Vol 46 No. 05

Journal of Harbin Engineering University May 2025
ay

ISSN: 1006-7043

Contactless Algorithm for Identifying the Facial Area Containing the
Most Vital Sign-Related Information Using Machine Learning.

Moussa Mmadi?, George N. Kamucha?, Ciira wa Maina3

IDepartment of Electrical Engineering, Pan African University Institute for Basic Sciences, Technology and
Innovation, Nairobi, Kenya

2Department of Electrical and Information Engineering, University of Nairobi, Nairobi, Kenya
3Department of Electrical Engineering, Dedan Kimathi University of Technology, Nyeri, Kenya

Corresponding Author: moussa.mmadi@students.jkuat.ac.ke

Abstract

Introduction: In recent years, there have been significant advancements in the field of biological parameter
measurement. The emergence of contactless technology now enables the extraction of vital sign data using a
standard personal computer (PC) equipped with a webcam. This system captures facial footage to obtain a
remote photoplethysmography (rPPG) signal.

Objectives: Identifying the correct extraction area, known as the Region of Interest (ROI), is a crucial part of this
process. Traditionally, the forehead is used as the primary site for extracting physiological parameters. However,
this method poses challenges when patients have injuries or fractures on the forehead that need to be covered.
To overcome this issue, we developed an automated computer vision model utilizing a machine learning
technique that can analyse and classify blood flow quality in real-time across three facial ROls: the forehead,
right cheek, and left cheek.

Methods: The procedure starts by identifying the subject's face in the first frame and ensuring it remains tracked
throughout the video. Subsequently, three mask regions are created to facilitate feature extraction using the
bitwise operation method. In the final step, a Support Vector Machine (SVM) model is used to ascertain which
of the three regions holds the most crucial physiological information.

Results: The proposed system shows promising results when evaluated using the PURE testing dataset. It
delivered outstanding performance, achieving an accuracy rate of 99% and a False Positive Rate (FPR) of merely
0.7%.

Conclusions: The suggested approach is highly efficient in monitoring the forehead, right cheek, and left cheek
of a patient's face, identifying the region with the richest physiological data among them. This method was
created and evaluated with 10 participants who were seated in a chair, facing the camera. The camera was
positioned 1 meter away from the subjects.

Keywords: non-contact; computer vision; machine learning; photoplethysmography.

Introduction physiological parameters provides useful insights

L . . . into a patient's condition, and in some cases, is
Monitoring the physiological condition of the P

. . . . essential for diagnosing certain conditions, such as
human body often involves tracking key vital signs, & &

including heart rate (HR), body temperature (BT),
respiratory rate (RR), blood oxygen saturation
(Sp02), heart rate variability (HRV), and blood
pressure (BP) [3—7]. These indicators are valuable
tools for assessing an individual's physical well-
being, identifying potential illnesses, and tracking
recovery progress. Long-term monitoring of

ectopic heartbeats [4].

Photoplethysmography (PPG) is an economical and
non-invasive technique for assessing physiological
parameters [2—6]. The fundamental concept of PPG
involves employing a light source alongside a
photodetector to assess variations in the blood
vessel volume beneath the skin. As the light source
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illuminates the tissue, the photodetector captures
minor fluctuations in the light's reflection or
transmission intensity due to blood flow, resulting
in the generation of the PPG signal [7]. Devices like
pulse oximeters and fitness trackers utilize PPG to
non-invasively monitor minor skin changes based
on this principle. Nonetheless, these conventional
contact devices have several drawbacks, such as
being inappropriate for identifying skin conditions
in sensitive groups like infants and individuals with
skin disorders [8]. They can also cause discomfort or
even lead to skin infections with prolonged use [9],
and their accuracy can be compromised by factors
like skin moisture, temperature, color, and patient
movement [10].

