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1. Introduction 

Queueing theory is the mathematical study of 

waiting lines (or queues). A queue or waiting line is 

formed by a flow of customers from an infinite or 

finite population on account of lack of capability to 

serve them all at a time. Queueing theory enables 

mathematical analysis of several related processes, 

including arriving at the (back of the) queue, waiting 

in the queue (essentially a storage process) and 

being served by the server or servers at the front of 

the queue. 

In recent years research on queueing systems with 

server vacations has acquired great importance. 

Queueing systems that allow servers to take 

vacation have a wide range of applications in many 

engineering systems such as production, 

manufacturing, communication networks and 

telecommunication systems. In fact, Queueing 

models with server vacations have been efficiently 

studied by many researchers in the last two 

decades and successfully applied in various 

practical problems. An excellent survey on the 

vacation queueing models have been documented 

in [1] [2], [3], [4], [5] and several others.  

There are two basic vacation queueing models 

namely, multiple vacation queueing model and 

single vacation queueing model. In multiple 

vacation queueing models, the server keeps on 

taking sequential vacations until it finds some 

customers waiting in a queue at a vacation 

completion epoch; However, in single vacation 

queueing models, the server takes exactly one 

vacation between two sequential busy periods. 

These two types of vacation models were first 

introduced by [6]. 

An M/G/1 queue with vacation model is often 

referred as a tool of understanding congestion 

phenomena in local networks. Since the past two or 

three decades, it has emerged as an important area 

of study in real life problems such as 

telecommunication engineering, manufacturing 

and production industries, computers and 

communication networks etc. Several contributions 

have been made by dealing with queueing systems 

of M/G/1 type which include [7], [8], [9], [10], [11], 

[12] and [13]. 

Many researchers have developed several models 

involving single vacation policy but only few models 

have been developed with compulsory vacation. A 

single server queue with compulsory server 

vacations where the service was performed in 

batches of fixed size has been studied by [14]. In 

that paper, the Laplace transforms of the 

probability generating functions of different states 

of the system have been obtained, the 

corresponding steady state results have been 

derived and in a particular case the mean queue 

length has been obtained explicitly. [15] studied a 

M/G/1 queue with two stage heterogeneous 

service subject to compulsory vacation and random 

breakdowns. The time dependent probability 

generating functions have been obtained in terms 

of their Laplace transforms and the corresponding 

steady state results have been obtained explicitly. 

Also, the average number of customers in the 
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queue and the average waiting time are derived for 

that queueing model. 

A M/G/1 queue with two types of service and 

compulsory vacation under restricted admission 

policy was analyzed by [16]. For this model, the 

probability generating function for the number of 

customers in the queue at different server’s state 

are obtained using supplementary variable 

technique. Some performance measures are also 

calculated for that model.  [17] studied M/G/1 

queue subject to compulsory vacation and three 

phase repairs. The supplementary variable 

technique is used to find explicitly the probability 

generating function of the number in the system 

and the mean number in the system. 

There are many situations in real life where the 

service times are constant. The one common 

example we often notice is a cycle of a washing 

machine that takes a fixed length of time to 

complete one service. The M/D/1 queueing system 

is widely found in queueing literature (see [18], [19] 

and [20]). A M/D/1 queue with compulsory server 

vacation subject to random breakdowns and 

exponential repair has been studied by [21]. In that 

paper, the server takes compulsory vacation after 

the completion of each service and the service 

channel is subject to random breakdowns. 

Whenever the server channel breakdowns, it 

instantly undergoes a repair process and repair 

times are exponentially distributed.  In the current 

work, we study a M/D/1 queue subject to 

compulsory server vacation without breakdowns 

and repairs. We calculate the time dependent 

solution using supplementary variable technique 

and the corresponding steady state results are 

derived explicitly. 

The rest of the paper is organized as follows. The 

mathematical description of our model is in section 

2 and definitions representing the model are given 

in section 3. The equations governing the model are 

there in section 4. The time dependent solutions 

have been obtained in section 5 using 

supplementary variable technique and the 

corresponding steady state results have been 

derived explicitly in section 6. The mean number in 

the system and the mean waiting time have been 

found in section 7. 

