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Abstract

Early-stage leaf diseases in plants can significantly impact crop yield and quality. If left untreated, these diseases
can spread rapidly. This will lead to widespread damage and potential crop loss. Early detection allows for
targeted disease control measures to minimise negative effects on plant health and optimise crop production.
This study examines the effectiveness of various object detection methods for identifying early-stage leaf
diseases, with a particular focus on pear leaf disease. Advanced machine learning algorithms, including R-CNN
detectors and YOLO models, were employed to analyse plant leaf images. The YOLOv8s model emerged as the
most effective with an mAP of 88.3. This may be attributed to its robust architecture and its ability to extract
features effectively. The cascade-rcnn r50 fpn model demonstrated strong performance, due to the effectiveness
of its multi-stage region proposal network and feature pyramid networks. YOLOv8s and cascade-rcnn r50 fpn
showed promise in detecting mild disease symptoms, but further research is needed to cover a wider range of

plant diseases and make them accessible for farmers to use.
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1.INTRODUCTION

The detection of leaf diseases holds significant
importance in the field of agriculture. The early
detection of diseases in plants may play a crucial role
in mitigating the spread of such diseases and reducing
the extent of crop losses. Early diagnosis is key in
agriculture, where disease control is essential for crop
health and production. Early intervention plays a
crucial role in the successful control of diseases, since
it enables prompt and focused actions that have the
potential to prevent significant crop loss [1].

There are several methods for detecting leaf diseases
in plants. Visual inspection is the most common
method, where farmers observe the plants for any
signs of disease. However, this method can be time-
consuming and not always reliable [2].

Another method is the use of digital imaging
technology. With the help of machine learning
algorithms and computer vision, images of the plant
leaves can be analysed to detect any signs of disease.
This method is more efficient and accurate compared
to visual inspection [2].

The majority of existing studies in plant disease
detection using deep learning are designed around
classification tasks.

This has led to the creation of datasets that are
primarily suited for classification algorithms. As a
result, there’s a notable shortage of datasets geared
towards object detection methods in this field.
Consequently, there exists a significant lack of
datasets created specifically for use with to object
detection methods within this domain. This limitation
not only limits the use of advanced object detection
techniques, but it also establishes the context for the
current focus of our research.

Empowering farmers involves giving them intelligent,
costeffective, and user-friendly machine learning
tools. By using these technologies, agricultural
practitioners have the capability to identify and
diagnose plant diseases in their early stages via the
use of straightforward devices such as cellphone
images. The primary objective of this study is to
evaluate the efficacy of object detection techniques,
with a specific focus on their use in the early
identification of leaf diseases. This focus is essential in
enhancing agricultural productivity and sustainability

across diverse farming practices.
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To the best of our knowledge, this is the first study to

analyse early-stage leaf disease
pears

methods. Our

extensively
identification in using advanced object
detection research focuses on
evaluating various aspects of multiple deep object
detection models. The main contributions of our work

are outlined as follows:

. A comprehensive review of leading deep
learning architectures specifically adapted for plant
disease detection and identification.

. A detailed evaluation of the performance of
YOLOvSs, Cascade-rcnn _r50 fpn, and other advanced
models in identifying early stages of pear leaf
diseases, considering several performance metrics.

The rest of the paper is organised as follows: Section
2 provides a review of relevant literature; Section 3
outlines the materials and methods used in this study;
Section 4 provides the results obtained from the
experimental study and analyses the main finding;
Section 5 outlines the conclusions drawn from the
study and suggests potential paths for further

research.
2. RELATED WORK

In recent years, there has been significant interest in
applying object detection methods in agriculture,
particularly with the emergence of deep learning
techniques. This section aims to review the literature
on the use of deep learning object detection
methodologies for identifying diseases in plant leaves.

Traditional approaches for disease detection in
agriculture have typically relied on visual inspection
by experts, laboratory-based testing, and statistical
models [3]. While effective to some extent, these
methods often suffer from being time-consuming,
prone to subjective errors, and requiring specialised
expertise [4], [2].

A. Classical Methods for Disease Detection in Plants

Classical methods have limitations that have led to the
development of machine learning-based solutions.
Previous studies have utilised algorithms such as
Decision Trees [5], [6], K-Nearest Neighbours (K-NN)
[7], [6], and Support Vector Machines (SVM) [7], [8],
[9], [10], which rely mainly on predefined features.
While these techniques hold promise, they face
challenges with scalability and struggle to handle
complex visual patterns. As Tsaftaris et al. [11] noted,
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specialised domain knowledge is crucial for expertly

designing and extracting features, a process

commonly referred to as feature engineering.
Furthermore, translating this expertise into image
analysis procedures and filters, such as edge
detectors, requires a high level of skill in image

processing.