To circumvent these drawbacks, researchers have
started investigating non-contact techniques for
remote heart rate monitoring, with rPPG emerging
as a formidable alternative. This method employs a
camera, such as a webcam, infrared camera, or RGB
camera, to capture video footage of a person's face,
detecting minute color variations in the skin to
produce the remote PPG signal [11]. The underlying
principle of rPPG is akin to that of traditional PPG,
where the pulsation of blood through the
cardiovascular system alters the blood volume in
the microvascular tissue beneath the skin with each
heartbeat, creating periodic waves. Presently, rPPG
is recognized as superior because it eliminates the
need for subjects to wear contact devices, thus
avoiding their associated disadvantages, and it is
also ideal for prolonged continuous monitoring,
accommodating various patients. Additionally, the
camera necessary for the rPPG technique is
inexpensive and readily accessible, making it highly
suitable for extensive promotion and use [1].
However, employing rPPG techniques in practical
settings is more challenging due to factors such as
lighting variations, facial hair, and skin tone, all of
which can affect the precision of the signal
obtained. Additionally, the rPPG signal is inherently
weaker compared to that derived from traditional
contact methods because of fundamental
differences, necessitating meticulous and accurate
processing.

To overcome these challenges, obtaining a precise
rPPG signal is essential. Consequently, a
preprocessing algorithm is required to identify a
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region with distinct blood perfusion. Given the
limited research on analysing blood perfusion
through image processing, our study concentrates
on these elements. The primary aim of this paper is
to present a computer vision model that utilizes a
machine learning technique for real-time analysis,
enabling the classification of a patient's blood flow
quality across the ROIs: the forehead, right cheek,
and left cheek.

The key contributions are as follows: i) A
comprehensive literature review on the extraction
and analysis of the rPPG signal is performed. ii) An
image processing algorithm is developed to extract
features related to blood perfusion, and its
performance is evaluated under different lighting
conditions and recording setups. iii) A machine
learning model is designed to classify the blood flow
quality (Good or Poor) for each ROI.

The remainder of the work is structured as follows.
Section 2 gives an overview of the most widespread
image processing approaches for rPPG extraction
from videos. Section 3 provides the methodology
that has been used for tracking the ROIs and
extracting features linked to the blood perfusion.
Sections 4 and 5 give the results and the
conclusions, respectively.

Related work

As previously mentioned, rPPG involves several
techniques. Below, we offer a summary of the key
methods in image processing for rPPG.

Although rPPG can be applied to all skin areas, most
research focuses on the face due to its several
benefits over other skin regions. Primarily, the face
is usually not obscured by clothing. Additionally, it
has a large skin surface and excellent blood flow,
which are crucial for pulse signal extraction. A
fundamental method involves using a cascade
classifier to identify the face, as outlined by Viola
and Jones [13]. This algorithm employs Haar-like
image filters to detect facial features, resulting in a
bounding box that indicates the face's position and
size. Pulse signals for each color channel are then
derived by averaging the image data within the
face's bounding box [14]. A significant limitation of
this technique is its restriction to specific viewing
angles of the face. To address issues of rotation and
subject movement, a widely adopted solution is the
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implementation of a point tracking algorithm, such
as the Kanade-Lucas-Tomasi Tracker [15], which
adjusts the bounding box to follow the subject's
movements [16], [17].

In [18], a method for tracking ROl was introduced,
which involves generating regional proposals and
utilizing multi-scale ROIs. Reference [19] presented
a dynamic ROl tracking technique capable of
monitoring minor movements and variations in
lighting, with the ability to operate in real time. Wei

et al. [20] employed the MediaPipe Face Mesh3.1.

framework [21] to identify 468 facial landmarks
within a frame and dynamically track the face
region. Similarly, Pagano et al. [22] utilized the
MediaPipe Face Mesh, integrating it with a support
vector machine to extract the region of interest.
Once a face is detected, it is often necessary to
exclude areas with lower signal-to-noise ratio
(SNR), such as the eyes and mouth, which can
exhibit significant fluctuations during typical human
activities like blinking and speaking. Wong et al. [23]
introduced a novel ‘angle map’ representation of
facial regions to identify areas with a higher SNR.

In earlier research, Verkruysse et al. were the
pioneers in suggesting the use of consumer-grade
cameras to derive rPPG signals for heart rate
monitoring [10]. Their study revealed that the Red,
Green, and Blue (RGB) signal's different channels
exhibited varying levels of PPG signal strength, with
the green channel showing the most pronounced
pulsatile signal.

Poh et al. [14] introduced an Independent
Component Analysis (ICA) algorithm that utilizes
joint approximate diagonalization of eigenmatrices
to eliminate correlations and higher-order
dependencies among RGB channels, thereby
extracting HR components in both stationary and
naturally moving sitting scenarios. The root mean
square error (RMSE) for the motion scenario was
reduced from 19.36 bpm to 4.63 bpm, indicating
the potential of ICA for HR estimation.

