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Abstract 

Equitable colouring of a graph 𝐺 is a proper colouring of graph if the number of vertices with any two-colour classes vary 

by at most one and the equitable chromatic number is the minimum number of colour classes and is symbolized by 

𝜒=(𝐺). This paper attempts to establish the acceptance of equitable colouring to the lexicographic product of two graphs 

𝑇2(𝐺)  and 𝐻   denoted by 𝑇2(𝐺) ∘ 𝐻 . iirst  𝐺  can be considered as the path and 𝐻  as the path  cycle  complete and 

bipartite graph. Secondly  𝐺 as the cycle and 𝐻 as the path  cycle  complete and bipartite graph. 
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1. Introduction 

All graphs taken for consideration here are finite  simple 

and undirected. Consider a graph 𝐺  with 𝑉(𝐺)  and 

𝐸(𝐺) denote respectively the vertex set and edge set of 

𝐺. One of the most awe instigating concepts in graph 

theory are the colouring problem having extensive 

applications. Meyer in 1973[12] developed an extension 

to proper coloring. An equitable coloring if a graph G is 

defined as if any two-colour sets of vertices of G vary by 

at most one. ior any graph 𝐺  we have 𝜒=(𝐺) ≥ 𝜒(𝐺). 

ielix Hausdorff in 1914 first introduced the notion of 

lexicographic product. In 1959  Harary [8]  celebrated 

graph theorist named the lexicographic product as the 

composition. Dennis Geller and Saul Stahl [7] in 1975 

established the chromatic number for lexicographic 

product of graphs. ieigenbaum and Schaffer [4] in 1986 

shown that the problem of graph isomorphism is alike 

in intricacy to the lexicographic product of graphs.  

ior any two graphs 𝐺  and 𝐻   the colouring of a 

lexicographic product 𝜒(𝐺 ∘ 𝐻)  is equal to the 𝑏 -fold 

chromatic number of  𝐺   where 𝑏  is equal to the 

colouring of 𝐻  [4]. A 𝑏 -fold 𝑘 -colouring of 𝐺  is an 

assignment of 𝑏 distinct colours to every vertex from a 

set of 𝐺  and 𝑘  colours  such that adjacent vertices do 

not have any colours in common. The 𝑏-fold chromatic 

number  𝜒𝑏(𝐺)   where the minimum number is 𝑘   

where a 𝑏 -fold 𝑘  colouring exits [11]. In general  the 

product of graphs is non-commutative  but in some 

cases  namely in complete graphs and totally 

disconnected graphs  they commute [9]. Enthused by 

this concept  an effort is made to show the acceptance 

of equitable colouring for the lexicographic product of 

different kinds of graphs. An application to optimizing 

garbage collection  time tabling  job allotment and etc. 

 

2. Preliminaries 

Definition 2.1[12] A graph 𝐺 is said to be equitably 𝑘 – 

colourable if its vertices can be partitioned into 𝑘 

classes 𝑉1 , 𝑉2, … , 𝑉𝑘  such that each 𝑉𝑖   is an 

independent set and the condition ||𝑉𝑖| − |𝑉𝑗|| ≤ 1   

𝑖, 𝑗 = 1,2, … , 𝑘 . The smallest integer 𝑘  for which 𝐺  is 

equitably 𝑘 - colourable is known as the equitable 

chromatic number of 𝐺 and denoted by 𝜒=(𝐺).  

Definition 2.2[15] The Semi-Total point graph  𝑇2(𝐺) of 

𝐺  is the graph whose vertex set is 𝑉(𝐺) ∪ 𝐸(𝐺) . ior  

𝑎, 𝑏 ∈ 𝑉(𝑇2(𝐺))  𝑎 and 𝑏 are adjacent if and only if the 

following conditions hold. 

(i) 𝑎, 𝑏 ∈ 𝑉(𝐺)  𝑎, 𝑏 are adjacent vertices of 𝐺.  

(ii) 𝑎 ∈ 𝑉(𝐺) and  𝑏 ∈ 𝐸(𝐺)   𝑏 is incident with  𝑎 in 𝐺. 

Definition 2.3[7]  The lexicographic product  𝐺 ∘ 𝐻  of 

graphs 𝐺 and 𝐻 is a graph such that the vertex set of 𝐺 ∘

𝐻 is the Cartesian product 𝑉(𝐺) × 𝑉(𝐻)  and any two 

vertices (𝑙, 𝑚)  and (𝑢, 𝑣)  are adjacent in 𝐺 ∘ 𝐻  iff 

either 𝑙  is adjacent with 𝑢  in 𝐺  or 𝑙 = 𝑢  and 𝑚  is 

adjacent with 𝑣 in 𝐻. 

Theorem 2.1 [5] ior any graph G  𝜒=(𝐺) ≤ ∆(𝐺) + 1. 

Theorem 2.2 [5] If G  is a connected graph  different 

from 𝐶2𝑛+1 and 𝐾𝑛 ∀ 𝑛 ≥ 1  then 𝜒=(𝐺) ≤ ∆(𝐺). 

Theorem 2.3 [6] (The Equitable ∆-Colouring Conjecture-

E ∆𝐶𝐶)  A connected graph 𝐺  is equitable ∆(𝐺 ) – 

colourable if 𝐺  is different from 𝐶2𝑛+1   𝐾𝑛  and 

𝐾2𝑛+1,2𝑛+1 ∀ 𝑛 ≥ 1.  
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Theorem 2.4 [7] If 𝐺  has 𝑘  disjoint colour sets 

{𝑆𝑖|1 ≤ 𝑖 ≤ 𝑘}  whose union is independent  then for 

any graph 𝐻   𝜒(𝐺 ∘ 𝐻) ≤ 𝜒(𝐺)𝜒(𝐻) − [𝜒(𝐻) 𝑘⁄ ](𝑘 −

1). 

Theorem 2.5 [7] ior any graph 𝐺   if 𝜒(𝐺) = 1   then 

𝜒(𝐺 ∘ 𝐻) = 𝜒(𝐻)   if 𝜒(𝐺) > 1   then 𝜒(𝐺 ∘ 𝐻) ≥

𝜒(𝐺) + 2𝜒(𝐻) − 2. 