B. Deep Classification Methods for Disease Detection
in Plants

With the evolution of computational capabilities,
deep learning has emerged as a powerful tool for
various applications in agriculture, from image
recognition to weather prediction [12]. Deep learning
uses models with many layers to learn data
representations at different levels of complexity [13].
These techniques have significantly advanced various
fields, such as speech recognition, visual object
recognition, object detection, drug discovery, and
genomics [13]. The backpropagation algorithm is
utilised to teach machines how to adjust their internal
parameters to compute the representation in each
layer. Deep convolutional networks deal with images,
video, speech, and audio, while recurrent networks

analyse sequential data like text and speech [13].

Plants affected by diseases commonly display distinct
signs or abnormalities on their leaves, stems, flowers,
or fruits. Each disease or pest issue tends to manifest
a unique visual pattern that can serve as a diagnostic
indicator. Leaves are often the main focus for
detecting plant diseases, as they are usually the first
to show symptoms [14]. Several studies have focused
on applying deep learning architectures for the
specific purpose of plant disease detection [15]. These
works often provide a comparative analysis of
different architectures and evaluate them based on
metrics such as accuracy, speed, and complexity.

Mohanty et al [16] trained a deep neural network
using a dataset of 54,306 plant leaf images that can
identify 14 crop species and 26 diseases with an
accuracy of 99.35%. Their method shows that it is
feasible to use deep learning models to diagnose crop
diseases on a global scale using smartphones. Lu et al
[14] trained CNN-based model on 500 real-world rice
achieved a 95.48%
identifying 10 common diseases, which outperform

plant images, accuracy in
traditional methods. A deep convolutional neural
network (DCNN) was used to identify four types of

cucumber diseases from field images with an accuracy
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rate of 93.4%. Data augmentation was applied to
prevent overfitting on the dataset of 14,208 symptom
DCNN
classifiers and proved its efficacy for real-world

images. The outperformed traditional
applications as claimed in [17]. Additionally, extensive
research efforts have been undertaken to diagnose
diseases affecting a diverse range of plant leaves, such

as tomato [18], [19], apple [20], [21], rice [22], [23].

C. Deep Object detection Methods for Disease
Detection in Plants

After examining the role of deep learning classifiers
for plant disease detection in the previous section, the
focus will now shift to explore deep object detection
These offer the added
advantage of locating as well as identifying diseases

techniques. methods
on plant leaves. Object detection, as a specialised area
within deep learning, has also seen numerous
innovations. Architectures like YOLO (You Only Look
Once)[24], Faster R-CNN [25], and SSD (Single Shot
MultiBox Detector) [26] have been widely used in

various domains particularly in agriculture.

Xie et al.[27] propose a real-time grape leaf disease
detector, Faster DR-IACNN, which employs improved
deep convolutional neural networks and integrates
the Inceptionvl module,

and SE-blocks for
extraction. Experimental results indicate the model

Inception-ResNet-v2
module, enhanced feature
achieves an 81.1% mean average precision (mAP) on
the Grape Leaf Disease Dataset (GLDD) and operates
at a detection speed of 15.01 FPS, which demonstrate
its feasibility for real-time diagnosis of grape leaf
diseases. Fuentes et al [28] explored the efficacy of
various deep learning meta-architectures, such as
Faster R-CNN, R-FCN, and SSD, combined with deep
feature extractors like VGG net and ResNet, for
detecting diseases and pests in tomato plants.

Utilising an extensive dataset of approximately 5,000
images, the system achieves a mAP of 85.98%.

It effectively identified nine different conditions and
showing robustness in complex plant environments.

Tian et al [29] leverage DenseNet to optimize YOLO-
V3’s low-resolution feature layers. Their model
outperforms Faster R-CNN with VGG16 network and
other detection of

benchmarks in real-time

anthracnose lesions on apple surfaces.
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Utilising advanced optimisation techniques, Yae et al.
[30] enhances the YOLOv5 model to accurately and
swiftly detect defects in kiwifruits, achieving a
significant 94.7% mAP. Similarly, Mathew et al. [31]
employs YOLOV5 for real-time detection of bacterial
pepper
empowering farmers to take early preventive action

spot disease in Dbell plants, thereby

based on mobile phone-captured images.
D. Limitations and Conclusion

Nonetheless, limitations in existing works remain,
Many of the studies in the field of plant disease
detection through deep learning have predominantly
framed the problem as a classification task. This
orientation has led to the generation of datasets that
are largely optimised for classification algorithms,
including the labelling and structuring of the data in
ways that facilitate classification-based approaches.
As a result, the landscape of available datasets is
somewhat skewed, with fewer datasets engineered to
tackle the challenge as an object detection task. This
presents a limitation in the current body of work and
points to the need for datasets that are structured to
allow object detection methodologies. The scarcity of
such datasets designed for object detection
constrains the broader application and assessment of

these more advanced techniques.