Methods

Figure 1 illustrates the system diagram. The method
we propose takes the facial RGB color from video
footage of subjects as input and produces an
assessment of blood flow quality across three
designated regions of interest. Initially, the process

3.2.
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involves detecting the subject's face in the initial
frame and maintaining its tracking throughout the
video. The next step focuses on generating three
mask regions, which will be utilized to extract
features through the bitwise operation technique.
Finally, an SVM model is employed to determine
which of the three regions contains the most
significant physiological data. Each of these steps
will be elaborated upon in the following
subsections.

Recording the video and face detection

Face detection is a crucial component in numerous
applications, including face authentication,
recognition, tracking, and emotion recognition. The
purpose of a face detection algorithm is to ascertain
whether a face is present in an image. While
humans can easily identify faces, this task poses a
significant challenge for computers. Consequently,
it has been a fascinating area of research for many
years. In video processing, detecting a subject's face
from a video frame is vital. To achieve accurate face
detection, a dependable face tracking method is
necessary. Therefore, for this project, the
'CascadeObject-Detection' method [24], [25] from
the Open Source Computer Vision (OpenCV) library,
developed by Viola-Jones [26], was employed. In
this part, the subject will face the webcam, and a
video recording will be carried out. During the
recording, the camera will try to detect the face and
save an image of it.

Detection of the ROls

To determine this ROI, three rectangular masks
were applied to the facial image identified in the
earlier section. This method can identify the
following three facial areas: the Forehead and both
Cheeks. Constructing a mask within an image
typically involves creating a binary mask where
pixels within the desired region are assigned a value
of one (or True=1), while those outside are given a
value of zero (or False=0). These masks match the
dimensions of the image captured by the camera,
and mathematically, they are represented as [31]:

Rm(x,y)
_{1,ifx1 <x<xandy; <y<y,
o, otherwise

ey

With (x;, y;) the coordinate at the top-left corner,
and (x,,y,) the coordinate at the bottom-right
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corner, and (x, y) is the set of points belonging to
the region of interest of R,

Left_Cheek_mask: When applied to the image, it
results in an output where every area is blacked out
except for the left cheek.

Right_Cheek_mask: Upon application to the image,
it produces an output where all areas are black
except for the right cheek.

Forehead_mask: Similarly, this mask can be used to
obscure all facial regions except the forehead.

After preparing all the masks, the subsequent step
involves applying these masks to the facial image
through a method known as bitwise operation, a
common technique in image processing. Bitwise
operations manipulate the binary form of pixel
values in images, allowing pixels to be processed as
binary rather than numerical values. This approach

Various bitwise operations can be employed in
image processing, including:

AND: The bitwise AND operation
corresponding  bits

compares

between two images. It

3.3.1.

produces an image where the pixel value is 1 if both
input images have a pixel value of 1, and 0
otherwise.

OR: The bitwise OR operation evaluates the
corresponding pixels in both input images. The
resulting image has a pixel value of 1 if either of the
input images has a pixel value of 1, and 0 otherwise.
XOR: The bitwise XOR operation compares the
corresponding bits of two binary input images. It
outputs an image with a pixel value of 1 when the
bits differ in the input images, and 0 when they are
the same.

NOT: The bitwise NOT operation inverts the bits of
an image, changing each bit from 1 to 0 and vice
versa.

The purpose of using bitwise is to apply a mask on
the original image to hide the face and only reveal
the part that we need for future processing.
According to our needs, the bitwise AND operation
has been chosen for use because it aligns with our
purpose. The result can be seen in section 4 of this

paper.

Extracting the features
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is particularly beneficial for tasks like image
masking, where selecting a specific part of an image
based on another image's values is required [30].

N i =thodsand Iy ine the
analysing features
S, ——
v Featnrea
Fi N
e
TR based on il ion of
eking pict the characteristies linked to
of the face blood flow qualtty Featren
Preprocessing Algorithm
Inputs Output
Features from the Training and testing a Classifying the blood
preprocessing - smppart vectar machine flonw quality: Good
algorithm model and Poor

Figura 1. General for blood flow

To select the optimal region from these three ROIs,
it is crucial to assess a range of parameters related
to both image features and physiological attributes.
[29]-[33], we
parameters that should be taken into account are:

From learnt that among the

Variance and standard deviation

Detecting changes in pixel intensity can reveal
details about texture and the dynamics of blood
flow. The formulas for variance and standard
deviation are provided as [33]:

Variance o2 of the pixel intensities in the region of
interest are given by:

1
o= EZ(x,y)EROI(Ix,y - :u)z (2)

With I, ,, is the pixel value at the coordinate (x, y),
and N The number of pixels in the ROIl. The
expression (I, — w)? presents the squared
difference between each pixel value and the mean
pixel value.