3. Equitable Colouring of Lexicographic Product of 

Semi-Total Point graphs 

Let 𝑉(𝐺) = {𝑢𝑖 ; 0 ≤ 𝑖 ≤ 𝑚 − 1}   𝑉(𝑇2(𝐺) ) =

{(𝑢𝑖), (𝑒𝑖) ; 0 ≤ 𝑖 ≤ 𝑚 − 1}  and 𝑉(𝐻) = {𝑣𝑗  ; 0 ≤ 𝑗 ≤

𝑛 − 1}  are the set of vertices of 𝐺   𝑇2(𝐺)  and 𝐻 

respectively. Let 𝑉(𝑇2(𝐺) ∘ 𝐻) =

⋃ {(𝑧𝑖,𝑗), (𝑧𝑖,𝑗
∗ ); 0 ≤ 𝑗 ≤ 𝑛 − 1}𝑚−1

𝑖=0   (where 𝑧𝑖,𝑗  be the 

vertices in the form of 𝑢𝑖𝑣𝑗   and 𝑧𝑖,𝑗
∗   be the vertices in 

the form of 𝑒𝑖𝑣𝑗) is the set of vertices of 𝑇2(𝐺) ∘ 𝐻. In 

case 𝐻  is bipartite graphs  𝑉(𝑇2(𝐺) ∘ 𝐻) =

⋃ {(𝑧𝑖,𝑗), (𝑧𝑖,𝑗
∗ ), (𝑧𝑖,𝑗′), (𝑧𝑖,𝑗′

∗ ) ; 0 ≤ 𝑗 ≤ 𝑝 − 1, 0 ≤𝑚−1
𝑖=0

𝑗′ ≤ 𝑞 − 1}  where 𝑧𝑖,𝑗′  be the vertices in the form of 

𝑢𝑖𝑣𝑗′   𝑧𝑖,𝑗′
∗  be the vertices in the form of 𝑒𝑖𝑣𝑗′  and also 

𝑉(𝐻) = {𝑣𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑝}  and 𝑉′(𝐻) = {𝑣𝑗′ ∶ 1 ≤ 𝑗′ ≤

𝑞}. 

The notion 𝑖 ≡ 02 refers to 𝑖 ≡ 0(𝑚𝑜𝑑2). 

Theorem 3.1. Let 𝐺 and 𝐻 be any two graphs  where 𝐺 

is a semi-total point graph of path  𝑇2(𝑃𝑚)  on 𝑚 ≥ 2 

vertices  then the equitable colouring of the 

lexicographic product of 𝐺 and 𝐻 are 

(i) 𝜒=(𝐺 ∘ 𝑃𝑛) = 6 ; 𝑚 ≡ 23 and 𝑛 = 2𝑘, 𝑘 ≥ 1. 

(ii) 𝜒=(𝐺 ∘ 𝐶𝑛) = 6  ; 𝑚 ≡ 26, 𝑚 ≥ 3   and 𝑛 =

2𝑘, 𝑘 ≥ 2. 

(iii) 𝜒=(𝐺 ∘ 𝐾𝑝,𝑝) = 6 ; 𝑚 = 3𝑘 + 2, 𝑘 ≥ 0. 

(iv) 𝜒=(𝐺 ∘ 𝐾𝑛) = 3𝑛 ; 𝑛 ≥ 2. 

Proof.  

Define the map 𝛼 ∶  𝑉(𝐺 ∘ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑁 

The proof of the theorem is divided into four cases  

Case 1:  

Let 𝐺 be a semi-total point graph of path with 2𝑚 − 1 

vertices and 𝐻  be a path with 𝑛  vertices then the 

number of vertices and edges of the lexicographic 

product of two graphs 𝐺  and 𝐻 are 𝑛(2𝑚 − 1)  and 

𝑚(3𝑛2 + 2𝑛 − 2) − 3𝑛2 − 𝑛 + 1  respectively  

corresponding vertex set and edge set are given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ 𝑥𝑖,𝑗

𝑛−2

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑥𝑖,𝑗
∗

𝑛−2

𝑗=0

𝑚−2

𝑖=0

) 

Where   𝑥𝑖,𝑗𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘)  𝑥𝑖,𝑗𝑘
∗  is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )  𝑥𝑖,𝑗𝑘

∗∗   is the edge (𝑧𝑖,𝑗
∗ )(𝑧𝑖+1,𝑘)   ∀ 0 ≤ 𝑘 ≤

𝑛 − 1. 

Also 𝑥𝑖,𝑗   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑗+1)  and 𝑥𝑖,𝑗
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑗+1

∗ ).   

 
Fig.1 Example of lexicographic product 𝑻𝟐(𝑷𝟓) ∘ 𝑷𝟒 

If 𝑚 ≡ 23  and 𝑛 = 2𝑘, 𝑘 ≥ 1   then the colouring of 

vertices and partition the vertex set of 𝑉 as below     

𝛼(𝑧𝑖,𝑗) = 𝑖(𝑚𝑜𝑑 3) + 3[𝑗(𝑚𝑜𝑑 2)]             

𝛼(𝑧𝑖,𝑗
∗ ) = (𝑖 + 2)(𝑚𝑜𝑑 3) + 3[𝑗(𝑚𝑜𝑑 2)] 

 and 

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

and     𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ } 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
𝑛(2𝑚−1)

6
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every 

pair (𝑖, 𝑗) . 𝜒=(𝐺 ∘ 𝐻) ≤ 6   Since there exist cliques of 

order 6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘

𝐻) ≥ 6   𝜒=(𝐺 ∘ 𝐻) ≥ 6 . Hence  𝜒=(𝐺 ∘ 𝐻) = 6  for 

𝑚 ≡ 23 and 𝑛 = 2𝑘, 𝑘 ≥ 1. 

Unfortunately  𝜒=(𝑇2(𝑃𝑚) ∘ 𝑃𝑛)  is not an equitably 6-

colour for 𝑚 ≢ 23 ∀ 𝑛. 

Case 2:  

Let 𝐺 be a semi-total point graph of path with 2𝑚 − 1 

vertices and 𝐻  be a cycle with 𝑛  vertices then the 

number of vertices of the lexicographic product of two 

graphs is same as the lexicographic product of semi-

total point graph of path with path graph  but edges are 

difference. The number of edges is 𝑛(3𝑛 + 1)(𝑚 −
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1) + 𝑚𝑛  respectively  corresponding vertex set and 

edge set are given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ 𝑥𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑥𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

Where   𝑥𝑖,𝑗𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘)   𝑥𝑖,𝑗𝑘
∗  is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,(𝑗+1)(𝑚𝑜𝑑 𝑛))   𝑥𝑖,𝑗

∗   is 

the edge (𝑧𝑖,𝑗
∗ )(𝑧𝑖,(𝑗+1)(𝑚𝑜𝑑 𝑛)

∗ )  and 𝑥𝑖,𝑗𝑘
∗∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖+1,𝑘). 

