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Abstract 

Early-stage leaf diseases in plants can significantly impact crop yield and quality. If left untreated, these diseases 

can spread rapidly. This will lead to widespread damage and potential crop loss. Early detection allows for 

targeted disease control measures to minimise negative effects on plant health and optimise crop production. 

This study examines the effectiveness of various object detection methods for identifying early-stage leaf 

diseases, with a particular focus on pear leaf disease. Advanced machine learning algorithms, including R-CNN 

detectors and YOLO models, were employed to analyse plant leaf images. The YOLOv8s model emerged as the 

most effective with an mAP of 88.3. This may be attributed to its robust architecture and its ability to extract 

features effectively. The cascade-rcnn r50 fpn model demonstrated strong performance, due to the effectiveness 

of its multi-stage region proposal network and feature pyramid networks. YOLOv8s and cascade-rcnn r50 fpn 

showed promise in detecting mild disease symptoms, but further research is needed to cover a wider range of 

plant diseases and make them accessible for farmers to use. 
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1.INTRODUCTION 

The detection of leaf diseases holds significant 

importance in the field of agriculture. The early 

detection of diseases in plants may play a crucial role 

in mitigating the spread of such diseases and reducing 

the extent of crop losses. Early diagnosis is key in 

agriculture, where disease control is essential for crop 

health and production. Early intervention plays a 

crucial role in the successful control of diseases, since 

it enables prompt and focused actions that have the 

potential to prevent significant crop loss [1]. 

There are several methods for detecting leaf diseases 

in plants. Visual inspection is the most common 

method, where farmers observe the plants for any 

signs of disease. However, this method can be time-

consuming and not always reliable [2]. 

Another method is the use of digital imaging 

technology. With the help of machine learning 

algorithms and computer vision, images of the plant 

leaves can be analysed to detect any signs of disease. 

This method is more efficient and accurate compared 

to visual inspection [2]. 

The majority of existing studies in plant disease 

detection using deep learning are designed around 

classification tasks. 

This has led to the creation of datasets that are 

primarily suited for classification algorithms. As a 

result, there’s a notable shortage of datasets geared 

towards object detection methods in this field. 

Consequently, there exists a significant lack of 

datasets created specifically for use with to object 

detection methods within this domain. This limitation 

not only limits the use of advanced object detection 

techniques, but it also establishes the context for the 

current focus of our research. 

Empowering farmers involves giving them intelligent, 

costeffective, and user-friendly machine learning 

tools. By using these technologies, agricultural 

practitioners have the capability to identify and 

diagnose plant diseases in their early stages via the 

use of straightforward devices such as cellphone 

images. The primary objective of this study is to 

evaluate the efficacy of object detection techniques , 

with a specific focus on their use in the early 

identification of leaf diseases. This focus is essential in 

enhancing agricultural productivity and sustainability 

across diverse farming practices. 
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To the best of our knowledge, this is the first study to 

extensively analyse early-stage leaf disease 

identification in pears using advanced object 

detection methods. Our research focuses on 

evaluating various aspects of multiple deep object 

detection models. The main contributions of our work 

are outlined as follows: 

• A comprehensive review of leading deep 

learning architectures specifically adapted for plant 

disease detection and identification. 

• A detailed evaluation of the performance of 

YOLOv8s, Cascade-rcnn r50 fpn, and other advanced 

models in identifying early stages of pear leaf 

diseases, considering several performance metrics. 

The rest of the paper is organised as follows: Section 

2 provides a review of relevant literature; Section 3 

outlines the materials and methods used in this study; 

Section 4 provides the results obtained from the 

experimental study and analyses the main finding; 

Section 5 outlines the conclusions drawn from the 

study and suggests potential paths for further 

research. 

2. RELATED WORK 

In recent years, there has been significant interest in 

applying object detection methods in agriculture, 

particularly with the emergence of deep learning 

techniques. This section aims to review the literature 

on the use of deep learning object detection 

methodologies for identifying diseases in plant leaves. 

Traditional approaches for disease detection in 

agriculture have typically relied on visual inspection 

by experts, laboratory-based testing, and statistical 

models [3]. While effective to some extent, these 

methods often suffer from being time-consuming, 

prone to subjective errors, and requiring specialised 

expertise [4], [2]. 

A. Classical Methods for Disease Detection in Plants 

Classical methods have limitations that have led to the 

development of machine learning-based solutions. 

Previous studies have utilised algorithms such as 

Decision Trees [5], [6], K-Nearest Neighbours (K-NN) 

[7], [6], and Support Vector Machines (SVM) [7], [8], 

[9], [10], which rely mainly on predefined features. 

While these techniques hold promise, they face 

challenges with scalability and struggle to handle 

complex visual patterns. As Tsaftaris et al. [11] noted, 

specialised domain knowledge is crucial for expertly 

designing and extracting features, a process 

commonly referred to as feature engineering. 