In summary, while extensive research has been
conducted in the realm of deep learning for object
additional
research remain open. The current study aims to

detection in agriculture, avenues for
contribute to this area by employing object detection
as a viable method for diagnosing plant diseases using
Pear Leaf disease as a case study. The research places
special emphasis on analysing the results based on

the severity of the disease.
3. MATERIALS AND METHODS
A. DiaMOS Plant Dataset

For this study, we utilized the recently introduced
DiaMOS Plant Dataset [32], which comprises 3,006
leaf images collected from three different trees within
the same plot in Italy. The images were captured using
a smartphone (Honor 6x) and a DSLR camera (Canon
EOS 60D) at a resolution of 2976x3968, as well as two
lateral cameras with a resolution of 3456 x 5184,
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Figure 1 displays four example images from the
dataset representing four classes from left to right:
healthy leaf, slug damage, leaf spot, and leaf curl.

The leaf images were captured from the upper side
(adaxial) in real-life settings under various lighting,
angle, background, and noise conditions throughout
the entire growing season. This approach allowed the
researchers to obtain realistic leaf images and track

the evolution of visual symptoms

Fig. 1. Example camera images from the DiaMOS Plant
Dataset, which contains four classes from left to right:
healthy, slug, spot, and curl.

The dataset at hand presents a 2D object detection
task with a multi-class problem. The task involves
identifying four different types of leaf states: healthy
leaf, slug damage, leaf _spot, and leaf curl. Each leaf is
assigned a severity score ranging from 0 to 4, with 0
indicating a healthy state and 4 representing a high
spread of disease. This is especially important as it
allows for a more precise and accurate assessment of
the severity of the leaf disease.

The severity score can also help identify the level of
treatment required for the leaf. For instance, if the
severity score is low, treatment may not be necessary.
However, if the score is high, immediate treatment
may be required to prevent the further spread of the
disease.
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Fig. 2.DiaMOS Plant Dataset Label Distribution:

Figure (2-a) on the left illustrates a statistical overview
of the label distribution across the four classes. This
information can be used to better understand the
frequency of each type of leaf state in the dataset. It
can further aid in the development of more accurate
and efficient models for identifying and treating leaf
diseases.

The dataset exhibits a highly imbalanced distribution
of objects. The number of Healthy and Curl leaves is
significantly lower than the number of Spot and Slug
leaves. For this reason, we will focus only on Spot and
Slug leaves in this study and exclude Healthy and Curl
leaves. It is worth noting that no severity score was
given to Curl leaves, which is another reason we will
drop this class from our analysis.

In the same figure (2-b) on the right, we can observe
the distribution of severity scores for both Spot and
Slug leaves. Spot leaves mostly exhibit very early signs
of the disease. Most of them score severity 1 or 2.
Only 13% score severity 3, and roughly 6% score
severity 4. On the other hand, Slug leaves have only
16% scoring Severity 1, while the majority belong to
Severity 2, with a percentage of 40.

The 2D bounding box labels in this dataset are
tightfitting. They cover the centre leaf in the image.
The labels were formatted in YOLO format. We
converted the label to conform with the COCO style
used in two-stage object detectors for models with a
two-stage detection approach.

B. Deep Learning Object Detectors

Object detectors are usually categorised into two
primary types: one-stage detectors and two-stage
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detectors. Two-stage detection frameworks begin by
generating candidate regions of interest, which are
then classified in a second stage. The most popular
two-stage detector is the region-based convolutional
neural network (R-CNN) [33],

which mainly uses selective search [34] to generate
proposals and then uses CNN to extract features from
them. Subsequently, Fast-RCNN [35] facilitates the
extraction of features from different proposals
through a special pooling layer to reduce
computations from a single map. Later, to improve
performance, Faster R-CNN [25] introduced a unified
end-to-end detector that utilises a region proposal
network (RPN) for both feature extraction and
proposal generation. FPN (Feature Pyramid Network)
[36] merges features extracted at different resolutions
and provides scale-specific anchor boxes in object
detection tasks. Cascade RCNN [37] is a recent work in
the field of object detection that aims to improve the
quality of proposals for the COCO AP (Average
Precision) metrics, which are used to evaluate the
object detection models performance. In this work,
we have utilised three variations of R-CNN detectors

described in Table 1.