 ∀ 0 ≤ 𝑘 ≤ 𝑛 − 1. 

If 𝑚 ≡ 26, 𝑚 ≥ 3  and 𝑛 = 2𝑘, 𝑘 ≥ 2   then set the 

partition of 𝑉 as below     

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

And     𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ } 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
𝑛(2𝑚−1)

6
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every 

pair (𝑖, 𝑗) . 𝜒=(𝐺 ∘ 𝐻) ≤ 6   Since there exist cliques of 

order 6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘

𝐻) ≥ 6   𝜒=(𝐺 ∘ 𝐻) ≥ 6 . Hence  𝜒=(𝐺 ∘ 𝐻) = 6  for 

𝑚 ≡ 26, 𝑚 ≥ 3 and 𝑛 = 2𝑘, 𝑘 ≥ 2. 

Unfortunately  𝜒=(𝑇2(𝑃𝑚) ∘ 𝐶𝑛)  is not an equitably 6-

colour for 𝑚 ≢ 26 ∀ 𝑛. 

Case 3:  

Let 𝐺 be a semi-total point graph of path with 2𝑚 − 1 

vertices and 𝐻 be a complete bipartite with 2𝑝 vertices 

then the number of vertices and edges of the 

lexicographic product of 𝐺  and 𝐻  are 2𝑝(2𝑚 − 1)  and 

𝑛(3𝑛 + 1)(𝑚 − 1) + 𝑚𝑛 and the vertex set and edge 

set are given by 

𝑉(𝐺(𝐻)) = (⋃ ⋃(𝑧𝑖,𝑗)(𝑧𝑖,𝑗′)

𝑝−1

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃ ⋃(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑗′

∗ )

𝑝−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻)

= (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑝−1

𝑘=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ ⋃ (𝑥𝑖,𝑗𝑘′)

𝑝−1

𝑘′=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘′
∗ ) (𝑥𝑖,𝑗𝑘′

∗∗ ))

∪ (⋃ ⋃ ⋃(𝑥𝑖,𝑗′𝑘)

𝑝−1

𝑘=0

𝑝−1

𝑗′=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗′𝑘
∗ ) (𝑥𝑖,𝑗′𝑘

∗∗ ))

∪ (⋃ ⋃ ⋃ (𝑥𝑖,𝑗′𝑘′)

𝑝−1

𝑘′=0

𝑝−1

𝑗′=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗′𝑘′
∗ ) (𝑥𝑖,𝑗′𝑘′

∗∗ ))

∪ (⋃ ⋃ ⋃ 𝑥𝑖,𝑗𝑙′

𝑝−1

𝑙′=0

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ ⋃ 𝑥𝑖,𝑗𝑙′
∗

𝑝−1

𝑙′=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

) 

Where  𝑥𝑖,𝑗𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘)  𝑥𝑖,𝑗𝑘′ is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘′)  𝑥𝑖,𝑗′𝑘 is the edge (𝑧𝑖,𝑗′)(𝑧𝑖+1,𝑘)  𝑥𝑖,𝑗′𝑘′  is 

the edge (𝑧𝑖,𝑗′)(𝑧𝑖+1,𝑘′). 

𝑥𝑖,𝑗𝑘
∗   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘

∗ )   𝑥𝑖,𝑗𝑘′
∗   is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,𝑘′
∗ )   𝑥𝑖,𝑗′𝑘

∗   is the edge (𝑧𝑖,𝑗′)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗′𝑘′

∗   is the 

edge (𝑧𝑖,𝑗′)(𝑧𝑖,𝑘′
∗ ). 

𝑥𝑖,𝑗𝑘
∗∗   is the edge (𝑧𝑖,𝑗

∗ )(𝑧𝑖+1,𝑘)   𝑥𝑖,𝑗𝑘′
∗∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖+1,𝑘′)  𝑥𝑖,𝑗′𝑘

∗∗  is the edge (𝑧𝑖,𝑗′
∗ )(𝑧𝑖+1,𝑘)  

𝑥𝑖,𝑗′𝑘′
∗∗  is the edge (𝑧𝑖,𝑗′

∗ )(𝑧𝑖+1,𝑘′). 

∀ 0 ≤ 𝑘 ≤ 𝑝 − 1 & 0 ≤ 𝑘′ ≤ 𝑝 − 1. 

Also 𝑥𝑖,𝑗𝑙′   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑙′)  and 𝑥𝑖,𝑗𝑙′
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑙′

∗ )  ∀ 0 ≤ 𝑙′ ≤ 𝑝 − 1. 

If 𝑚 = 3𝑘 + 2, 𝑘 ≥ 0   then the colouring of vertices 

and partition the vertex set of 𝑉 as below     

                 𝛼(𝑧𝑖,𝑗) = 𝑖(𝑚𝑜𝑑 3)   

               𝛼(𝑧𝑖,𝑗′) = 𝑖(𝑚𝑜𝑑 3) + 3   

    𝛼(𝑧𝑖,𝑗
∗ ) = (𝑖 + 2)(𝑚𝑜𝑑 3)         

  𝛼 (𝑧𝑖,𝑗′
∗ ) = (𝑖 + 2)(𝑚𝑜𝑑 3) + 3                          

and 

𝑉0 = {𝑧𝑖≡03,𝑗 , 𝑧𝑖≡13,𝑗
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗  , 𝑧𝑖≡23,𝑗
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗 , 𝑧𝑖≡03,𝑗
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗′  , 𝑧𝑖≡13,𝑗′
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗′  , 𝑧𝑖≡23,𝑗′
∗ } 

and          𝑉5 = {𝑧𝑖≡23,𝑗′  , 𝑧𝑖≡03,𝑗′
∗ }. 

 ∀  0 ≤ 𝑖 ≤ 𝑚 − 1  0 ≤ 𝑗 ≤ 𝑝 − 1 & 0 ≤ 𝑗′ ≤ 𝑝 − 1 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
𝑝(2𝑚−1)

6
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every 

pair (𝑖, 𝑗) . 𝜒=(𝐺 ∘ 𝐻) ≤ 6   Since there exist cliques of 

order 6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘
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𝐻) ≥ 6   𝜒=(𝐺 ∘ 𝐻) ≥ 6 . Hence  𝜒=(𝐺 ∘ 𝐻) = 6  for 

𝑚 = 3𝑘 + 2, 𝑘 ≥ 0. 