 

 

2. Assumptions Underlying the Model 

The following assumptions describe the 

mathematical model. 

• Customers arrive at the system one by one in 

according to a Poisson stream with arrival rate 

𝜆(> 0). 

• The server provides deterministic (constant) 

service of length 𝑑(> 0) to each customer. 

• After every service the server takes a 

compulsory vacation of random length. 

• The vacation time follow general (arbitrary) 

distribution with distribution 𝐵(𝑣) and the 

density function 𝑏(𝑣).        

Let 𝛽(𝑥)𝑑𝑥 be the conditional probability of a 

completion of a vacation during the interval 

(𝑥 + 𝑑𝑥] given that the elapsed vacation time is 𝑥, 

so that  

𝛽(x) =
𝑏(𝑥)

1−𝐵(𝑥)
                                                                

(1)                                                              

and therefore  

𝑏(𝑣) = 𝛽(𝑣)𝑒− ∫ 𝛽(𝑥)𝑑𝑥
∞

0 .                                            

(2) 

• On returning from vacation the server 

instantly starts serving the customer at the 

head of the queue. 

• The customers are served according to the 

first come, first served rule. 

• Various Stochastic Processes involved in 

the system are independent of each other. 

 

3. Definitions, Notations and Equations 

Governing the System  

We define 

• 𝐻𝑛(𝑡) : Probability that at time 𝑡, there are 

𝑛 ≥ 0 customers in the system, including 

one in service if any and the server is present 

in the system which means the server is 

providing the service when 𝑛 > 0 and is idle 

when 𝑛 = 0. 

• 𝑉𝑛(𝑥, 𝑡) : Probability that at time 𝑡, the 

server is under vacation with elapsed 

vacation time 𝑥 and there are 𝑛 ≥ 0 

customers waiting in the system for service. 
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Consequently 𝑉𝑛(𝑡) = ∫ 𝑉𝑛(𝑥, 𝑡)𝑑𝑥
∞

0
 

denotes the probability that at time 𝑡, there 

are 𝑛 customers in the system and the server 

is under vacation irrespective of the value 

of 𝑥.   

The system is then governed by the following set of 

differential – difference equation 

𝑑

𝑑𝑡
𝐻𝑛(𝑡) = −𝐻𝑛(𝑡) + ∫ 𝑉𝑛(𝑥, 𝑡)𝛽(𝑥)𝑑𝑥

∞

0
, 𝑛 =

0,1, …,  

                                                                                       (3)        
𝜕

𝜕𝑥
𝑉𝑛(𝑥, 𝑡) +

𝜕

𝜕𝑡
𝑉𝑛(𝑥, 𝑡) + (𝜆 + 𝛽(𝑥))𝑉𝑛(𝑥, 𝑡) =

                                                    𝜆𝑉𝑛−1(𝑥, 𝑡), 𝑛 =

1,2, …,(4) 
𝜕

𝜕𝑥
𝑉0(𝑥, 𝑡) +

𝜕

𝜕𝑡
𝑉0(𝑥, 𝑡) + (𝜆 + 𝛽(𝑥))𝑉0(𝑥, 𝑡) = 0,   

(5) 

We assume that initially that there are 𝑗 customers 

in the system and the server is working so that the 

initial conditions can be written as  

𝐻𝑛(𝑡) = 𝛿𝑛𝑗 = {
1    𝑛 = 𝑗
0    𝑛 ≠ 𝑗

 and 𝑉𝑛(0) = 0, 𝑛 ≥ 0        

(6)                          

Equations (3) to (5) are to be solved subject to the 

following boundary condition.  