Furthermore, translating this expertise into image 

analysis procedures and filters, such as edge 

detectors, requires a high level of skill in image 

processing. 

B. Deep Classification Methods for Disease Detection 

in Plants 

With the evolution of computational capabilities, 

deep learning has emerged as a powerful tool for 

various applications in agriculture, from image 

recognition to weather prediction [12]. Deep learning 

uses models with many layers to learn data 

representations at different levels of complexity [13]. 

These techniques have significantly advanced various 

fields, such as speech recognition, visual object 

recognition, object detection, drug discovery, and 

genomics [13]. The backpropagation algorithm is 

utilised to teach machines how to adjust their internal 

parameters to compute the representation in each 

layer. Deep convolutional networks deal with images, 

video, speech, and audio, while recurrent networks 

analyse sequential data like text and speech [13]. 

Plants affected by diseases commonly display distinct 

signs or abnormalities on their leaves, stems, flowers, 

or fruits. Each disease or pest issue tends to manifest 

a unique visual pattern that can serve as a diagnostic 

indicator. Leaves are often the main focus for 

detecting plant diseases, as they are usually the first 

to show symptoms [14]. Several studies have focused 

on applying deep learning architectures for the 

specific purpose of plant disease detection [15]. These 

works often provide a comparative analysis of 

different architectures and evaluate them based on 

metrics such as accuracy, speed, and complexity. 

Mohanty et al [16] trained a deep neural network 

using a dataset of 54,306 plant leaf images that can 

identify 14 crop species and 26 diseases with an 

accuracy of 99.35%. Their method shows that it is 

feasible to use deep learning models to diagnose crop 

diseases on a global scale using smartphones. Lu et al 

[14] trained CNN-based model on 500 real-world rice 

plant images, achieved a 95.48% accuracy in 

identifying 10 common diseases, which outperform 

traditional methods. A deep convolutional neural 

network (DCNN) was used to identify four types of 

cucumber diseases from field images with an accuracy 
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rate of 93.4%. Data augmentation was applied to 

prevent overfitting on the dataset of 14,208 symptom 

images. The DCNN outperformed traditional 

classifiers and proved its efficacy for real-world 

applications as claimed in [17]. Additionally, extensive 

research efforts have been undertaken to diagnose 

diseases affecting a diverse range of plant leaves, such 

as tomato [18], [19], apple [20], [21], rice [22], [23]. 

C. Deep Object detection Methods for Disease 

Detection in Plants 

After examining the role of deep learning classifiers 

for plant disease detection in the previous section, the 

focus will now shift to explore deep object detection 

techniques. These methods offer the added 

advantage of locating as well as identifying diseases 

on plant leaves. Object detection, as a specialised area 

within deep learning, has also seen numerous 

innovations. Architectures like YOLO (You Only Look 

Once)[24], Faster R-CNN [25], and SSD (Single Shot 

MultiBox Detector) [26] have been widely used in 

various domains particularly in agriculture. 

Xie et al.[27] propose a real-time grape leaf disease 

detector, Faster DR-IACNN, which employs improved 

deep convolutional neural networks and integrates 

the Inceptionv1 module, Inception-ResNet-v2 

module, and SE-blocks for enhanced feature 

extraction. Experimental results indicate the model 

achieves an 81.1% mean average precision (mAP) on 

the Grape Leaf Disease Dataset (GLDD) and operates 

at a detection speed of 15.01 FPS, which demonstrate 

its feasibility for real-time diagnosis of grape leaf 

diseases. Fuentes et al [28] explored the efficacy of 

various deep learning meta-architectures, such as 

Faster R-CNN, R-FCN, and SSD, combined with deep 

feature extractors like VGG net and ResNet, for 

detecting diseases and pests in tomato plants.  

Utilising an extensive dataset of approximately 5,000 

images, the system achieves a mAP of 85.98%.  

It effectively identified nine different conditions and 

showing robustness in complex plant environments. 

Tian et al [29] leverage DenseNet to optimize YOLO-

V3’s low-resolution feature layers. Their model 

outperforms Faster R-CNN with VGG16 network and 

other benchmarks in real-time detection of 

anthracnose lesions on apple surfaces. 

Utilising advanced optimisation techniques, Yae et al. 

[30] enhances the YOLOv5 model to accurately and 

swiftly detect defects in kiwifruits, achieving a 

significant 94.7% mAP. Similarly, Mathew et al. [31] 

employs YOLOv5 for real-time detection of bacterial 

spot disease in bell pepper plants, thereby 

empowering farmers to take early preventive action 

based on mobile phone-captured images. 

D. Limitations and Conclusion 

Nonetheless, limitations in existing works remain, 

Many of the studies in the field of plant disease 

detection through deep learning have predominantly 

framed the problem as a classification task. This 

orientation has led to the generation of datasets that 

are largely optimised for classification algorithms, 

including the labelling and structuring of the data in 

ways that facilitate classification-based approaches. 