Unfortunately  𝜒=(𝑇2(𝑃𝑚) ∘ 𝐾𝑝,𝑝) is not an equitably 6-

colour for 𝑚 ≠ 3𝑘 + 2, 𝑘 ≥ 0. 

Case 4:  

Let 𝐺 be a semi-total point graph of path with 2𝑚 − 1 

vertices and 𝐻 be a complete with 𝑛 vertices then the 

number of vertices of the lexicographic product of two 

graphs is same as the lexicographic product of semi-

total point graph of path with path graph  but edges are 

difference. The number of edges is 𝑛{3𝑛(𝑚 − 1) +

2(𝑛 − 1)} respectively  corresponding vertex set and 

edge set are given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−2

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ 𝑥𝑖,𝑘

𝑛−1

𝑘>𝑗

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑥𝑖,𝑘
∗

𝑛−1

𝑘>𝑗

𝑚−1

𝑖=0

) 

Where   𝑥𝑖,𝑗𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘)  𝑥𝑖,𝑗𝑘
∗  is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗𝑘

∗∗   is the edge (𝑧𝑖,𝑗
∗ )(𝑧𝑖+1,𝑘)   ∀ 0 ≤ 𝑘 ≤

𝑛 − 1. 

Also 𝑥𝑖,𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘)  and 𝑥𝑖,𝑘
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑘

∗ )   ∀ 0 ≤ 𝑗 < 𝑘 ≤ 𝑛 − 1. 

If 𝑛 ≥ 2  then the colouring of vertices and partition the 

vertex set of 𝑉 as below     

𝛼(𝑧𝑖,𝑗) = 𝑖(𝑚𝑜𝑑 3) + 3𝑗 

𝛼(𝑧𝑖,𝑗
∗ ) = (𝑖 + 2)(𝑚𝑜𝑑 3) + 3𝑗 

 and 

𝑉3𝑗 = {𝑧𝑖≡03,𝑗 , 𝑧𝑖≡13,𝑗
∗ } 

𝑉3𝑗+1 = {𝑧𝑖≡13,𝑗 , 𝑧𝑖≡23,𝑗
∗ } 

and         𝑉3𝑗+2 = {𝑧𝑖≡23,𝑗 , 𝑧𝑖≡03,𝑗
∗ }. 

 ∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉3𝑗, 𝑉3𝑗+1  and 𝑉3𝑗+2  are independent of 𝑉(𝐺 ∘

𝐻)  also 

(i) If 𝑚 ≡ 03  then |𝑉3𝑗| = |𝑉3𝑗+2| =
2𝑚

3
 and 

|𝑉3𝑗+1| =
2𝑚

3
− 1. 

(ii) If 𝑚 ≡ 13  then |𝑉3𝑗+1| = |𝑉3𝑗+2| = ⌊
2𝑚

3
⌋  and 

|𝑉3𝑗| = ⌈
2𝑚

3
⌉. 

(iii) If 𝑚 ≡ 23  then |𝑉3𝑗| = |𝑉3𝑗+1| = |𝑉3𝑗+2| = 

⌊
2𝑚

3
⌋. 

It holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair (𝑖, 𝑗)  

𝜒=(𝐺 ∘ 𝐻) ≤ 3𝑛  Since there exist cliques of order 3𝑛 

in 𝑉(𝐺 ∘ 𝐻)   𝜒(𝐺 ∘ 𝐻) ≥ 3𝑛   𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥

3𝑛   𝜒=(𝐺 ∘ 𝐻) ≥ 3𝑛 . Hence  𝜒=(𝐺 ∘ 𝐻) = 3𝑛  for 𝑛 ≥

2. 

Corollary 3.1.1  

(i) ior 𝑚 ≥ 3  𝜒=(𝑇2(𝑃𝑚) ∘ 𝑃2) = 6. 

(ii) ior 𝑛 ≥ 3  𝜒=(𝑇2(𝑃2) ∘ 𝑃𝑛) = 6. 

Proof.  

Define the map 𝛼 ∶  𝑉(𝐺 ∘ 𝐻)   → {0,1,2, … ,5} 

Partition the vertex set of 𝑉 as below     

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

and      𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also 

Claim (i): ior 𝑚 ≥ 3  

(a) If 𝑚 ≡ 03  then |𝑉0| = |𝑉3| = ⌈
2𝑚−1

3
⌉  and |𝑉1| =

|𝑉2| = |𝑉4| = |𝑉5| = ⌊
2𝑚−1

3
⌋. 

(b) If 𝑚 ≡ 13  then |𝑉0| = |𝑉1| = |𝑉3| = |𝑉4| = ⌈
2𝑚−1

3
⌉ 

and |𝑉2| = |𝑉5| = ⌊
2𝑚−1

3
⌋ 

(c) If 𝑚 ≡ 23  then |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| =

|𝑉5| = 
2𝑚−1

3
. 

Claim (ii): ior 𝑛 ≥ 3  

(a) If 𝑛 ≡ 02  then |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| =

|𝑉5| = 
𝑛

2
. 

(b) If 𝑛 ≡ 12  then |𝑉0| = |𝑉1| = |𝑉2| = ⌈
𝑛

2
⌉  and |𝑉3| =

|𝑉4| = |𝑉5| = ⌊
𝑛

2
⌋. 

It holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair (𝑖, 𝑗). 

𝜒=(𝐺 ∘ 𝐻) ≤ 6  Since there exist cliques of order 6 in 

𝑉(𝐺 ∘ 𝐻)   𝜒(𝐺 ∘ 𝐻) ≥ 6   𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥ 6   

𝜒=(𝐺 ∘ 𝐻) ≥ 6. Hence  𝜒=(𝐺 ∘ 𝐻) = 6. 

Corollary 3.1.2 ior 𝑘 ≥ 2  

 𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) = {
6 ;  𝑛 = 2𝑘        
9 ;  𝑛 = 2𝑘 − 1

 

Proof.  