𝑉𝑛(0, 𝑡) = [𝐻0(𝑡) + 𝐻1(𝑡)]𝐾𝑛 + ∑ 𝐻𝑖(𝑡)𝐾𝑛+1−𝑖
∞
𝑖=2 ,                                     

                                                              𝑛 = 0,1, …,        

(7)                                                                                                                                                                                

where 𝐾𝑖 , 𝑖 = 0,1, …, is the probability of 𝑖 arrivals 

during a service period of constant length 𝑑. 

 

4. Generating Functions of the Queue Length : 

The Time Dependent Solution 

In this section we define the transient solution for 

the above set of differential-difference equations. 

We define probability generating functions. 

 𝑉(𝑥, 𝑧, 𝑡) = ∑ 𝑧𝑛∞
𝑛=0 𝑉𝑛(𝑥, 𝑡), 𝑉(𝑧, 𝑡) = ∑ 𝑧𝑛∞

𝑛=0 𝑉𝑛(𝑡)

𝐻(𝑧, 𝑡) = ∑ 𝑧𝑛𝐻𝑛(𝑡)∞
𝑛=0

}  

                                                                                  (8)    

which are convergent inside the circle given by 

|𝑧| ≤ 1 and define the Laplace transform of a 

function 𝑓(𝑡) as 

𝑓(𝑠) = ∫ 𝑒−𝑠𝑡∞

0
𝑓(𝑡)𝑑𝑡, ℜ(𝑠) > 0                              (9) 

We take Laplace transforms of above equations and 

using initial conditions (6), we obtain  

(𝑠 + 1)𝐻𝑛(𝑠) = 𝛿𝑛𝑗 + ∫ 𝑉𝑛(𝑥, 𝑠)𝛽(𝑥)𝑑𝑥
∞

0
,𝑛 =

0,1, …,     

                                                                                     

(10)                                                                                               

𝜕

𝜕𝑥
𝑉𝑛(𝑥, 𝑠) + (𝑠 + 𝜆 + 𝛽(𝑥))𝑉𝑛(𝑥, 𝑠) =

𝜆𝑉𝑛−1(𝑥, 𝑠),            

                                                                   𝑛 = 1,2, … 

(11)                                                                                                                              
𝜕

𝜕𝑥
𝑉0(𝑥, 𝑠) + (𝑠 + 𝜆 + 𝛽(𝑥))𝑉0(𝑥, 𝑠) = 0,                   

(12)               𝑉𝑛(0, 𝑠) = [𝐻0(𝑠) + 𝐻1(𝑠)]𝐾𝑛 +

∑ 𝐻𝑖(𝑠)𝐾𝑛+1−𝑖
∞
𝑖=2 ,    

                                                           𝑛 = 0,1, …,         

(13)     

We define the following generating functions in 

terms of their Laplace transforms: 

𝑉(𝑥, 𝑧, 𝑠) = ∑ 𝑧𝑛∞
𝑛=0 𝑉𝑛(𝑥, 𝑠), 𝑉(𝑧, 𝑠) = ∑ 𝑧𝑛∞

𝑛=0 𝑉𝑛(𝑠)

𝐻(𝑧, 𝑠) = ∑ 𝑧𝑛∞
𝑛=0 𝐻𝑛(𝑠)

}     

                                                                                     

(14)                                                                                                                                                                                                      

𝐾(𝑧) = ∑ 𝐾𝑛𝑧𝑛 =∞
𝑛=0 ∑

𝑒−𝜆𝑑(𝜆𝑑)𝑛𝑧𝑛

𝑛!

∞
𝑛=0 𝑒−𝜆𝑑(1−𝑧),   

                                                                 |𝑧| < 1.       (15)  

Multiply both sides of equation (10) by 𝑧𝑛+1,, 𝑛 =

0,1, …, and add for all 𝑛. Then 

(𝑠 + 1) ∑ 𝐻𝑛(𝑠)𝑧𝑛+1∞
𝑛=0 = ∑ 𝛿𝑛𝑗

∞
𝑛=0 𝑧𝑛+1,           

+ ∫ ∑ 𝑧𝑛+1∞
𝑛=0

∞

0
𝑉𝑛(𝑥, 𝑠)𝛽(𝑥)𝑑𝑥, 𝑛 = 0,1, …          

(16)    

which on using equation (14) yields  

(𝑠 + 1)𝑧𝐻(𝑧, 𝑠) = 𝑧𝑗+1 + 𝑧 ∫ 𝑉(𝑥, 𝑧, 𝑠)𝛽(𝑥)𝑑𝑥
∞

0
.  