U represents the mean pixel value in the ROI, and
it is defined in [33] as:

1
u= ﬁZ(x,y)eROl Ix,y 3
The standard deviation ¢, of the noise in the ROl is
given by:
1
o0 = [~ Zameronlley = Y @
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Entropy

Entropy quantifies the complexity of texture, which
might suggest irregularities in perfusion. As noted
in [33], entropy is defined as:

Entropy = — X P(I;) log, P(I;) (5)
Where P(I;) It is the probability of pixel intensity.
And mathematically it is given as:

h(1;)
P() = =2 (6)

With h(l;) is the number of pixels with intensity ;

And N The total number of pixels in the ROL.
3.4.
Gaussian filter

To smooth the image, eliminate noise, and
emphasize significant intensity changes associated
with blood flow, a Gaussian filter is utilized. The
Gaussian equation is represented as [31]:

x2+y2?

e 202 ©)

G(x,y) =

2ma?

3.4.1.

(x,y) The coordinates of a pixel relative to the
center of the filter. And o is the standard deviation
of the Gaussian distribution.

Gabor filter

Gabor captures information about frequency and
orientation, which aids in identifying structural
patterns in perfusion. The Gabor filter is employed
for analyzing edges and textures. It is characterized
as [32]:

G(x,y;4,0,0,7) =
€Xp (_ %) cos (271% + 3.4.2.
Q)) ®)
Where:

x" = xcos@ + ysinb ©)

y' = —xsinf + ycos6 (10)

A is the wavelength, O is the orientation, o is the
standard deviation of the Gaussian envelope, vy is
the spatial aspect ratio, and @ is the phase offset.

signal-to-noise ratio

In the realm of image processing, determining the
signal-to-noise ratio of an image is a crucial step.
This evaluation helps us gauge the image's quality.

The SNR is particularly useful in scenarios Iike343

Vol 46 No. 05
May 2025

evaluating image quality and diagnostic precision.
In such instances, a higher signal-to-noise ratio
indicates superior image quality, which is essential
for accurate interpretation. It quantifies the
usefulness of the signal relative to the noise. The
signal-to-noise ratio is defined as the ratio of the

average signal value to the noise's standard

deviation.
SNR = Uin (11)

With u and o, have been calculated respectively
in equations (3) and (4).

Using machine learning for detecting the best
region of interest

The main purpose of this part is to classify the blood
flow quality (good or poor) in the different regions
(forehead, right cheek, and left cheek). However, to
achieve this objective, a machine learning algorithm
based on classification was used.

Dataset

This study utilizes the PURE dataset [29]. To access
it, it is possible through [34], which includes data
from 10 individuals engaged in various controlled
head movements in front of a camera. Throughout
these sessions, both the image sequences of the
head and reference pulse measurements were
captured. The group of 10 participants (comprising
8 males and 2 females) was recorded across 6
distinct setups, resulting in a total of 60 sequences,
each lasting 1 minute.

Labelling the dataset

To categorize blood flow quality into Good and
Poor, it is essential to establish labels based on the
features extracted. A detailed explanation using a
structured method is presented in Table 1. To
determine numerical thresholds for each quality
label (Good and Poor), a statistical analysis-based
method in [29]-[31] was applied to the dataset. The
following is an approach for setting these
thresholds: To compute feature distribution, we
calculate the Mean (u) and Standard Deviation (o)
for each feature throughout the dataset. A typical
method involves establishing quality labels using
percentiles. The findings are presented in Section 4,

Figure 5.

Evaluation Metrics
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The proposed system model was assessed using
standard metrics from the literature, including
accuracy (ACC), precision (PR), recall (R), F1-score,
and false positive rate (FPR). Accuracy measures the
model's rate of correct classifications, precision
indicates the positive predictive value, recall (also
known as sensitivity) reflects the True positive rate
(TPR), and the Fl-score is calculated as the
harmonic mean of precision and recall. The
equations for each of these metrics are defined in
[22] as follows:

4.2.