TABLE 1. THE FASTER R-CNN VARIATIONS UTILISED IN
THE WORK, INCLUDING THE BACKBONE AND FEATURE
EXTRACTION USED
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complex pipeline. Instead, the neural network can be
run on a new image during testing to predict
detection.

In our work, we have selected two variations of the
YOLO family: YOLOv5s [38] and YOLOvS8s [39]. The two
variations come in five sizes: nano (n), small (s),
medium (m), large (l), and extra large (x). The
convolution layers’ width and depth are adjusted to
meet certain application and hardware needs. We
selected the small size due to the dataset’s small size
and the model’s significantly smaller weight file size.
This makes it suitable for embedded devices and real-
time detection, such as on mobile phones, which is
our intended goal for this work. Additionally, YOLOv5s
have high detection accuracy and can achieve a
detection speed of up to 140 frames.

The overall design of YOLOv5 Utilising a modified
CSPDarknet53 backbone with a stem, the network
design has convolutional layers for extracting image
features and a spatial pyramid pooling fast (SPPF)
layer for expediting calculations by pooling
information into a fixed-size map. SiLU activation and
batch

convolution. The head of the network is akin to

normalisation are included into every

YOLOv3 , whereas the neck employs SPPF and a
modified CSP-PAN [40] [41].

YOLOvS replaces the CSPLayer from YOLOvV5 with a C2f

module and uses a spatial pyramid pooling fast (SPPF)
layer to pool features into a fixed-size map for faster
computation. As in YOLOv5, each convolution has

Model Name Pre-trained Detection Head
Backbone

faster-rcnn r50 ¢4 ResNet-50 Conv4

faster rcnn r50 fpn ResNet-50 FPN

cascade-rcnn r50 ResNet-50 FPN

fpn

batch normalisation and SiLU activation. An anchor-
free approach is employed, where the prediction head

independently  performs  objectness  scoring,

classification, and bounding box regression [41].

As  previously mentioned, mainstream object

On the other hand, one-stage detectors predict both
the object’s position and its class in one step. It
introduces a novel object detection approach named
YOLO (You Only Look Once) [24]. Unlike previous
methods that reuse classifiers for detection, YOLO
models object detection as a regression issue that
predicts bounding boxes and class probabilities from
whole images in just one step. This enables the
optimisation of the entire detection pipeline end-to-
end for detection performance, as it is a single
network [24]. YOLO is known for being very fast due
to its approach of modelling object detection as a
regression problem, which eliminates the need for a

detectors can be divided into two-stage and one-stage
detectors. However, a new family of object detectors
architecture has been

based on transformer

introduced.

Carion et al. [42] proposed DETR, a new object
detection method that uses a transformer encoder-
decoder architecture and set-based global loss to
predict object sets directly without hand-designed
components. DETR is comparable to other detectors
in terms of accuracy and runtime performance and
can also be applied to panoptic segmentation.
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Liu et al. [43] proposed a new approach to enhance
the performance of the DETR detection model by
using box coordinates as queries in Transformer
decoders. It led in better results on the MS-COCO
benchmark compared to other similar models. By
directly learning anchors as queries, the proposed
DAB-DETR (Dynamic Anchor Box DETR) offers a novel
query formulation that makes it feasible to modify the
positional cross-attention map in transformer
decoders and execute layer-by-layer dynamic anchor

changes by using anchor size.

Using a single ResNet-50 model as the backbone for
training 50 epochs, DAB-DETR scored the highest
performance among DETR-like architectures on the
COCO object detection benchmark, with an AP of
45.7%.

Previous works [44], [45], [46], [47] aimed to enhance
DETR through various methods, such as associating
each query with a specific location or introducing
Gaussian priors or deformable sampling points.
However, unlike DAB-DETR, they do not use anchors
as queries. In this work, we utilised DAB-DETR
(Dynamic Anchor Box DETR) [43].

C. Experimental Setup

As mentioned previously, the study will focus on Spot
and Slug leaves, as there are significantly fewer
Healthy and Curl leaves. To maintain the percentage
of samples for each class, the dataset was split into
training, validation, and testing in a ratio of 7:2:1,
stratified
following the same approach described in [32].

respectively, using random sampling
Additionally, in order to conduct an analysis based on
the severity of the disease, we divided the test split
into four datasets: test _severityl, test _severity2,
test _ each

severity3, and test severity4,

corresponding to a specific severity score.

The Faster R-CNN variations and the DAB-DETR model
experiments were conducted using the public
repository MMDetection [48] as well as the official
repositories of both YOLOv5s and YOLOv8s models

(38], [39].