(17) 

Now we multiply (11) by zn, sum for n = 1,2, … and 

add the result to (12). We then have 

∂

∂x
V(x, z, s) + (s + λ − λz + β(x))V(x, z, s) = 0.      

(18)                                                

We again multiply (13) by zn+1,, sum for all n =

0,1, …, and use (14). We thus have  

zV(0, z, s) = H(z, s)K(z) + (z − 1) K(z) H0(s).       

(19)  

Replacing K(z) = e−λd(1−z) into (19) and 

simplifying, we have 

 ZV(0, z, s) = H(z, s)e−λd(1−z) + 

                         (z − 1) e−λd(1−z)H0(s).                             

(20)                                                                        

Integrating (18) between 0 and x,we get 

V(x, z, s) = V(0, z, s)e−(s+λ−λz)x−∫ β(t)dt
∞

0   .                  

(21)                                                         

We again integrate (21) by parts with respect to 

x and obtain  
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V(z, s) = V(0, z, s) [
1−B(s+λ−λz)

s+λ−λz
]  .                                     

(22) 

where 

Next, we use (20) in (22), 

V(z, s) = [
1 − B(s + λ − λz)

s + λ − λz
] [

e−λd(1−z)

z
] 

                [H(z, s) + (z − 1)H0(s)] ,                         (23)                                            

By virtue of (22), we obtain 

∫ V(x, z, s)γ(x)dx = V(0, z, s)B(s + λ − λz)
∞

0
.         

(24)                                                   

Using (22) in (15), We have 

(s + 1)zH(z, s) = zj+1 + zV(0, z, s)B(s + λ −

λz),(25)                                                       

Further we use (20) in (25) and obtain 

(s + 1)zH(z, s) = zj+1 + [
H(z, s)e−λd(1−z) +

(z − 1)e−λd(1−z)H0(s)
]                                  

                                      B(s + λ − λz) .                          

(26)     

On simplification (26) yields 

H(z, s) = [
zj+1+B(s+λ−λz)(z−1)e−λd(1−z)H0(s)

(s+1)z−B(s+λ−λz)e−λd(1−z) ].            

(27) 

Then we use equation (27) in equation (23), we get 

V(z, s) =

[
[
1−B(s+λ−λz)

s+λ−λz
]e−λd(1−z)[zj+1+(s+1)(z−1) H0(s)]

(s+1)z−B(s+λ−λz)e−λd(1−z) ].      

                                                                                    (28)                 

Now to determine the only unknown constant 

H0(s) which appears in the right side of equations 

(27) and (28), we note that it is easy to see that the 

denominator of right side of (27) and (28) has one 

zero inside the unit circle |z| = 1. This zero is 

sufficient to determine the unknown H0(s) 

enabling us completely to determine all desired 

probability generating functions. 

5. The Steady State Results 

In this section, we shall derive the steady state 

probability distribution for our queueing model. To 

define the steady state probabilities, we suppress 

the argument 𝒕 wherever it appears in the time-

dependent analysis. This can be obtained by 

applying the well-known Tauberian property.  

𝐥𝐢𝐦
𝒏→𝟎

𝒔 𝒇 (𝒔) = 𝐥𝐢𝐦
𝒕→∞

𝒇(𝒕)                                                             

(29) 

In order to determine 𝐻(𝑧, 𝑠) and 

 𝑉(𝑧, 𝑠) completely, we have yet to determine the 

unknown 𝐻0(𝑠). For that purpose, we shall use the 

normalizing condition 

𝐻(1) + 𝑉(1) = 1.                                                                      

(30) 

Thus multiplying both sides of equations (27) and 

(28) by 𝑠, taking limit as 𝑠 → 0, applying property 

(29) and simplifying we have 

𝐻(𝑧) = [
𝑧𝑗+1+𝐵(𝜆−𝜆𝑧)(𝑧−1)𝑒−𝜆𝑑(1−𝑧)𝐻0

𝑧−𝐵(𝜆−𝜆𝑧)𝑒−𝜆𝑑(1−𝑧) ].                     

