. Conclusion

In this paper, the authors tackle the challenge of effi-

ciently managing and storing smart device status data

in the context of the burgeoning Internet of Things

(IoT) ecosystem. With IoT gaining significant traction,

their previous work laid the foundation by creating a

demonstration environment for Smart Home Imple-

mentation and transmitting smart device notifications

to users via Telegram. However, the primary focus of

this paper revolves around simplifying the storage of

smart device status data. To achieve this, the authors

propose leveraging the AWS cloud platform's S3

bucket as a robust and scalable storage solution. AWS

is renowned for its efficiency, making it an ideal

choice for handling the vast amounts of data gener-

ated by IoT devices.

The implementation detailed in the paper unfolds

within the Java Eclipse environment. It effectively

monitors the operational status of a light bulb and

then securely transmits this crucial information to an

AWS S3 bucket. The initial setup involves creating an

AWS S3 bucket to serve as the data repository and es-

tablishing an AWS user account with the necessary

permissions. Subsequently, a Java program is crafted

within the Eclipse integrated development environ-

ment. This program is responsible for generating a file

encapsulating the current status of the light bulb. The

process includes specifying the data to be stored, the

desired file name, and the target S3 bucket's name

and region. When the light bulb operates, the Eclipse

code executes, generating and promptly transferring

the status file to the designated S3 bucket. This

method proves highly efficient for IoT data manage-

ment, providing a dependable and adaptable frame-

work for cloud-based data storage and retrieval.

The key advantages of this approach are noteworthy.

Firstly, it streamlines IoT data management, simplify-

ing the often complex task of handling data generated

by smart devices. Secondly, the integration with AWS

S3 ensures data reliability and security, minimizing

the risks of data loss due to hardware failures or un-

foreseen issues. Additionally, the system's scalability

means it can seamlessly accommodate the increasing

data loads associated with expanding IoT ecosystems.

In practice, this approach empowers organizations to

harness the full potential of IoT devices. It not only

simplifies data management but also lays a strong

foundation for data-driven insights and applications

within the IoT realm. The authors have also provided

detailed algorithms and pseudo-code, enhancing the

paper's practicality and utility for those looking to im-

plement a similar solution. Ultimately, this paper

serves as a valuable contribution to the field, present-

ing a robust framework for efficiently managing and

utilizing IoT data in cloud-based environments.

VII. Future Work

Our future plans involve extending our project to con-

duct a thorough analysis of device statuses, which are

currently stored within an AWS S3 bucket. To achieve

this, we intend to leverage the capabilities of AWS

Quick Sight, a service that empowers us to create a

 Journal of Harbin Engineering University

ISSN: 1006-7043

124

Vol 45 No. 5

May 2024

wide array of data visualizations, including pie charts

and various other forms of data representation. This

will significantly elevate the quality and precision of

our data analysis and presentation efforts.

Furthermore, these well-crafted visualizations will be

readily shareable with our end-users. By doing so, we

aim to provide our users with a comprehensive under-

standing of the device usage patterns .

References

[1] Biswas, Abdur Rahim, and Raffaele Giaffreda.

"IoT and cloud convergence: Opportunities and

challenges." 2014 IEEE World Forum on Internet

of Things (WF-IoT). IEEE, 2014.

[2] Benazzouz, Yazid, et al. "Sharing user IoT devices

in the cloud." 2014 IEEE world forum on internet

of things (WF-IoT). IEEE, 2014.

[3] Wang, Peipei, Daniel J. Dean, and Xiaohui Gu.

"Understanding real world data corruptions in

cloud systems." 2015 IEEE international confer-

ence on cloud engineering. IEEE, 2015.

[4] Zhang, Xiao, et al. "Ensure data security in cloud

storage." 2011 International Conference on Net-

work Computing and Information Security. Vol.

1. IEEE, 2011.

[5] Gehrmann, Christian, and Mohamed Ahmed Ab-

delraheem. "IoT protection through device to

cloud synchronization." 2016 IEEE International

Conference on Cloud Computing Technology and

Science (CloudCom). IEEE, 2016.

[6] Zhen Ling∗ , Junzhou Luo∗ , Yiling Xu∗ , Chao

Gao† , Kui Wu‡ and Xinwen Fu† “Security Vul-

nerabilities of Internet of Things: A Case Study of

the Smart Plug System” 2327-4662 (c) 2016 IEEE.

[7] Naregal, Keerti, and Vijay Kalmani. "Study of

lightweight ABE for cloud based IoT." 2020

Fourth International Conference on I-SMAC (IoT

in Social, Mobile, Analytics and Cloud)(I-SMAC).

IEEE, 2020.

[8] Soni, Dheresh, Vibhor Sharma, and Deepak Sri-

vastava. "Optimization of security issues in

adoption of cloud ecosystem." 2019 4th Interna-

tional Conference on Internet of Things: Smart

Innovation and Usages (IoT-SIU). IEEE, 2019.

[9] Delsing, Jerker, et al. "Enabling IoT automation

using local clouds." 2016 IEEE 3rd World Forum

on Internet of Things (WF-IoT). IEEE, 2016.

[10] Derhamy, Hasan, et al. "A survey of commercial

frameworks for the internet of things." 2015

ieee 20th conference on emerging technologies

& factory automation (etfa). IEEE, 2015.

[11] Mollah, Muhammad Baqer, Md Abul Kalam

Azad, and Athanasios Vasilakos. "Secure data

sharing and searching at the edge of cloud-as-

sisted internet of things." IEEE Cloud Compu-

ting 4.1 (2017): 34-42.

[12] Truong, Hong-Linh, and Schahram Dustdar.

"Principles for engineering IoT cloud sys-

tems." IEEE Cloud Computing 2.2 (2015): 68-76.

[13] Mhatre, Leena, and Neha Rai. "Integration be-

tween wireless sensor and cloud." 2017 Interna-

tional Conference on I-SMAC (IoT in Social, Mo-

bile, Analytics and Cloud)(I-SMAC). IEEE, 2017.

[14] Aleisa, Mohammed, et al. "Performance analysis

of two cloud-based iot implementations: Empir-

ical study." 2020 7th IEEE International Confer-

ence on Cyber Security and Cloud Computing

(CSCloud)/2020 6th IEEE International Confer-

ence on Edge Computing and Scalable Cloud

(EdgeCom). IEEE, 2020.

[15] Ferreira, Luis Lino, Michele Albano, and Jerker

Delsing. "QoS-as-a-Service in the Local

Cloud." 2016 IEEE 21st International Conference

on Emerging Technologies and Factory Automa-

tion (ETFA). IEEE, 2016.

[16] Perera, Charith, et al. "A survey on internet of

things from industrial market perspective." IEEE

Access 2 (2014): 1660-1679.

[17] Park, Sungjin, Jaemin Park, and Jisoo Oh. "Design

and implementation of trusted sensing frame-

work for IoT environment." Journal of Communi-

cations and Networks 23.1 (2021): 43-52.

[18] Xu, Yi, and Abdelsalam Helal. "Scalable cloud–

sensor architecture for the Internet of

Things." IEEE Internet of Things Journal 3.3

(2015): 285-298.

[19] Sai, M. Rama, et al. "Smart Home Messenger No-

tifications System using IoT." 2023 Third Interna-

tional Conference on Artificial Intelligence and

Smart Energy (ICAIS). IEEE, 2023.