As a result, the landscape of available datasets is 

somewhat skewed, with fewer datasets engineered to 

tackle the challenge as an object detection task. This 

presents a limitation in the current body of work and 

points to the need for datasets that are structured to 

allow object detection methodologies. The scarcity of 

such datasets designed for object detection 

constrains the broader application and assessment of 

these more advanced techniques. 

In summary, while extensive research has been 

conducted in the realm of deep learning for object 

detection in agriculture, additional avenues for 

research remain open. The current study aims to 

contribute to this area by employing object detection 

as a viable method for diagnosing plant diseases using 

Pear Leaf disease as a case study. The research places 

special emphasis on analysing the results based on 

the severity of the disease. 

3. MATERIALS AND METHODS 

A. DiaMOS Plant Dataset 

For this study, we utilized the recently introduced 

DiaMOS Plant Dataset [32], which comprises 3,006 

leaf images collected from three different trees within 

the same plot in Italy. The images were captured using 

a smartphone (Honor 6×) and a DSLR camera (Canon 

EOS 60D) at a resolution of 2976×3968, as well as two 

lateral cameras with a resolution of 3456 × 5184. 
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Figure 1 displays four example images from the 

dataset representing four classes from left to right: 

healthy leaf, slug damage, leaf spot, and leaf curl. 

The leaf images were captured from the upper side 

(adaxial) in real-life settings under various lighting, 

angle, background, and noise conditions throughout 

the entire growing season. This approach allowed the 

researchers to obtain realistic leaf images and track 

the evolution of visual symptoms 

[32]. 

 

Fig. 1. Example camera images from the DiaMOS Plant 

Dataset, which contains four classes from left to right: 

healthy, slug, spot, and curl. 

The dataset at hand presents a 2D object detection 

task with a multi-class problem. The task involves 

identifying four different types of leaf states: healthy 

leaf, slug damage, leaf spot, and leaf curl. Each leaf is 

assigned a severity score ranging from 0 to 4, with 0 

indicating a healthy state and 4 representing a high 

spread of disease. This is especially important as it 

allows for a more precise and accurate assessment of 

the severity of the leaf disease. 

The severity score can also help identify the level of 

treatment required for the leaf. For instance, if the 

severity score is low, treatment may not be necessary. 

However, if the score is high, immediate treatment 

may be required to prevent the further spread of the 

disease. 

 

Fig. 2.DiaMOS Plant Dataset Label Distribution: 

Figure (2-a) on the left illustrates a statistical overview 

of the label distribution across the four classes. This 

information can be used to better understand the 

frequency of each type of leaf state in the dataset. It 

can further aid in the development of more accurate 

and efficient models for identifying and treating leaf 

diseases. 

The dataset exhibits a highly imbalanced distribution 

of objects. The number of Healthy and Curl leaves is 

significantly lower than the number of Spot and Slug 

leaves. For this reason, we will focus only on Spot and 

Slug leaves in this study and exclude Healthy and Curl 

leaves. It is worth noting that no severity score was 

given to Curl leaves, which is another reason we will 

drop this class from our analysis. 

In the same figure (2-b) on the right, we can observe 

the distribution of severity scores for both Spot and 

Slug leaves. Spot leaves mostly exhibit very early signs 

of the disease. Most of them score severity 1 or 2. 

Only 13% score severity 3, and roughly 6% score 

severity 4. On the other hand, Slug leaves have only 

16% scoring Severity 1, while the majority belong to 

Severity 2, with a percentage of 40. 

The 2D bounding box labels in this dataset are 

tightfitting. They cover the centre leaf in the image. 

The labels were formatted in YOLO format. We 

converted the label to conform with the COCO style 

used in two-stage object detectors for models with a 

two-stage detection approach. 

B. Deep Learning Object Detectors 

Object detectors are usually categorised into two 

primary types: one-stage detectors and two-stage 
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detectors. Two-stage detection frameworks begin by 

generating candidate regions of interest, which are 

then classified in a second stage. The most popular 

two-stage detector is the region-based convolutional 

neural network (R-CNN) [33], 

 which mainly uses selective search [34] to generate 

proposals and then uses CNN to extract features from 

them. Subsequently, Fast-RCNN [35] facilitates the 

extraction of features from different proposals 

through a special pooling layer to reduce 

computations from a single map. Later, to improve 

performance, Faster R-CNN [25] introduced a unified 

end-to-end detector that utilises a region proposal 

network (RPN) for both feature extraction and 

proposal generation. FPN (Feature Pyramid Network) 

[36] merges features extracted at different resolutions 

and provides scale-specific anchor boxes in object 

detection tasks. Cascade RCNN [37] is a recent work in 

the field of object detection that aims to improve the 

quality of proposals for the COCO AP (Average 

Precision) metrics, which are used to evaluate the 

object detection models performance. In this work, 

we have utilised three variations of R-CNN detectors 

described in Table 1. 