(31)                                                         𝑉(𝑧) =

[
[
1−𝐵(𝜆−𝜆𝑧)

𝜆−𝜆𝑧
][

𝑒−𝜆𝑑(1−𝑧)

𝑧
][𝑧𝑗+1+𝑧(𝑧−1)𝐻0]

𝑧−𝐵(𝜆−𝜆𝑧)𝑒−𝜆𝑑(1−𝑧) ].           (32)   

To determine the only 𝐻0 which appears in the 

numerators of   the right-hand side of (31) and (32), 

we shall use the normalizing condition 

𝑉(1) + 𝐻(1) = 1                                                                     (33)                                                                                                

However, since 𝐻(𝑧)and 𝑉(𝑧) are indeterminate of 

the form 
0

0
 at 𝑧 = 1. We apply LHopital’s rule and 

obtain 

𝐻(1) = [
𝐻0

1−𝜆𝐸(𝑣)−𝜆𝑑
],                                                 

(34)                                                                                          

𝑉(1) = [
𝐸(𝑣)𝐻0

1−𝜆𝐸(𝑣)−𝜆𝑑
],                                                 

(35) 

where 𝐸(𝑣) is the mean vacation time of the 

server. 

Using (34) and (35) in the normalizing condition 

(33), we obtain  

𝐻0 = [
1−𝜆𝐸(𝑣)−𝜆𝑑

1+𝐸(𝑣)
],                                                     

(36)    

Equation (36) yields the condition   

𝜆𝐸(𝑣) + 𝜆𝑑 < 1.                                                                 (37) 

which is the stability condition under which the 

steady state condition shall exist. 

𝜌 = 𝐻(1) − 𝐻0 =
𝜆𝐸(𝑣)+𝜆𝑑

1+𝐸(𝑣)
 .                                     

(38)  

Thus on substituting the value of 𝐻0 from (36) into 

(34) and (35), we have now completely obtained all 

steady state probability generating functions.  

6. The Mean Number in the system 
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Let 𝐿𝑞(𝑧) denote the mean number of customers in 

the queue. Then, we have 𝑉(1) =
𝑑

𝑑𝑧
𝑃𝑞(𝑧)  at 𝑧 =

1 where 𝑃𝑞(𝑧) = 𝐻(𝑧) + 𝑉(𝑧) is obtained by 

adding equations (31) and (32). Since 𝑃𝑞(𝑧) is 

indeterminate of the form 
0

0
 at 𝑧 = 1, we let  

𝑃𝑞(𝑧) =
𝑁𝑞(𝑧)

𝐷𝑞(𝑧)
                                                                             (39) 

where 𝑁𝑞(𝑧) and 𝐷𝑞(𝑧) respectively denote the 

numerator and the denominator of the right of 

equation (39). Also  

𝑁𝑞(𝑧) = 𝑧𝑗+1(𝜆 − 𝜆𝑧) + 𝐵(𝜆 − 𝜆𝑧)(𝜆 − 𝜆𝑧) 

                 𝑒−𝜆𝑑(1−𝑧)𝐻0 (𝑧 − 1) 

                +𝑒−𝜆𝑑(1−𝑧)𝐻0 (𝑧 − 1)[1 − 𝐵(𝜆 − 𝜆𝑧)]   

                + 𝑧𝑗𝑒−𝜆𝑑(1−𝑧)[1 − 𝐵(𝜆 − 𝜆𝑧)],               

(40)                                                        

𝐷𝑞(𝑧) = (𝜆 − 𝜆𝑧)𝑧 − 𝐵(𝜆 − 𝜆𝑧)(𝜆 −

𝜆𝑧)𝑒−𝜆𝑑(1−𝑧).   