Using transfer learning can be a useful technique for
training a large target network without overfitting,
particularly when the target dataset is much smaller
than the base dataset [49]. Transfer learning usually
starts by training a base model and copying its first n
layers to a new model. The rest of the new model is
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randomly initialized and trained for the target
problem. Errors from the new task can be back-
propagated into the base (copied) features to fine-
tune them for the new task [49]. In order to improve
the performance of the models, we utilised pre-
trained weights learned from the COCO task. These
weights serve as an excellent starting point as they are
already optimised for a similar task. We then fine-
tuned the models by training them on the modified
DiaMOS Plant Dataset, which allowed the models to
learn and adapt to the specific features and
characteristics of pear diseases.

Table 2 presents the optimisation, hyperparameters,
and augmentation used for training the models, and
most of the hyperparameters for all training
experiments are in line with the choices outlined in

the original papers of the models.
4. RESULTS AND DISCUSSION

In this section, we will perform a performance analysis
of selected deep object detection models, detailed in
Table 2. These models were evaluated across four
distinct test datasets-test severityl, test severity2,
test severity3, and test severity4d—each of which
corresponds to varying levels of disease severity. First,
we introduce an overview of the evaluation metrics
used in the analysis. Then, we present the overall
performance results combined across all four test
datasets for both diseases. Lastly, we evaluate the
results of each test dataset.

A. Evaluation Metrics

Average Precision (AP) metric is used to evaluate
object detection models performance. It captures
whether the model balances precision and recall.
Precision shows how many objects the model
recognizes correctly. Recall shows how many actual
objects the model detected. Thus, AP is calculated
from the Precision-Recall curve where the area under
the curve is measured. Therefore, it is an efficient way
to capture the model’s ability to detect objects
accurately across various confidence thresholds. The
higher the AP score, the more effective the object
detection model. This indicates fewer false positives
and false negatives. The following equation describes
AP mathematically:

1
= f P(R)dR
AP 0 (1)
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where P(R) represents precision as a function of recall.

If there are different object classes, the Mean Average
Precision (mAP) is computed by taking the average of
AP score across all classes:
1 T
=— AP;

mAP "' i=T (2)

where n is the total number of classes.
B. Overall Results

Table 3 shows the performance comparison of six
object detectors across all test datasets for disease
detection results. In evaluating the overall Mean
Average Precision (mAP), both cascade-rcnn r50 fpn
and YOLOvS8s outperform the others, achieving mAPs
of 88.2 and 88.3, respectively. YOLOv5s has an mAP of
85.5, with dab-detr r50 slightly behind at 85. On the
other hand, faster rcnn r50 fpn and faster-rcnn _r50
c4 have resulted in the lowest mAPs of 83.8 and 83.0,
respectively.

When breaking down the Average Precision (AP) for
individual diseases, YOLOv8s demonstrates the best
performance in the identification of leaves with pear
slug with an AP of 89.6. Subsequently, Cascade-rcnn
scored an AP of 88.6. The rest of the models
demonstrate similar AP values, averaged around 86.0,
with the exception of faster-rcnn r50 c4, which trails
with an AP of 84.6. Conversely, in detecting leaf _spot
leaves, cascade-rcnn leads with an AP of 87.7.
YOLOvVS8s closely trails with an AP of 86.9. Notably,
faster _rcnn r50 fpn struggles in this detection task,
with the lowest AP at 80.3. The remaining models
tend to cluster around an AP of approximately 84.0
when detecting this disease.

Figure 3 illustrates the Confusion Matrix of all models
across all test datasets for disease detection results. It
is evident that all models did very well regarding
detecting leaves with pear slug disease. However,
most of the models struggled when detecting leaves
with leaf _spot except for YOLOv8s, which achieved
the highest TP rate. It is worth noting that all models
succeeded in detecting the majority of bounding
boxes. The model dab-detr r50 is the only one that has
a high rate of not detecting leaves with leaf spot
disease, with a false negative rate of 18%. Moreover,
the models have a high rate of detecting non-existent
affected leaves.
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Figure 3 illustrates the confusion matrix for all models
across all test datasets. It highlight the disease
detection results. It is evident that each model
performed well in detecting leaves with pear slug
disease. However, most models faced challenges in
identifying leaves with leaf spot, with YOLOv8s
standing out as it achieved the highest true positive
(TP) rate. It is worth noting that all models were
successful in detecting the majority of bounding
dab-detr r50,
struggled, being the only one with a high false

boxes. The model in particular,
negative (FN) rate of 18% for leaves with leaf spot
disease. Furthermore, the models tend to report a
high rate of false positives, incorrectly signalling the

presence of affected leaves when there are none.