TABLE 1. THE FASTER R-CNN VARIATIONS UTILISED IN 

THE WORK, INCLUDING THE BACKBONE AND FEATURE 

EXTRACTION USED 

Model Name Pre-trained 

Backbone 

Detection Head 

faster-rcnn r50 c4 ResNet-50 Conv4 

faster rcnn r50 fpn ResNet-50 FPN 

cascade-rcnn r50 

fpn 

ResNet-50 FPN 

On the other hand, one-stage detectors predict both 

the object’s position and its class in one step. It 

introduces a novel object detection approach named 

YOLO (You Only Look Once) [24]. Unlike previous 

methods that reuse classifiers for detection, YOLO 

models object detection as a regression issue that 

predicts bounding boxes and class probabilities from 

whole images in just one step. This enables the 

optimisation of the entire detection pipeline end-to-

end for detection performance, as it is a single 

network [24]. YOLO is known for being very fast due 

to its approach of modelling object detection as a 

regression problem, which eliminates the need for a 

complex pipeline. Instead, the neural network can be 

run on a new image during testing to predict 

detection. 

In our work, we have selected two variations of the 

YOLO family: YOLOv5s [38] and YOLOv8s [39]. The two 

variations come in five sizes: nano (n), small (s), 

medium (m), large (l), and extra large (x). The 

convolution layers’ width and depth are adjusted to 

meet certain application and hardware needs. We 

selected the small size due to the dataset’s small size 

and the model’s significantly smaller weight file size. 

This makes it suitable for embedded devices and real-

time detection, such as on mobile phones, which is 

our intended goal for this work. Additionally, YOLOv5s 

have high detection accuracy and can achieve a 

detection speed of up to 140 frames. 

The overall design of YOLOv5 Utilising a modified 

CSPDarknet53 backbone with a stem, the network 

design has convolutional layers for extracting image 

features and a spatial pyramid pooling fast (SPPF) 

layer for expediting calculations by pooling 

information into a fixed-size map. SiLU activation and 

batch normalisation are included into every 

convolution. The head of the network is akin to 

YOLOv3 , whereas the neck employs SPPF and a 

modified CSP-PAN [40] [41]. 

YOLOv8 replaces the CSPLayer from YOLOv5 with a C2f 

module and uses a spatial pyramid pooling fast (SPPF) 

layer to pool features into a fixed-size map for faster 

computation. As in YOLOv5, each convolution has 

batch normalisation and SiLU activation. An anchor-

free approach is employed, where the prediction head 

independently performs objectness scoring, 

classification, and bounding box regression [41]. 

As previously mentioned, mainstream object 

detectors can be divided into two-stage and one-stage 

detectors. However, a new family of object detectors 

based on transformer architecture has been 

introduced. 

Carion et al. [42] proposed DETR, a new object 

detection method that uses a transformer encoder-

decoder architecture and set-based global loss to 

predict object sets directly without hand-designed 

components. DETR is comparable to other detectors 

in terms of accuracy and runtime performance and 

can also be applied to panoptic segmentation. 
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Liu et al. [43] proposed a new approach to enhance 

the performance of the DETR detection model by 

using box coordinates as queries in Transformer 

decoders. It led in better results on the MS-COCO 

benchmark compared to other similar models. By 

directly learning anchors as queries, the proposed 

DAB-DETR (Dynamic Anchor Box DETR) offers a novel 

query formulation that makes it feasible to modify the 

positional cross-attention map in transformer 

decoders and execute layer-by-layer dynamic anchor 

changes by using anchor size.  

Using a single ResNet-50 model as the backbone for 

training 50 epochs, DAB-DETR scored the highest 

performance among DETR-like architectures on the 

COCO object detection benchmark, with an AP of 

45.7%. 

Previous works [44], [45], [46], [47] aimed to enhance 

DETR through various methods, such as associating 

each query with a specific location or introducing 

Gaussian priors or deformable sampling points. 

However, unlike DAB-DETR, they do not use anchors 

as queries. In this work, we utilised DAB-DETR 

(Dynamic Anchor Box DETR) [43]. 

C. Experimental Setup 

As mentioned previously, the study will focus on Spot 

and Slug leaves, as there are significantly fewer 

Healthy and Curl leaves. To maintain the percentage 

of samples for each class, the dataset was split into 

training, validation, and testing in a ratio of 7:2:1, 

respectively, using random stratified sampling 

following the same approach described in [32]. 

Additionally, in order to conduct an analysis based on 

the severity of the disease, we divided the test split 

into four datasets: test  severity1, test  severity2, 

test  severity3, and test severity4, each 

corresponding to a specific severity score. 

The Faster R-CNN variations and the DAB-DETR model 

experiments were conducted using the public 

repository MMDetection [48] as well as the official 

repositories of both YOLOv5s and YOLOv8s models 

[38], [39]. 