___apetv)
ACC = (TP + TN + FP + FN) (12
TP
PR = s (13)
TP
recall = m (14)
FP
F1 — score =2 * (PR - Recall) (16)

(PR+ Recall)

TP represents True Positives, which are the
correctly predicted positive cases. TN stands for
True Negatives, indicating the correctly predicted

negative cases. FP refers to False Positives, where4. 3,

positive cases are incorrectly predicted. FN denotes
False Negatives, where negative cases are
incorrectly predicted.

Results

This section provides a detailed, step-by-step
presentation of the experimental results, as
outlined in the methodology.

Video and face detection

In this part, the subject faces the webcam, and a
video is recorded. During the recording, the camera
detects in real-time the face and saves an image of
it. The result is shown in Figure 2.

WoFIvere | extracted
including SNR, average intensity, variance, standard
deviation, entropy, Sobel filter, Gaussian filter, and
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(a) (b)

Figure 2. (a) is recording video with face detection.
(b) is the image’s face detected

The purpose of that picture (b) is to carry out a pre-
processing on it, allowing us to decide on which
area of the face will be extracted for the rPPG
signal. All steps concerning this pre-processing are
explained in the next subsection.

Extracting the ROIs

Figure 3 presents the three masks that have been
developed. Figure 4 shows the result of the process
of extracting the ROIs. The technique consisted of
using the bitwise AND operation between the
original image in Figure 2 (b) and the three masks in
Figure 3.

7 ankagely et chesk Mask

Figure
cheek| (@)

Machine learning algorithm

In this section, a support vector machine was
employed to categorize the quality of blood flow
(either good or poor) across various regions,
including the forehead, right cheek, and left cheek.
Initially, a preprocessing step was implemented,
which relied on image processing techniques.
Specifically, the algorithm accessed images from
the PURE database.

Through our preprocessing method, each image
underwent face detection, and the three regions of
interest were extracted. The subsequent step
involved constructing the dataset. This dataset
incorporated features that pertain to both image
and physiological characteristics within each ROI.

Gabor filter. The final phase involved labeling the
dataset by assessing the quality of blood flow,

94



Journal of Harbin Engineering University
ISSN: 1006-7043

categorizing it as Good if the ROl demonstrated
high quality, and Poor if the quality was low.

To assign these labels, numerical thresholds for
each quality category (Good and Poor) were
established using a statistical analysis method. The
approach of defining Good Blood Flow (High
Quality) and Poor Blood Flow (Low Quality) through
statistical thresholds, such as p (mean) + 0.50
(standard deviation), is a heuristic method
commonly used in image processing and signal
analysis [31]. When a feature (e.g., variance,
standard deviation, entropy) significantly surpasses

Vol 46 No. 05
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the mean (4 + 0.50), it indicates high texture
complexity and variability, often linked to stronger
blood flow. Conversely, if a feature falls significantly
below the mean (u-0.50), it suggests low variation
and smoothness, potentially indicating poor blood
flow due to low contrast or weak perfusion.

Figure 5 illustrates the dataset with quality labels,
where Good quality signifies that the ROI has high
quality, and Poor indicates weak quality.
Throughout the rest of the work, good quality was
numerically represented as 1, and poor quality as 0.

Table 1. Simulation result using testing data

Model metric

Value in (%)

accuracy

0.99 => (99%)

Support Vector Machine precision

0.92 => (92%)

recall

0.96 => (96%)

Fl-score

0.94 => (94%)

false positive rate

0.007 => (0.7%)

Video Face image

I\

ROI selection

Masks Image

Figure 4. (a): forehead, (b): right cheek, (c): left cheek
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Table 2. Characteristics for labelling the features
features Quality Characteristics of the image
Variance and standard deviation | High Fluctuations in pixel intensity

strong blood flow dynamics

Low Minimal fluctuation in pixel
intensity
weak blood flow

High well-lit
well-perfused skin regions

Average intensity Low indicate poor lighting
reduced blood perfusion

High a strong physiological signal with
minimal noise
Signal-to-noise ratio Low Noisy or weak physiological signal
High rich texture