5

6

1 2

H

Fig. 3.
across all test datasets for disease detection results

The Confusion Matrix of six object detectors

C. Severity Analysis

In this section, we assess the ability of each model
to detect varying disease severity levels. Table 4
presents the performance metrics for identifying
diseases in their early stages for test _severityl;
characterised by mild symptoms. Notably, YOLOvSs,
with an mAP of 82.4, and cascade-rcnnr50 fpn, with
an mAP of 82.1, performed well in detecting leaves
with mild disease symptoms. YOLOv5s and dab-
detrr50 were close with a mAP of 81.2 and 80.5,
respectively. On the lower spectrum, faster rcnn r50
fpn and faster-rcnn r50 ¢4 scored an mAP of 72.6.
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TABLE 2.USED OPTIMISATION, HYPERPARAMETERS, AND AUGMENTATION FOR TRAINING THE MODELS
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Model Optimisation LR Epoch Mini Batch Augmentation

faster-rcnn r50 c4 SGD 0.0025 12 16 RandomFlip

faster rcnn r50 fpn SGD 0.02 12 16 RandomFlip

cascade-rcnn r50 SGD 0.0025 12 16 RandomFlip

fpn
Random Flip

dab-detr r50 AdamW [50] 0.0001 20 50 Random Crop
Random Scale
Mosaic
Random affine

YOLOV5s SGD 0.01 20 32 HSV
Albumentations
[51]
Mosaic
Random affine

YOLOv8s SGD 0.01 20 32 HSV
Albumentations
(51]

TABLE 3. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS ACROSS ALL TEST DATASETS FOR
DISEASE DETECTION RESULTS

Model pear slug AP leaf spot AP mAP

faster rcnn r50 fpn 0.85 0.83 0.84

faster-rcnn r50 c4 0.86 0.80 0.83

cascade-rcnn r50 0.89 0.88 0.882

fpn

dab-detr r50 0.86 0.84 0.85

YOLOv5s 0.86 0.84 0.85

YOLOv8s 0.90 0.87 0.883

TABLE 4.PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST _SEVERITY1

Model pear slug AP leaf spot AP mAP

faster rcnn r50 fpn 0.81 0.65 0.73
faster-rcnn r50 c4 0.83 0.63 0.73
cascade-rcnn r50 fpn 0.86 0.78 0.82
dab-detr r50 0.85 0.76 0.81
YOLOvV5s 0.84 0.79 0.81
YOLOv8s 0.85 0.80 0.82

Examining the results for each disease in test —

severityl, we can see that the models performed

better with detecting pear slug disease, with an

average of AP 83.3 compared to detecting leaf spot

disease with an average AP of 73.3.

Regarding pear slug disease, cascade-rcnn r50 fpn

outperforms the others with an AP of 86. Interestingly,

dab-detr _ r50 was the second-best model

in
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identifying leaves with pear slug of this severity with
an AP of 85.2, competing with YOLOvS8s, which scored
85.1. On the other hand, faster rcnn _r50 fpn scored
the lowest AP of 80.5.

In terms of leaf spot disease, YOLOv8s scored the
highest AP of 79.7, which is comparatively close to
YOLOv5s and cascade-rcnn r50 fpn with an AP of 78.8
and 78.3, While dab-detr r50
performance deteriorated when detecting this

respectively.

disease, with a score of 75.8. Faster _rcnn r50 fpn and
faster-rcnn r50 c4 scored the lowest AP with an
average of

63.6.

Figure 4 shows the confusion Matrix of six object
detectors for disease detection results on test
severityl. Itis clear that the models are more accurate
when identifying leaves with pear slug disease with
an average of 77.33% for TP rather than leaf spot
which averaged a TP of 68.33%.

Fig. 4. The Confusion Matrix of six object detectors
for disease detection results on test severityl

The performance metrics for identifying diseases in
the test severity2 dataset are shown in Table 5. First,
with a mAP of 87.1, Cascade-rcnn r50 fpn had the
highest mAP, closely followed by YOLOV5 (86.7). The
other models have mAPs centered around the value
of 83.43. When assessing the results for each disease
within test severity2, for the pear _slug disease, both
YOLOvV8 and Cascade-rcnn r50 fpn achieved notable
APs of 92.2 and 91.9, respectively. Conversely, the
remaining models resulted in an average AP of 89.2.
In the case of the leaf spot disease, cascade-rcnn r50
fpn scored the highest AP score at 82.2, while the
other models had an average AP of 80. Notably,
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YOLOvV5s and faster-rcnn r50 c4 performed last with
the lowest APs, recording 76.3 and 76.1, respectively.

Figure 5 shows the Confusion Matrix of six object
detectors for disease detection results on test
severity2. Similarly to test severityl, the models were
inclined to identify the pear slug class with greater
accuracy than the leaf spot class. The average True
Positive rate for pear slug was higher at 89.0%
compared to leaf spot’s 72.0%. Both classes generally
exhibited low False Negative rates. However, the leaf
spot class had a notably higher average False Positive
rate than the pear slug class.