Using transfer learning can be a useful technique for 

training a large target network without overfitting, 

particularly when the target dataset is much smaller 

than the base dataset [49]. Transfer learning usually 

starts by training a base model and copying its first n 

layers to a new model. The rest of the new model is 

randomly initialized and trained for the target 

problem. Errors from the new task can be back-

propagated into the base (copied) features to fine-

tune them for the new task [49]. In order to improve 

the performance of the models, we utilised pre-

trained weights learned from the COCO task. These 

weights serve as an excellent starting point as they are 

already optimised for a similar task. We then fine-

tuned the models by training them on the modified 

DiaMOS Plant Dataset, which allowed the models to 

learn and adapt to the specific features and 

characteristics of pear diseases. 

Table 2 presents the optimisation, hyperparameters, 

and augmentation used for training the models, and 

most of the hyperparameters for all training 

experiments are in line with the choices outlined in 

the original papers of the models. 

4. RESULTS AND DISCUSSION 

In this section, we will perform a performance analysis 

of selected deep object detection models, detailed in 

Table 2. These models were evaluated across four 

distinct test datasets-test severity1, test severity2, 

test severity3, and test severity4—each of which 

corresponds to varying levels of disease severity. First, 

we introduce an overview of the evaluation metrics 

used in the analysis. Then, we present the overall 

performance results combined across all four test 

datasets for both diseases. Lastly, we evaluate the 

results of each test dataset. 

A. Evaluation Metrics 

Average Precision (AP) metric is used to evaluate 

object detection models performance. It captures 

whether the model balances precision and recall. 

Precision shows how many objects the model 

recognizes correctly. Recall shows how many actual 

objects the model detected. Thus, AP is calculated 

from the Precision-Recall curve where the area under 

the curve is measured. Therefore, it is an efficient way 

to capture the model’s ability to detect objects 

accurately across various confidence thresholds. The 

higher the AP score, the more effective the object 

detection model. This indicates fewer false positives 

and false negatives. The following equation describes 

AP mathematically: 

 AP  (1) 
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where P(R) represents precision as a function of recall. 

If there are different object classes, the Mean Average 

Precision (mAP) is computed by taking the average of 

AP score across all classes: 

 mAP  (2) 

where n is the total number of classes. 

B. Overall Results 

Table 3 shows the performance comparison of six 

object detectors across all test datasets for disease 

detection results. In evaluating the overall Mean 

Average Precision (mAP), both cascade-rcnn r50 fpn 

and YOLOv8s outperform the others, achieving mAPs 

of 88.2 and 88.3, respectively. YOLOv5s has an mAP of 

85.5, with dab-detr r50 slightly behind at 85. On the 

other hand, faster rcnn r50 fpn and faster-rcnn r50 

c4 have resulted in the lowest mAPs of 83.8 and 83.0, 

respectively. 

When breaking down the Average Precision (AP) for 

individual diseases, YOLOv8s demonstrates the best 

performance in the identification of leaves with pear 

slug with an AP of 89.6. Subsequently, Cascade-rcnn 

scored an AP of 88.6. The rest of the models 

demonstrate similar AP values, averaged around 86.0, 

with the exception of faster-rcnn r50 c4, which trails 

with an AP of 84.6. Conversely, in detecting leaf spot 

leaves, cascade-rcnn leads with an AP of 87.7. 

YOLOv8s closely trails with an AP of 86.9. Notably, 

faster  rcnn r50 fpn struggles in this detection task, 

with the lowest AP at 80.3. The remaining models 

tend to cluster around an AP of approximately 84.0 

when detecting this disease. 

Figure 3 illustrates the Confusion Matrix of all models 

across all test datasets for disease detection results. It 

is evident that all models did very well regarding 

detecting leaves with pear slug disease. However, 

most of the models struggled when detecting leaves 

with leaf  spot except for YOLOv8s, which achieved 

the highest TP rate. It is worth noting that all models 

succeeded in detecting the majority of bounding 

boxes. The model dab-detr r50 is the only one that has 

a high rate of not detecting leaves with leaf spot 

disease, with a false negative rate of 18%. Moreover, 

the models have a high rate of detecting non-existent 

affected leaves. 

Figure 3 illustrates the confusion matrix for all models 

across all test datasets. It highlight the disease 

detection results. It is evident that each model 

performed well in detecting leaves with pear slug 

disease. However, most models faced challenges in 

identifying leaves with leaf spot, with YOLOv8s 

standing out as it achieved the highest true positive 

(TP) rate. It is worth noting that all models were 

successful in detecting the majority of bounding 

boxes. The model dab-detr r50, in particular, 

struggled, being the only one with a high false 

negative (FN) rate of 18% for leaves with leaf spot 

disease. Furthermore, the models tend to report a 

high rate of false positives, incorrectly signalling the 

presence of affected leaves when there are none. 