active blood flow

Entropy Low Texture is smooth
lacks complexity
poor blood flow

Sobel filter High visible vascular structures
Low No strong vascular structures are
visible
Gabor and Gaussian High Strong spatial frequency
components in areas with good
perfusion.
Low a lack of significant frequency
Pixel ignal t tandard i Gab
image name ROI mfan n.(e s.lg“a _D variance ¢ a? '.“ sobel filter gauslsmn entropy a. or quality_label
intensity  noise ratio deviation filter filter
0 Image1392644182276178000.png  forehead 96102708 2668853 1296 36008999 634875255  97.200417 3.967436 1547.7368 1
1 Image1392644182276178000.png  left_cheek 59.245000 2.199917 725 26.930558  670.719671 60.057917 3.917957  956.7046 0
2 Image1392644182276178000.png  right_cheek 80.042500 2.469467 1050 32412868  716.620399 81.202083 3.795118 1294.1350 0
3 Image1392644182309522000.png forehead 96.617324 2.656602 1322 36.368758  650.077665 97.843568 3.958706 1556.7344 1
4 Image1392644182309522000.png  left_cheek 50605784 2.199446 736 27141276 688710461  60.538896 3.807481 9647088 0
2995 Image1392723949536884000.png  left_cheek 121.687028 2.156032 3185 56.440281 1319.243359  124.287400 4.191765 1984.0570 0
2996 Image1392723949536884000.png right_cheek 104.487989 1.729320 3650 60.421444 1320.879848  106.045299 4.163277 1691.6222 0
2097 Imagel392723049570229000png  forehead 113645848 1752380 4205 64852275 1148542319 115510295 4778835 18402975 0
2998 Image1392723949570229000.png  left_cheek 121.799588 2.156258 3190 56.486546 1323.176315  124.403569 4.200033 1985.9454 0
2999 Image1392723949570229000.png right_cheek 104.449554 1.723740 3671 60.594711 1323.273283  106.014413 4.159476 1691.0247 0

3000 rows = 11 columns

Figure 5. Dataset labelled with Good and Poor quality.
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Confusion Matrix for SVYM Blood Flow Classification

True Label

May 2025
500
= 400
- 300
- 200
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Figure 6. Confusion matrix for SYM blood flow quality classification from three ROIs on the face.

0.994
— validation __—
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0.993 -
0.992
g
2 0.991
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0.989 -
400 600 800 1000 1200 1400 1600 1800
train_sizes

Figure 7. Training and validation accuracy of the model.

The model's outcomes are highly encouraging for
our needs:

Accuracy (99%): Exceptionally high, indicating the
model's overall strong performance.

Precision (92%): A high precision rate signifies that
when the model predicts "Good" blood flow, it is
accurate 92% of the time, which is crucial for
reducing false positives.

Recall (96%): A high recall rate shows the model's
effectiveness in identifying actual instances of

"Good" blood flow, capturing 96% of them, which is
excellent for ensuring no good samples are
overlooked.

F1-score (94%): This score reflects a well-balanced
trade-off between precision and recall, indicating a
strong balance between the two metrics.

Rate (0.7%): Extremely low,
suggesting the model seldom misclassifies "Poor"
blood flow as "Good," thereby minimizing false
alarms.

False Positive
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In the realm of real-time blood flow quality
the
model's robustness. It efficiently identifies high-

assessment, these metrics demonstrate
quality blood flow with minimal false positives and
high recall, which is vital for precise monitoring in

real-time applications.
Conclusion and future work

In this study, a computer vision model employing a
machine learning approach for real-time analysis
was introduced, allowing for the classification of a
patient's blood flow quality in the regions of
interest: the forehead, right cheek, and left cheek.
The process begins by detecting the subject's face
in the initial frame and maintaining its tracking
throughout the video. Next, three mask regions are
generated to facilitate feature extraction using the
bitwise operation method. Finally, a Support Vector
Machine model is utilized to determine which of the
three areas exhibits good blood flow quality.

The proposed system shows promising results
when evaluated using the PURE dataset. It
delivered outstanding performance, achieving an
accuracy rate of 99% and a False Positive Rate of
merely 0.7%. This classification aims to identify the
region of interest that contains the most vital
physiological data. This will help us reduce errors in
future work when estimating the rPPG signal.

In our upcoming research, we plan to utilize

advanced artificial intelligence algorithms to
predict the patient's rPPG signal, which will allow us

to determine the heart rate.
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