Fig. 5. The Confusion Matrix of six object detectors for
disease detection results on test severity2

Table 6 displays the performance metrics for disease
identification using the test _ severity3 dataset.
YOLOv8s outperformed all other models, scoring an
mAP of 95.0. Following this, cascade-rcnn r50 fpn
registered an mAP of 93.5, and YOLOv5s recorded
92.7. Examining the results for individual diseases,
YOLOv8s achieved the highest AP for pear slug at 94.4.
In contrast, faster-rcnn r50 c4 recorded the lowest AP
for this disease, of a score of 88.6.

For the leaf _spot disease, YOLOv8s again led with an
AP of 95.6, while cascadercnn r50 fpn closely followed
with an AP of 95.1. The lowest AP for leaf spot was
88.9, as scored by faster-rcnn r50 c4.

Figure 6 shows the confusion Matrix of six object
detectors for disease detection results on test
severity3.In the evaluation of the prediction matrices
for the given models, it was observed that the pear —
slug class consistently had a TP rate of approximately
98%. For leaf spot, TP rates varied, with a peak of
about 77%. Both classes showed low FN rates. The leaf
spot class had a higher FP rate compared to pear slug
in some instances.
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Fig. 6. The Confusion Matrix of six object detectors for
disease detection results on test severity3

Table 7 displays the performance metrics for disease
identification in the test severity4 dataset. YOLOv5s
and faster-rcnn r50 c4 achieved the highest mAP
recording 90.0 and 89.0,
contrast, dab-detr r50 resulted in the lowest mAP at

values, respectively. In
85.3. With regard to the pear slug disease, faster-rcnn
_r50 c4 led with an AP of 86.6. Surprisingly, YOLOv8s
showed the lowest AP at 79.8, while the majority of
models achieved an AP close to 82.73. For the leaf _
spot disease, there was a noticeable improvement
across all models. YOLOv5s and YOLOv8s achieved
closely matched APs of 95.3 and 94.7, respectively.
Cascade-rcnn r50 fpn achieved an AP of 93.7, whereas
dab-detr _r50 underperform with the lowest AP of
87.9.

Figure 7 shows the Confusion Matrix of six object
detectors for disease detection results on test
severity_éT. It is evident that the pearslug class has an
average TP rate of 97.0%, whereas the leafspot class
holds a rate of 76%. Both classes maintain minimal FN
rates. Nevertheless, the leaf _spot class shows a

higher FP rate compared to the pear slug class.
D. Discussion

The findings indicate a disparity in the performance of
the models when detecting and classifying between
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where it appears higher for Severities 3 and 4, which
shows that the models are more effective at
identifying cases of higher severity.

These findings indicate that the models have a greater
ability to accurately detect and classify cases of leaf
spot disease as their severity increases. It’s evident
that peak
performance at Severity 3. This could mean that the

many models frequently achieve
traits or characteristics that are unique to Severity 3
cases are more clear, making them easier for the
models to spot than traits or characteristics that are
unique to other severity levels.The best overall
performance was achieved by YOLOv8s, which prove
that its

capabilities are appropriate for this task. This might be

architecture and feature extraction

due to the advances made in comparison to prior

iterations of YOLO.
3

:. ; |

Fig. 7. The Confusion Matrix of six object detectors for disease detection

results on test severity4

severityl and test severity2. For the pear slug disease
AP, there isn’t a consistent pattern across the severity
levels for all models. Some show a slight decline from
Severity 1 to Severity 4, while others maintain
approximately the same performance levels. In
the

demonstrates improved performance as the severity

contrast, leaf _ spot AP disease generally
increases. Specifically, the results for Severity 3 and
Severity 4 tend to surpass those of Severity 1 and
Severity 2. This is also reflected in the mAP metric,
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TABLE 5. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST _SEVERITY2

Model pear slug AP leaf spot AP mAP
faster rcnn r50 fpn 0.90 0.80 0.85
faster-rcnn r50 c4 0.89 0.76 0.83
cascade-rcnn r50 fpn 0.92 0.82 0.87
dab-detr r50 0.89 0.78 0.84
YOLOvV5s 0.89 0.76 0.83
YOLOv8s 0.92 0.81 0.87

TABLE 6. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST _SEVERITY3

Model pear slug AP leaf spot AP mAP
faster renn r50 fpn 0.89 0.93 0.91
faster-rcnn r50 c4 0.89 0.89 0.89
cascade-rcnn r50 fpn 0.92 0.95 0.93
dab-detr r50 0.87 0.91 0.89
YOLOv5s 0.90 0.95 0.93
YOLOv8s 0.94 0.96 0.95