 

Fig. 3. The Confusion Matrix of six object detectors 

across all test datasets for disease detection results 

C. Severity Analysis 

In this section, we assess the ability of each model 
to detect varying disease severity levels. Table 4  
presents the performance metrics for identifying 
diseases in their early stages for test  severity1, 
characterised by mild symptoms. Notably, YOLOv8s, 
with an mAP of 82.4, and cascade-rcnnr50 fpn, with 
an mAP of 82.1, performed well in detecting leaves 
with mild disease symptoms. YOLOv5s and dab-
detrr50 were close with a mAP of 81.2 and 80.5, 
respectively. On the lower spectrum, faster rcnn r50 
fpn and faster-rcnn r50 c4 scored an mAP of 72.6. 
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Examining the results for each disease in test 

severity1, we can see that the models performed 

better with detecting pear slug disease, with an 

average of AP 83.3 compared to detecting leaf spot 

disease with an average AP of 73.3. 

Regarding pear slug disease, cascade-rcnn r50 fpn 

outperforms the others with an AP of 86. Interestingly, 

dab-detr  r50 was the second-best model in 

TABLE 2.USED OPTIMISATION, HYPERPARAMETERS, AND AUGMENTATION FOR TRAINING THE MODELS 

Model Optimisation LR Epoch Mini Batch Augmentation 

faster-rcnn r50 c4 SGD 0.0025 12 16 RandomFlip 

faster rcnn r50 fpn SGD 0.02 12 16 RandomFlip 

cascade-rcnn r50 
fpn 

SGD 0.0025 12 16 RandomFlip 

dab-detr r50 AdamW [50] 0.0001 20 50 
Random Flip 
Random Crop 
Random Scale 

YOLOv5s SGD 0.01 20 32 

Mosaic 
Random affine 
HSV 
Albumentations 
[51] 

YOLOv8s SGD 0.01 20 32 

Mosaic 
Random affine 
HSV 
Albumentations 
[51] 

 
TABLE 3. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS ACROSS ALL TEST DATASETS FOR 

DISEASE DETECTION RESULTS 

Model  pear slug AP leaf spot AP mAP 

faster rcnn r50 fpn 0.85 0.83 0.84 

faster-rcnn r50 c4 0.86 0.80 0.83 

cascade-rcnn r50 
fpn 

0.89 0.88 0.882 

dab-detr r50 0.86 0.84 0.85 

YOLOv5s 0.86 0.84 0.85 

YOLOv8s 0.90 0.87 0.883 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4.PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST SEVERITY1 

Model pear slug AP leaf spot AP mAP 

faster rcnn r50 fpn 0.81 0.65 0.73 

faster-rcnn r50 c4 0.83 0.63 0.73 

cascade-rcnn r50 fpn 0.86 0.78 0.82 

dab-detr r50 0.85 0.76 0.81 

YOLOv5s 0.84 0.79 0.81 

YOLOv8s 0.85 0.80 0.82 
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identifying leaves with pear slug of this severity with 

an AP of 85.2, competing with YOLOv8s, which scored 

85.1. On the other hand, faster rcnn r50 fpn scored 

the lowest AP of 80.5. 

In terms of leaf spot disease, YOLOv8s scored the 

highest AP of 79.7, which is comparatively close to 

YOLOv5s and cascade-rcnn r50 fpn with an AP of 78.8 

and 78.3, respectively. While dab-detr r50 

performance deteriorated when detecting this 

disease, with a score of 75.8. Faster rcnn r50 fpn and 

faster-rcnn r50 c4 scored the lowest AP with an 

average of 

63.6. 

Figure 4 shows the confusion Matrix of six object 

detectors for disease detection results on test 

severity1. It is clear that the models are more accurate 

when identifying leaves with pear slug disease  with 

an average of 77.33% for TP rather than leaf spot 

which averaged a TP of 68.33%. 

 

Fig. 4. The Confusion Matrix of six object detectors 

for disease detection results on test severity1 

The performance metrics for identifying diseases in 

the test severity2 dataset are shown in Table 5. First, 

with a mAP of 87.1, Cascade-rcnn r50 fpn had the 

highest mAP, closely followed by YOLOv5 (86.7). The 

other models have mAPs centered around the value 

of 83.43. When assessing the results for each disease 

within test severity2, for the pear slug disease, both 

YOLOv8 and Cascade-rcnn r50 fpn achieved notable 

APs of 92.2 and 91.9, respectively. Conversely, the 

remaining models resulted in an average AP of 89.2. 

In the case of the leaf spot disease, cascade-rcnn r50 

fpn scored the highest AP score at 82.2, while the 

other models had an average AP of 80. Notably, 

YOLOv5s and faster-rcnn r50 c4 performed last with 

the lowest APs, recording 76.3 and 76.1, respectively. 