Define the map 𝛼 ∶  𝑉(𝐺 ∘ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑁 

Case 1:  

If 𝑛 = 2𝑘   𝑘 ≥ 2  then partition the vertex set of 𝑉  as 

below     

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

and      𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ }. 
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∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝑇2(𝑃2) ∘ 𝐶𝑛)   also |𝑉0| = |𝑉3| = ⌈
2𝑚−1

3
⌉  and |𝑉1| =

|𝑉2| = |𝑉4| = |𝑉5| = ⌊
2𝑚−1

3
⌋   it holds inequality ||𝑉𝑖| −

|𝑉𝑗|| ≤ 1  for every pair (𝑖, 𝑗) . 𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) ≤ 6   

Since there exist cliques of order 6 in 𝑉(𝑇2(𝑃2) ∘ 𝐶𝑛)   

𝜒(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 6   𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 𝜒(𝑇2(𝑃2) ∘

𝐶𝑛) ≥ 6   𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 6 . Hence  𝜒=(𝑇2(𝑃2) ∘

𝐶𝑛) = 6 for 𝑛 = 2𝑘, 𝑘 ≥ 2. 

Case 2:  

If  𝑛 = 2𝑘 − 1   𝑘 ≥ 2   then the colouring of vertices 

and partition the vertex set of 𝑉 as below      

𝛼(𝑧𝑖,𝑗) = 𝑖(𝑚𝑜𝑑 3) + 3[𝑗(𝑚𝑜𝑑 3)] 

𝛼(𝑧𝑖,𝑗
∗ ) = (𝑖 + 2)(𝑚𝑜𝑑 3) + 3[𝑗(𝑚𝑜𝑑 3)] 

and 

𝑉0 = {𝑧𝑖≡03,𝑗≡03 , 𝑧𝑖≡13,𝑗≡03
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡03 , 𝑧𝑖≡23,𝑗≡03
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡03 , 𝑧𝑖≡03,𝑗≡03
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡13 , 𝑧𝑖≡13,𝑗≡13
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡13 , 𝑧𝑖≡23,𝑗≡13
∗ } 

𝑉5 = {𝑧𝑖≡23,𝑗≡13 , 𝑧𝑖≡03,𝑗≡13
∗ } 

𝑉6 = {𝑧𝑖≡03,𝑗≡23 , 𝑧𝑖≡13,𝑗≡23
∗ } 

𝑉7 = {𝑧𝑖≡13,𝑗≡23 , 𝑧𝑖≡23,𝑗≡23
∗ } 

and      𝑉8 = {𝑧𝑖≡23,𝑗≡23 , 𝑧𝑖≡03,𝑗≡23
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7  and 𝑉8  are 

independent of 𝑉(𝑇2(𝑃2) ∘ 𝐶𝑛)  also 

(a) If 𝑛 = 3(2𝑘 − 3)  then |𝑉0| = |𝑉1| = |𝑉2| =

|𝑉3| = |𝑉4| = |𝑉5| = |𝑉6| = |𝑉7| = |𝑉8| = (2𝑘 − 3). 

(b) If 𝑛 = (6𝑘 − 7)  then |𝑉0| = |𝑉1| = |𝑉2| =

|𝑉3| = |𝑉4| = |𝑉5| = ⌈
6𝑘−7

3
⌉  and |𝑉6| = |𝑉7| = |𝑉8| =

⌊
6𝑘−7

3
⌋ . 

(c) If 𝑛 = (6𝑘 − 5)  then |𝑉0| = |𝑉1| = |𝑉2| =

⌈
6𝑘−5

3
⌉  and |𝑉3| = |𝑉4| = |𝑉5| = |𝑉6| = |𝑉7| = |𝑉8| =

⌊
6𝑘−5

3
⌋. 

It holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair (𝑖, 𝑗). 

𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) ≤ 9  Since there exist cliques of order 

9 in 𝑉(𝑇2(𝑃2) ∘ 𝐶𝑛)   𝜒(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 9   𝜒=(𝑇2(𝑃2) ∘

𝐶𝑛) ≥ 𝜒(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 9   𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) ≥ 9 . 

Hence  𝜒=(𝑇2(𝑃2) ∘ 𝐶𝑛) = 9 for 𝑛 = 2𝑘 − 1, 𝑘 ≥ 2. 

Corollary 3.1.3 ior 𝑝 ≥ 1   

𝜒=(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1) = 6. 

Proof.  

Define the map 𝛼 ∶  𝑉(𝐺 ∘ 𝐻)   → {0,1,2, … ,5} 

If 𝑝 ≥ 1  then partition the vertex set of 𝑉 as below     

𝑉0 = {𝑧𝑖≡03,𝑗 , 𝑧𝑖≡13,𝑗
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗  , 𝑧𝑖≡23,𝑗
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗 , 𝑧𝑖≡03,𝑗
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗′  , 𝑧𝑖≡13,𝑗′
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗′  , 𝑧𝑖≡23,𝑗′
∗ } 

and          𝑉5 = {𝑧𝑖≡23,𝑗′  , 𝑧𝑖≡03,𝑗′
∗ }. 

 ∀  0 ≤ 𝑖 ≤ 𝑚 − 1  0 ≤ 𝑗 ≤ 𝑝 − 1 & 0 ≤ 𝑗′ ≤ 𝑝 − 1 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1)   also |𝑉0| = |𝑉1| = |𝑉2| = 𝑝  and 

|𝑉3| = |𝑉4| = |𝑉5|  = 𝑝 + 1   it holds inequality ||𝑉𝑖| −

|𝑉𝑗|| ≤ 1 for every pair (𝑖, 𝑗). 𝜒=(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1) ≤ 6  

Since there exist cliques of order 6 in 𝑉(𝑇2(𝑃2) ∘

𝐾𝑝,𝑝+1)   𝜒(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1) ≥ 6   𝜒=(𝑇2(𝑃2) ∘

𝐾𝑝,𝑝+1) ≥ 𝜒(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1) ≥ 6   𝜒=(𝑇2(𝑃2) ∘

𝐾𝑝,𝑝+1) ≥ 6. Hence  𝜒=(𝑇2(𝑃2) ∘ 𝐾𝑝,𝑝+1) = 6. 

Theorem 3.2. Let 𝐺 and 𝐻 be any two graphs  where 𝐺 

is a semi-total point graph of cycle  𝑇2(𝐶𝑚)  on 𝑚 ≥ 3 

vertices  the equitable colouring of the lexicographic 

product of 𝐺 and 𝐻 are 

(i) 𝜒=(𝐺 ∘ 𝑃𝑛) = 6 ; 𝑚 = 3𝑘 and 𝑛 = 2𝑘, 𝑘 ≥ 1 

(ii) 𝜒=(𝐺 ∘ 𝐶𝑛) = {
6 ;  𝑛 = 2𝑘 + 2
9 ;  𝑛 = 3          

 ; 𝑚 = 3𝑘, 𝑘 ≥

1. 