                                                                                     

(41)                                

Now 𝑃𝑞(𝑧)is indeterminate of the form 
0

0
 . Also 

𝐿𝑞 =
𝑑

𝑑𝑧
𝑃𝑞(𝑧) = 𝑃𝑞

′(1) =  lim
𝑧→1

𝐷′(𝑧)𝑁′′(𝑧)−𝑁′(𝑧)𝐷′′(𝑧)

2(𝐷′(𝑧))
2 , 

                                                                                    (42)                                                                             

We carry out the required derivatives at 𝑧 = 1, 

using the fact 𝐵(0) = 1, −𝐵
′
(0) = 𝐸(𝑣), 𝐵

′′
(0) =

𝐸(𝑣2). After a lot of algebraic simplifications, we 

obtain 

𝑁′(𝑧) = 𝐻0 + 𝐻0𝐸(𝑣),                                                     (43)                                                                                                                                                              

𝑁′′(𝑧) = 2𝜆𝐸(𝑣)𝐻0 + 2𝜆𝑑𝐻0 + 𝐵
′′

(0)𝜆𝐻0 

                +2𝜆𝐸(𝑣)𝐻0𝑑 − 2𝐻0𝜆 + 2𝐵
′
(0)𝜆𝐻0,      

(44)                                 

𝐷′(𝑧) = [1 − 𝜆𝐸(𝑣) − 𝜆𝑑],                                      

(45)                                                                            

𝐷′′(𝑧) = [
−𝜆2𝐵

′′
(0) − 2𝜆2𝐸(𝑣)𝑑 − 𝜆2𝑑2 − 2𝜆

−2𝐵
′
(0)𝜆2 + 2𝜆2𝑑

]. 

(46)                           

Using equations (43) to (46) into (42), we have 

obtained 𝐿𝑞 in closed form, where 𝐻0 has been 

found in equation (36).  

Further, we find the average system size 𝐿 using 

Little's formula. Thus, we have  

𝐿 = 𝐿𝑞 + 𝜌 ,                                                                             (47) 

where 𝐿𝑞 has been found in equation (42) and 𝜌 is 

obtained from equation (38). 

 

7. The Mean Waiting Time 

Let 𝑊𝑞 and 𝑊denote the mean waiting time in the 

queue and the system respectively. Then using 

Little’s formula we obtain  

𝑊𝑞 =
𝐿𝑞

𝜆
 ,                                                                    (48)      

𝑊 =
𝐿

𝜆
                                                                         

(49)   

where 𝐿𝑞 and 𝐿 have been found in equations (42) 

and (47). 

 

8. Conclusion 

We have studied a single server M/D/1 queueing 

system with compulsory server vacation where the 

server provides deterministic service to all arriving 

customers and takes compulsory vacation after 

completion of each service. We have found the 

time-dependent probability generating functions in 

terms of their Laplace transforms using 

supplementary variable technique and have 

derived explicitly the corresponding steady state 

results. Further we find explicit expressions for the 

mean queue length and mean waiting time. 

Acknowledgement 

The author thanks the management of Sri 

Sivasubramaniya Nadar College of Engineering for 

providing the necessary requirements during the 

preparation of this paper.                       

References  

[1] L. Kleinrock, Queueing Systems Vol. I, Theory, 

John Wiley and Sons, New York, 1976a. 

[2] L. Kleinrock, Queueing Systems Vol. II, 

Computer Applications, John Wiley and Sons, 

New York, 1976b. 

[3] J. W. Cohen, The Single Server Queue. 2nd edn. 

North – Holland, Amsterdam, 1982. 

[4] S. S. Lavenberg, A Perspective on Queueing 

Models of Computer Performance in Queueing 

Theory and its Applications, Liber Amicorium 

for J.W.Cohen; CWI Monograph 7, North – 

Holland, Amsterdam, 1988. 