TABLE 7. PERFORMANCE COMPARISON OF SIX OBJECT DETECTORS FOR DISEASE DETECTION RESULTS ON TEST _SEVERITY4

Model pear slug AP leaf spot AP mAP
faster rcnn r50 fpn 0.80 0.95 0.87
faster-rcnn r50 c4 0.83 0.94 0.88
cascade-rcnn r50 fpn 0.85 0.95 0.90
dab-detr r50 0.81 0.92 0.86
YOLOv5s 0.83 0.88 0.85
YOLOV8s 0.87 0.91 0.89
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Fig. 8. YOLOv8s prediction visualization results on
randomly selected images from each severity dataset
in all groups. The first image contains a leaf with pear
slug disease, while the second image contains a leaf
with leaf spot disease. The group a represents two
example images from test severityl. The group b
represents two example images from test severity2.
The group c represents two example images from test
severity3. The group d represents two example
images from test severity4.

The cascade rcnn r50 fpn model demonstrates
competitive performance, which suggest that its
strategy of using a multi-stage region proposal
network and utilising feature pyramid networks
(FPNs) for extracting features at various scales is
additionally effective for this particular task. However,
it is worth noting that YOLOv8s outperforms cascade-
rcnn r50 fpn.

the YOLOv8s
visualisation results on randomly selected images

Figure 8 illustrates prediction
from each severity dataset in all groups. The first
image contains a leaf with pear slug disease, while the
second image contain a leaf with leaf spot disease.
The group a represents two example images from test
severityl. The group b represents two example
images from test severity2. The group c represents
two example images from test severity3. The group d
represents two example images from test severity4. It
is clear the model was proficient at locating the centre
disease with high confidence in predicting the correct
class in most of the cases. The only case where one of
the images is mistakenly classified as a different
disease is in group c for the leaf with leaf spot disease,
and the model has been predicted as pear slug. This
confusion may be due to the fact that the symptoms
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on the leaves of the disease are similar to those
caused by pear slug.

Because the dataset was annotated to detect the
centre leaf, the models are inclined to detect leaves in
the background, which leads to a high rate of false
positives.

Adjusting the dataset annotations to include side
leaves could potentially improve the accuracy of the
models in detecting them.

5. CONCLUSION

Early-stage leaf diseases in plants can have significant
impacts on crop yield and quality. If left undetected
and untreated, these diseases can spread rapidly,
which led to widespread damage and potential crop
loss. Early detection allows for timely intervention and
targeted disease control measures to minimis the
negative effects on plant health and optimising crop
Additionally,
detection can help farmers adopt more natural and

production. early-stage  disease
safe disease control methods, reducing the reliance
on chemical pesticides and promoting sustainable

farming practices.

This article has critically examined the effectiveness of
various object detection methods in identifying early-
stage leaf diseases in plants, with a particular focus on
pear leaf disease. Our exploration utilised advanced
machine learning algorithms, including several
variants of R-CNN detectors and YOLO models, to
analyse plant leaf images. The key findings reveal a
nuanced performance disparity across different
models when detecting and classifying pear pear slug
and leaf spot diseases, particularly across varying
severity levels.

Notably, the YOLOv8s model emerged as the most
effective, with an mAP of 88.3. This emphasises the
potential of YOLOv8s in agricultural applications,
especially in aiding farmers to adopt more natural and
safe disease control methods. However, the cascade-
rcnn r50 fpn model also displayed high performance,
which highlight the effectiveness of its multi-stage
region proposal network and feature pyramid
networks in handling diverse scales of feature
extraction.

When it comes to how well these models work at
finding diseases early on, YOLOv8s and cascade-rcnn
—r50 fpn did a great job of finding mild disease
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symptoms in test severityl, with mAPs of 82.4 and
82.1, respectively. Their performance was especially
noteworthy in detecting pear slug disease, with an
average AP of 83.3, compared to leaf spot disease,
with an average AP of 73.3. In the test severity2
dataset, Cascade rcnn r50 fpn led with the highest
mAP of 87.1.

While models like YOLOv8s and Cascade-RCNN show
promise in detecting early leaf diseases in pears,
there’s a need to expand this research to include more
plant types. Currently, our focus is limited and doesn’t
cover the wide range of diseases affecting different
crops. It’s crucial to adapt these models for various
plant diseases and make them easy for farmers to use.
Developing simple, practical tools, like mobile apps,
from these models can help farmers quickly spot and
treat plant diseases. This step is key to improving crop
health and promoting sustainable farming.
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