(iii) 𝜒=(𝐺 ∘ 𝐾𝑛) = 3𝑛 ; 𝑚 = 3𝑘, 𝑘 ≥ 1 and 𝑛 ≥ 2. 

(iv) 𝜒=(𝐺 ∘ 𝐾𝑝,𝑝) = 6 ; 𝑝 ≥ 1. 

Proof.  

Define the map 𝛼 ∶  𝑉(𝐺 ∘ 𝐻)   → {0,1,2, … , 𝑙}  ∀ 𝑙 ∈ 𝑁 

The proof of the theorem is divided into four cases  

Case 1:  

Let 𝐺  be a semi-total point graph of cycle with 2𝑚 

vertices and 𝐻  be a path with 𝑛  vertices then the 

number of vertices and edges of the lexicographic 

product of two graphs 𝐺 and 𝐻 are 2𝑚𝑛 and 𝑚(3𝑛2 +

2𝑛 − 2)  respectively  corresponding vertex set and 

edge set are given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃(𝑥𝑖,𝑗)

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(𝑥𝑖,𝑗
∗ )) 

Where   𝑥𝑖,𝑗𝑘   is the edge (𝑧𝑖,𝑗)(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)   𝑥𝑖,𝑗𝑘
∗   is 

the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗𝑘

∗∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)  ∀ 0 ≤ 𝑘 ≤ 𝑛 − 1. 

Also 𝑥𝑖,𝑗   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑗+1)  and 𝑥𝑖,𝑗
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑗+1

∗ ). 
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Fig.1 Example of lexicographic product 𝑻𝟐(𝑪𝟑) ∘ 𝑷𝟒 

If 𝑚 = 3𝑘 and 𝑛 = 2𝑘, 𝑘 ≥ 1 then partition the vertex 

set of 𝑉 as below  

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

and      𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
𝑚𝑛

3
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair 

(𝑖, 𝑗). 𝜒=(𝐺 ∘ 𝐻) ≤ 6  Since there exist cliques of order 

6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥

6   𝜒=(𝐺 ∘ 𝐻) ≥ 6 . Hence  𝜒=(𝐺 ∘ 𝐻) = 6  for 𝑚 = 3𝑘 

and 𝑛 = 2𝑘, 𝑘 ≥ 1. 

Unfortunately  𝜒=(𝑇2(𝐶𝑚) ∘ 𝑃𝑛)  is not an equitably 6-

colour for 𝑚 = 3𝑘  and 𝑛 ≠ 2𝑘, 𝑘 ≥ 1  also ∀𝑛, 𝑚 ≠

3𝑘, 𝑘 ≥ 1. 

Case 2:  

Let 𝐺  be a semi-total point graph of cycle with 2𝑚 

vertices and 𝐻  be a cycle with 𝑛  vertices then the 

number of vertices of the lexicographic product of two 

graphs is same as the lexicographic product of semi-

total point graph of cycle with path graph  but edges are 

difference. The number of edges is 𝑚𝑛(3𝑛 + 2) 

respectively  corresponding vertex set and edge set are 

given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃(𝑥𝑖,𝑗)

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(𝑥𝑖,𝑗
∗ )) 

Where   𝑥𝑖,𝑗𝑘   is the edge (𝑧𝑖,𝑗)(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)   𝑥𝑖,𝑗𝑘
∗   is 

the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗𝑘

∗∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)   𝑥𝑖,𝑗   is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,(𝑗+1)(𝑚𝑜𝑑 𝑛))  and 𝑥𝑖,𝑗
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,(𝑗+1)(𝑚𝑜𝑑 𝑛)

∗ )   ∀ 0 ≤ 𝑘 ≤ 𝑛 − 1. 

Claim (a):  

If 𝑛 = 2𝑘 + 2  and 𝑚 = 3𝑘, 𝑘 ≥ 1  then partition the 

vertex set of 𝑉 as below  

𝑉0 = {𝑧𝑖≡03,𝑗≡02 , 𝑧𝑖≡13,𝑗≡02
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡02 , 𝑧𝑖≡23,𝑗≡02
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡02 , 𝑧𝑖≡03,𝑗≡02
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡12 , 𝑧𝑖≡13,𝑗≡12
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡12 , 𝑧𝑖≡23,𝑗≡12
∗ } 

and      𝑉5 = {𝑧𝑖≡23,𝑗≡12 , 𝑧𝑖≡03,𝑗≡12
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
𝑚𝑛

3
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair 

(𝑖, 𝑗). 𝜒=(𝐺 ∘ 𝐻) ≤ 6  Since there exist cliques of order 

6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥

6   𝜒=(𝐺 ∘ 𝐻) ≥ 6 . Hence  𝜒=(𝐺 ∘ 𝐻) = 6  for 𝑚 = 3𝑘 

and 𝑛 = 2𝑘 + 2, 𝑘 ≥ 1. 

Unfortunately  𝜒=(𝑇2(𝐶𝑚) ∘ 𝐶𝑛)  is not an equitably 6-

colour for 𝑚 = 3𝑘  and 𝑛 ≠ 2𝑘 + 2, 𝑘 ≥ 1  also 

∀ 𝑛, 𝑚 ≠ 3𝑘, 𝑘 ≥ 1. 