Figure 5 shows the Confusion Matrix of six object 

detectors for disease detection results on test 

severity2. Similarly to test severity1, the models were 

inclined to identify the pear slug class with greater 

accuracy than the leaf spot class. The average True 

Positive rate for pear slug was higher at 89.0% 

compared to leaf spot’s 72.0%. Both classes generally 

exhibited low False Negative rates. However, the leaf 

spot class had a notably higher average False Positive 

rate than the pear slug class. 

 

Fig. 5. The Confusion Matrix of six object detectors for 

disease detection results on test severity2 

Table 6 displays the performance metrics for disease 

identification using the test  severity3 dataset. 

YOLOv8s outperformed all other models, scoring an 

mAP of 95.0. Following this, cascade-rcnn r50 fpn 

registered an mAP of 93.5, and YOLOv5s recorded 

92.7. Examining the results for individual diseases, 

YOLOv8s achieved the highest AP for pear slug at 94.4. 

In contrast, faster-rcnn r50 c4 recorded the lowest AP 

for this disease, of a score of 88.6.  

For the leaf spot disease, YOLOv8s again led with an 

AP of 95.6, while cascadercnn r50 fpn closely followed 

with an AP of 95.1. The lowest AP for leaf spot was 

88.9, as scored by faster-rcnn r50 c4. 

Figure 6 shows the confusion Matrix of six object 

detectors for disease detection results on test 

severity3.In the evaluation of the prediction matrices 

for the given models, it was observed that the pear 

slug class consistently had a TP rate of approximately 

98%. For leaf spot, TP rates varied, with a peak of 

about 77%. Both classes showed low FN rates. The leaf 

spot class had a higher FP rate compared to pear slug 

in some instances. 
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Fig. 6. The Confusion Matrix of six object detectors for      

disease detection results on test severity3 

Table 7 displays the performance metrics for disease 

identification in the test severity4 dataset. YOLOv5s 

and faster-rcnn r50 c4 achieved the highest mAP 

values, recording 90.0 and 89.0, respectively. In 

contrast, dab-detr r50 resulted in the lowest mAP at 

85.3. With regard to the pear slug disease, faster-rcnn 

r50 c4 led with an AP of 86.6. Surprisingly, YOLOv8s 

showed the lowest AP at 79.8, while the majority of 

models achieved an AP close to 82.73. For the leaf 

spot disease, there was a noticeable improvement 

across all models. YOLOv5s and YOLOv8s achieved 

closely matched APs of 95.3 and 94.7, respectively. 

Cascade-rcnn r50 fpn achieved an AP of 93.7, whereas 

dab-detr  r50 underperform with the lowest AP of 

87.9. 

 Figure 7 shows the Confusion Matrix of six object 

detectors for disease detection results on test 

severity4. It is evident that the pearslug class has an 

average TP rate of 97.0%, whereas the leafspot class 

holds a rate of 76%. Both classes maintain minimal FN 

rates. Nevertheless, the leaf  spot class shows a 

higher FP rate compared to the pear slug class.  

D. Discussion 

The findings indicate a disparity in the performance of 

the models when detecting and classifying between 

the pear slug and leaf spot classes for the test 

severity1 and test severity2. For the pear slug disease 

AP, there isn’t a consistent pattern across the severity 

levels for all models. Some show a slight decline from 

Severity 1 to Severity 4, while others maintain 

approximately the same performance levels. In 

contrast, the leaf  spot AP disease generally 

demonstrates improved performance as the severity 

increases. Specifically, the results for Severity 3 and 

Severity 4 tend to surpass those of Severity 1 and 

Severity 2. This is also reflected in the mAP metric, 

where it appears higher for Severities 3 and 4, which 

shows that the models are more effective at 

identifying cases of higher severity.  

These findings indicate that the models have a greater 

ability to accurately detect and classify cases of leaf 

spot disease as their severity increases. It’s evident 

that many models frequently achieve peak 

performance at Severity 3. This could mean that the 

traits or characteristics that are unique to Severity 3 

cases are more clear, making them easier for the 

models to spot than traits or characteristics that are 

unique to other severity levels.The best overall 

performance was achieved by YOLOv8s, which prove 

that its architecture and feature extraction 

capabilities are appropriate for this task. This might be 

due to the advances made in comparison to prior 

iterations of YOLO.  

 

 

 

 

 

Fig. 7. The Confusion Matrix of six object detectors for disease detection 
results on test severity4 
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TABLE 5. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST SEVERITY2 

Model pear slug AP leaf spot AP mAP 

faster rcnn r50 fpn 0.90 0.80 0.85 

faster-rcnn r50 c4 0.89 0.76 0.83 

cascade-rcnn r50 fpn 0.92 0.82 0.87 

dab-detr r50 0.89 0.78 0.84 

YOLOv5s 0.89 0.76 0.83 

YOLOv8s 0.92 0.81 0.87 

 