 Journal of Harbin Engineering University  

ISSN: 1006-7043 

  

220 
    

Vol 45 No. 5 

May 2024 

[5] H. Takagi, Queueing Analysis: Vacation and 

Priority Systems, Vol. 1. North Holland, 

Amsterdam, 1991. 

[6] Y. Levy and U.Yechiali, “Utilization of Idle Time 

in an M/G/1 Queueing System”, Manag. Sci., 

vol 22, no. 2, pp. 202 – 211. Oct. 1975,  

[7] D. Bertsimas and X. Papaconstantinou, “On the 

steady state solution of the M/C2(a,b)/ s 

queueing system”, Transp. Sci., vol. 22, no. 2, 

pp.125 – 138, May 1988. 

[8] K. C. Madan, “On an M/G/1 queue providing 

first essential service with customer’s choice 

for general or deterministic second optional 

service”, AIP Conference Proceedings, vol. 

2253, no. 1, Aug. 2020. 

[9] K. C. Madan, “On an MX/G/1 queue with a 

random set up time, random breakdowns and 

delayed deterministic repairs”, J. Math. 

Comput. Sci., vol. 11, no. 5, pp. 6568-6580, 

2021. 

[10] K. C. Madan and G. Choudhury, “An MX/G/1 

queue with Bernoulli vacation schedule under 

Restricted Admissibility policy”, Sankhya, vol. 

66, no. 1,  pp. 175–193, Feb. 2004. 

[11] K. C. Madan and K. Hadjar, “Time dependent 

and steady state solution of an MX/G/1 

queueing system with server’s long and short 

vacations”, J. Math. Comput. Sci., vol. 6, pp. 

486 – 506, Apr. 2016. 

[12] G. Choudhury and Chandi Ram Kalita, “An 

M/G/1 Queue with Two Types of General 

Heteronomous Service and Optional Repeated 

Service Subject to Server’s Breakdown and 

Delayed Repair”, Qual. Technol. Quant. 

Manag., vol. 15, pp. 1 – 33, May 2017. 

[13] S. Vanitha, “M/G/1 Feedback Queue with Two 

Stage Heterogenous Service and Deterministic 

Server Vacations”, International Journal of 

Applied Engineering Research, vol. 13, pp. 

15899 – 15907, 2018. 

[14] K. C. Madan, “An M/G/l Queueing System with 

Compulsory Server Vacations”,Trabajos de 

Investigacion Operativa, vol. 7, pp. 105-115, 

Dec. 1992. 

[15] V. Thangaraj and S. Vanitha, “M/G/1 queue 

with two stage heterogeneous service 

compulsory vacation and random breakdowns, 

Int. J. Contemp. Math. Sciences, vol. 5, no. 7, 

pp. 307 – 322, Jan. 2010. 

[16] R. Kalyanaraman and V. Suvitha, “A single 

server Bernoulli vacation queue with two types 

of services with two types of services and with 

restricted admissibility”, International Journal 

of Mathematical Modelling & Computations, 

vol. 2, pp. 261 – 276, 2016. 

[17] S. Vanitha, “Analysis of M/G/1 Queue with 

Optional Services and Deterministic Repair”, 

International Journal of Advanced Research in 

Engineering and Technology, vol. 11, no. 11,  

pp.1208 – 1217, 2020.                                                                                                                                                                              

[18] B. D. Bunday, Basic Queueing Theory, Edward 

Arnold, Australia, 1986. 

[19] B. R. K. Kashyap and M. L. Chaudhry,An 

Introduction to Queueing Theory, A & A 

Publications, Kingston, Ontarrio, Canada, 1988. 

[20] U. N. Bhat, Elements of Applied Stochastic 

Processes, John Wiley and Sons. Inc.,1972. 

[21] S. Vanitha, “M/D/1 Queue with Compulsory 

Vacation and Random Breakdowns”, 

International Journal of Advanced Research in 

Engineering and Technology, vol. 11, no. 12,  

pp. 560 –567, 2020.   