Claim (b):  

If 𝑛 = 3  and 𝑚 = 3𝑘, 𝑘 ≥ 1  then partition the vertex 

set of 𝑉 as below  

𝑉0 = {𝑧𝑖≡03,𝑗≡03 , 𝑧𝑖≡13,𝑗≡03
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗≡03 , 𝑧𝑖≡23,𝑗≡03
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗≡03 , 𝑧𝑖≡03,𝑗≡03
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗≡13 , 𝑧𝑖≡13,𝑗≡13
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗≡13 , 𝑧𝑖≡23,𝑗≡13
∗ } 

𝑉5 = {𝑧𝑖≡23,𝑗≡13 , 𝑧𝑖≡03,𝑗≡13
∗ } 

𝑉6 = {𝑧𝑖≡03,𝑗≡23 , 𝑧𝑖≡13,𝑗≡23
∗ } 

𝑉7 = {𝑧𝑖≡13,𝑗≡23 , 𝑧𝑖≡23,𝑗≡23
∗ } 

and      𝑉8 = {𝑧𝑖≡23,𝑗≡23 , 𝑧𝑖≡03,𝑗≡23
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5, 𝑉6, 𝑉7  and 𝑉8  are 

independent of 𝑉(𝑇2(𝐶3𝑘) ∘ 𝐶3)   also |𝑉0| = |𝑉1| =

|𝑉2| = |𝑉3| = |𝑉4| = |𝑉5|  = 
2𝑚

3
   it holds inequality 

||𝑉𝑖| − |𝑉𝑗|| ≤ 1  for every pair (𝑖, 𝑗) . 𝜒=(𝑇2(𝐶3𝑘) ∘

𝐶3) ≤ 9   Since there exist cliques of order 9 in 

𝑉(𝑇2(𝐶3𝑘) ∘ 𝐶3)   𝜒(𝑇2(𝐶3𝑘) ∘ 𝐶3) ≥ 9   𝜒=(𝑇2(𝐶3𝑘) ∘

𝐶3) ≥ 𝜒(𝑇2(𝐶3𝑘) ∘ 𝐶3) ≥ 9   𝜒=(𝑇2(𝐶3𝑘) ∘ 𝐶3) ≥ 9 . 

Hence  𝜒=(𝑇2(𝐶3𝑘) ∘ 𝐶3) = 9 for 𝑘 ≥ 1. 

Case 3:  

Let 𝐺  be a semi-total point graph of cycle with 2𝑚 

vertices and 𝐻 be a complete with 𝑛 vertices then the 

number of vertices of the lexicographic product of two 

graphs is same as the lexicographic product of semi-
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total point graph of cycle with path graph  but edges are 

difference. The number of edges is 𝑛{3𝑛(𝑚 − 1) +

2(𝑛 − 1)}  respectively  corresponding vertex set and 

edge set are given by 

𝑉(𝐺 ∘ 𝐻) = (⋃ ⋃ 𝑧𝑖,𝑗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑧𝑖,𝑗
∗

𝑛−1

𝑗=0

𝑚−1

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻) = (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑛−1

𝑘=0

𝑛−1

𝑗=0

𝑚−1

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ 𝑥𝑖,𝑘

𝑛−1

𝑘>𝑗

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ 𝑥𝑖,𝑘
∗

𝑛−1

𝑘>𝑗

𝑚−1

𝑖=0

) 

Where   𝑥𝑖,𝑗𝑘   is the edge (𝑧𝑖,𝑗)(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)   𝑥𝑖,𝑗𝑘
∗   is 

the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘
∗ )   𝑥𝑖,𝑗𝑘

∗∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)  ∀ 0 ≤ 𝑘 ≤ 𝑛 − 1. 

Also 𝑥𝑖,𝑘  is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘)  and 𝑥𝑖,𝑘
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑘

∗ )  ∀ 0 ≤ 𝑗 < 𝑘 ≤ 𝑛 − 1. 

If 𝑚 = 3𝑘, 𝑘 ≥ 1  and 𝑛 ≥ 2   then the colouring of 

vertices and partition the vertex set of 𝑉 as below     

𝛼(𝑧𝑖,𝑗) = {

  𝑗          ; 𝑖 ≡ 03 
𝑗 + 𝑛   ; 𝑖 ≡ 13
𝑗 + 2𝑛 ; 𝑖 ≡ 23

 

𝛼(𝑧𝑖,𝑗
∗ ) = {

𝑗 + 2𝑛 ; 𝑖 ≡ 03
𝑗           ; 𝑖 ≡ 13
𝑗 + 𝑛   ; 𝑖 ≡ 23

 

 and 

𝑉𝑗 = {𝑧𝑖≡03,𝑗 , 𝑧𝑖≡13,𝑗
∗ } 

𝑉𝑗+𝑛 = {𝑧𝑖≡13,𝑗 , 𝑧𝑖≡23,𝑗
∗ } 

and        𝑉𝑗+2𝑛 = {𝑧𝑖≡23,𝑗 , 𝑧𝑖≡03,𝑗
∗ }. 

∀  0 ≤ 𝑖 ≤ 𝑚 − 1 and  0 ≤ 𝑗 ≤ 𝑛 − 1. 

Clearly 𝑉𝑗, 𝑉𝑗+𝑛 and 𝑉𝑗+2𝑛 are independent of 𝑉(𝐺 ∘ 𝐻)  

also |𝑉𝑗| = |𝑉𝑗+𝑛| = |𝑉𝑗+2𝑛| =
2𝑚

3
   it holds inequality 

||𝑉𝑖| − |𝑉𝑗|| ≤ 1  for every pair (𝑖, 𝑗)   𝜒=(𝐺 ∘ 𝐻) ≤ 3𝑛   

Since there exist cliques of order 3𝑛  in 𝑉(𝐺 ∘ 𝐻)   

𝜒(𝐺 ∘ 𝐻) ≥ 3𝑛   𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥ 3𝑛   𝜒=(𝐺 ∘

𝐻) ≥ 3𝑛 . Hence  𝜒=(𝐺 ∘ 𝐻) = 3𝑛  for 𝑚 = 3𝑘, 𝑘 ≥ 1 

and 𝑛 ≥ 2. 

Unfortunately  𝜒=(𝑇2(𝐶𝑚) ∘ 𝐾𝑛) is not an equitably 3𝑛-

colour for 𝑚 ≠ 3𝑘, 𝑘 ≥ 1 and 𝑛 ≥ 2. 