TABLE 6. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST SEVERITY3 

Model pear slug AP leaf spot AP mAP 

faster rcnn r50 fpn 0.89 0.93 0.91 

faster-rcnn r50 c4 0.89 0.89 0.89 

cascade-rcnn r50 fpn 0.92 0.95 0.93 

dab-detr r50 0.87 0.91 0.89 

YOLOv5s 0.90 0.95 0.93 

YOLOv8s 0.94 0.96 0.95 

TABLE 7. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST SEVERITY4 

Model pear slug AP leaf spot AP mAP 

faster rcnn r50 fpn 0.80 0.95 0.87 

faster-rcnn r50 c4 0.83 0.94 0.88 

cascade-rcnn r50 fpn 0.85 0.95 0.90 

dab-detr r50 0.81 0.92 0.86 

YOLOv5s 0.83 0.88 0.85 

YOLOv8s 0.87 0.91 0.89 
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Fig. 8. YOLOv8s prediction visualization results on 

randomly selected images from each severity dataset 

in all groups. The first image contains a leaf with pear 

slug disease, while the second image contains a leaf 

with leaf spot disease. The group a represents two 

example images from test severity1. The group b 

represents two example images from test severity2. 

The group c represents two example images from test 

severity3. The group d represents two example 

images from test severity4. 

The cascade rcnn r50 fpn model demonstrates 

competitive performance, which suggest that its 

strategy of using a multi-stage region proposal 

network and utilising feature pyramid networks 

(FPNs) for extracting features at various scales is 

additionally effective for this particular task. However, 

it is worth noting that YOLOv8s outperforms cascade-

rcnn r50 fpn. 

Figure 8 illustrates the YOLOv8s prediction 

visualisation results on randomly selected images 

from each severity dataset in all groups. The first 

image contains a leaf with pear slug disease, while the 

second image contain a leaf with leaf spot disease. 

The group a represents two example images from test 

severity1. The group b represents two example 

images from test severity2. The group c represents 

two example images from test severity3. The group d 

represents two example images from test severity4. It 

is clear the model was proficient at locating the centre 

disease with high confidence in predicting the correct 

class in most of the cases. The only case where one of 

the images is mistakenly classified as a different 

disease is in group c for the leaf with leaf spot disease, 

and the model has been predicted as pear slug. This 

confusion may be due to the fact that the symptoms 

on the leaves of the disease are similar to those 

caused by pear slug. 

Because the dataset was annotated to detect the 

centre leaf, the models are inclined to detect leaves in 

the background, which leads to a high rate of false 

positives.  

Adjusting the dataset annotations to include side 

leaves could potentially improve the accuracy of the 

models in detecting them. 

5. CONCLUSION 

Early-stage leaf diseases in plants can have significant 

impacts on crop yield and quality. If left undetected 

and untreated, these diseases can spread rapidly, 

which led to widespread damage and potential crop 

loss. Early detection allows for timely intervention and 

targeted disease control measures to minimis the 

negative effects on plant health and optimising crop 

production. Additionally, early-stage disease 

detection can help farmers adopt more natural and 

safe disease control methods, reducing the reliance 

on chemical pesticides and promoting sustainable 

farming practices. 

This article has critically examined the effectiveness of 

various object detection methods in identifying early-

stage leaf diseases in plants, with a particular focus on 

pear leaf disease. Our exploration utilised advanced 

machine learning algorithms, including several 

variants of R-CNN detectors and YOLO models, to 

analyse plant leaf images. The key findings reveal a 

nuanced performance disparity across different 

models when detecting and classifying pear pear slug 

and leaf spot diseases, particularly across varying 

severity levels. 

Notably, the YOLOv8s model emerged as the most 

effective, with an mAP of 88.3. This emphasises the 

potential of YOLOv8s in agricultural applications, 

especially in aiding farmers to adopt more natural and 

safe disease control methods. However, the cascade-

rcnn r50 fpn model also displayed high performance, 

which highlight the effectiveness of its multi-stage 

region proposal network and feature pyramid 

networks in handling diverse scales of feature 

extraction. 

When it comes to how well these models work at 

finding diseases early on, YOLOv8s and cascade-rcnn 

 r50 fpn did a great job of finding mild disease 
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symptoms in test severity1, with mAPs of 82.4 and 

82.1, respectively. Their performance was especially 

noteworthy in detecting pear slug disease, with an 

average AP of 83.3, compared to leaf spot disease, 

with an average AP of 73.3. In the test severity2 

dataset, Cascade rcnn r50 fpn led with the highest 

mAP of 87.1. 

While models like YOLOv8s and Cascade-RCNN show 

promise in detecting early leaf diseases in pears, 

there’s a need to expand this research to include more 

plant types. Currently, our focus is limited and doesn’t 

cover the wide range of diseases affecting different 

crops. It’s crucial to adapt these models for various 

plant diseases and make them easy for farmers to use. 

Developing simple, practical tools, like mobile apps, 

from these models can help farmers quickly spot and 

treat plant diseases. This step is key to improving crop 

health and promoting sustainable farming. 
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