Case 4:  

Let 𝐺  be a semi-total point graph of cycle with 2𝑚 

vertices and 𝐻 be a complete bipartite with 2𝑝 vertices 

then the number of vertices and edges of the 

lexicographic product of two graphs 𝐺  and 𝐻  are 4𝑚𝑝 

and 𝑝2(14𝑚 − 13)  respectively  corresponding vertex 

set and edge set are given by 

𝑉(𝐺(𝐻)) = (⋃ ⋃(𝑧𝑖,𝑗)(𝑧𝑖,𝑗′)

𝑝−1

𝑗=0

𝑚−1

𝑖=0

)

∪ (⋃ ⋃(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑗′

∗ )

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) 

𝐸(𝐺 ∘ 𝐻)

= (⋃ ⋃ ⋃(𝑥𝑖,𝑗𝑘)

𝑝−1

𝑘=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘
∗ )(𝑥𝑖,𝑗𝑘

∗∗ ))

∪ (⋃ ⋃ ⋃ (𝑥𝑖,𝑗𝑘′)

𝑝−1

𝑘′=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗𝑘′
∗ ) (𝑥𝑖,𝑗𝑘′

∗∗ ))

∪ (⋃ ⋃ ⋃(𝑥𝑖,𝑗′𝑘)

𝑝−1

𝑘=0

𝑝−1

𝑗′=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗′𝑘
∗ ) (𝑥𝑖,𝑗′𝑘

∗∗ ))

∪ (⋃ ⋃ ⋃ (𝑥𝑖,𝑗′𝑘′)

𝑝−1

𝑘′=0

𝑝−1

𝑗′=0

𝑚−2

𝑖=0

(𝑥𝑖,𝑗′𝑘′
∗ ) (𝑥𝑖,𝑗′𝑘′

∗∗ ))

∪ (⋃ ⋃ ⋃ 𝑥𝑖,𝑗𝑙′

𝑝−1

𝑙′=0

𝑝−1

𝑗=0

𝑚−1

𝑖=0

) ∪ (⋃ ⋃ ⋃ 𝑥𝑖,𝑗𝑙′
∗

𝑝−1

𝑙′=0

𝑝−1

𝑗=0

𝑚−2

𝑖=0

) 

Where   𝑥𝑖,𝑗𝑘  is the edge (𝑧𝑖,𝑗)(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)  𝑥𝑖,𝑗𝑘′  is 

the edge (𝑧𝑖,𝑗)(𝑧𝑖+1,𝑘′)   𝑥𝑖,𝑗′𝑘  is the edge 

(𝑧𝑖,𝑗′)(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)   𝑥𝑖,𝑗′𝑘′   is the edge 

(𝑧𝑖,𝑗′)(𝑧𝑖+1,𝑘′)  

 𝑥𝑖,𝑗𝑘
∗   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑘

∗ )   𝑥𝑖,𝑗𝑘′
∗   is the edge 

(𝑧𝑖,𝑗)(𝑧𝑖,𝑘′
∗ )  𝑥𝑖,𝑗′𝑘

∗  is the edge (𝑧𝑖,𝑗′)(𝑧𝑖,𝑘
∗ )    𝑥𝑖,𝑗′𝑘′

∗  is the 

edge (𝑧𝑖,𝑗′)(𝑧𝑖,𝑘′
∗ )  

𝑥𝑖,𝑗𝑘
∗∗  is the edge (𝑧𝑖,𝑗

∗ )(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)  𝑥𝑖,𝑗𝑘′
∗∗  is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖+1,𝑘′)  𝑥𝑖,𝑗′𝑘

∗∗  is the edge (𝑧𝑖,𝑗′
∗ )(𝑧(𝑖+1)(𝑚𝑜𝑑 𝑚),𝑘)  

𝑥𝑖,𝑗′𝑘′
∗∗   is the edge (𝑧𝑖,𝑗′

∗ )(𝑧𝑖+1,𝑘′)   ∀ 0 ≤ 𝑘 ≤ 𝑝 − 1  & 

0 ≤ 𝑘′ ≤ 𝑝 − 1. 

Also 𝑥𝑖,𝑗𝑙′   is the edge (𝑧𝑖,𝑗)(𝑧𝑖,𝑙′)  and 𝑥𝑖,𝑗𝑙′
∗   is the edge 

(𝑧𝑖,𝑗
∗ )(𝑧𝑖,𝑙′

∗ )  ∀ 0 ≤ 𝑙′ ≤ 𝑝 − 1. 

If 𝑝 ≥ 1  then partition the vertex set of 𝑉 as below     

𝑉0 = {𝑧𝑖≡03,𝑗 , 𝑧𝑖≡13,𝑗
∗ } 

𝑉1 = {𝑧𝑖≡13,𝑗  , 𝑧𝑖≡23,𝑗
∗ } 

𝑉2 = {𝑧𝑖≡23,𝑗 , 𝑧𝑖≡03,𝑗
∗ } 

𝑉3 = {𝑧𝑖≡03,𝑗′  , 𝑧𝑖≡13,𝑗′
∗ } 

𝑉4 = {𝑧𝑖≡13,𝑗′  , 𝑧𝑖≡23,𝑗′
∗ } 

and          𝑉5 = {𝑧𝑖≡23,𝑗′  , 𝑧𝑖≡03,𝑗′
∗ }. 

 ∀  0 ≤ 𝑖 ≤ 𝑚 − 1  0 ≤ 𝑗 ≤ 𝑝 − 1 & 0 ≤ 𝑗′ ≤ 𝑝 − 1 

Clearly 𝑉0, 𝑉1, 𝑉2, 𝑉3, 𝑉4  and 𝑉5  are independent of 

𝑉(𝐺 ∘ 𝐻)   also |𝑉0| = |𝑉1| = |𝑉2| = |𝑉3| = |𝑉4| = |𝑉5| 

= 
2𝑚𝑝

3
  it holds inequality ||𝑉𝑖| − |𝑉𝑗|| ≤ 1 for every pair 

(𝑖, 𝑗). 𝜒=(𝐺 ∘ 𝐻) ≤ 6  Since there exist cliques of order 
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6 in 𝑉(𝐺 ∘ 𝐻)  𝜒(𝐺 ∘ 𝐻) ≥ 6  𝜒=(𝐺 ∘ 𝐻) ≥ 𝜒(𝐺 ∘ 𝐻) ≥

6  𝜒=(𝐺 ∘ 𝐻) ≥ 6. Hence  𝜒=(𝐺 ∘ 𝐻) = 6. 

Remark 1: [13] This paper proved that the equitable 

colouring of a lexicographic product of semi total point 

of path graph with path  cycle  complete and complete 

bipartite graphs are commutative  also the equitable 

colouring of a lexicographic product of semi total point 

of cycle graph with path  cycle  complete and complete 

bipartite graphs are commutative that is   𝜒=(𝐺 ∘ 𝐻) =

𝜒=( 𝐻 ∘ 𝐺). 

Conclusion 

This paper  the Equitable colouring of lexicographic 

product of 𝐺 and 𝐻 has been showed. In a similar way  

Equitable colouring of the lexicographic product of 

other graphs can be verified. The proof of the theorems 

are recognized by different cases  each cases being 

discussed elaborately. 
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