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Abstract 

Introduction: In recent years, there have been significant advancements in the field of biological parameter 

measurement. The emergence of contactless technology now enables the extraction of vital sign data using a 

standard personal computer (PC) equipped with a webcam. This system captures facial footage to obtain a 

remote photoplethysmography (rPPG) signal. 

Objectives: Identifying the correct extraction area, known as the Region of Interest (ROI), is a crucial part of this 

process. Traditionally, the forehead is used as the primary site for extracting physiological parameters. However, 

this method poses challenges when patients have injuries or fractures on the forehead that need to be covered. 

To overcome this issue, we developed an automated computer vision model utilizing a machine learning 

technique that can analyse and classify blood flow quality in real-time across three facial ROIs: the forehead, 

right cheek, and left cheek. 

Methods: The procedure starts by identifying the subject's face in the first frame and ensuring it remains tracked 

throughout the video. Subsequently, three mask regions are created to facilitate feature extraction using the 

bitwise operation method. In the final step, a Support Vector Machine (SVM) model is used to ascertain which 

of the three regions holds the most crucial physiological information. 

Results: The proposed system shows promising results when evaluated using the PURE testing dataset. It 

delivered outstanding performance, achieving an accuracy rate of 99% and a False Positive Rate (FPR) of merely 

0.7%. 

Conclusions: The suggested approach is highly efficient in monitoring the forehead, right cheek, and left cheek 

of a patient's face, identifying the region with the richest physiological data among them. This method was 

created and evaluated with 10 participants who were seated in a chair, facing the camera. The camera was 

positioned 1 meter away from the subjects. 

Keywords: non-contact; computer vision; machine learning; photoplethysmography. 

 

1. Introduction 

Monitoring the physiological condition of the 

human body often involves tracking key vital signs, 

including heart rate (HR), body temperature (BT), 

respiratory rate (RR), blood oxygen saturation 

(SpO2), heart rate variability (HRV), and blood 

pressure (BP) [3–7]. These indicators are valuable 

tools for assessing an individual's physical well-

being, identifying potential illnesses, and tracking 

recovery progress. Long-term monitoring of 

physiological parameters provides useful insights 

into a patient's condition, and in some cases, is 

essential for diagnosing certain conditions, such as 

ectopic heartbeats [4]. 

Photoplethysmography (PPG) is an economical and 

non-invasive technique for assessing physiological 

parameters [2–6]. The fundamental concept of PPG 

involves employing a light source alongside a 

photodetector to assess variations in the blood 

vessel volume beneath the skin. As the light source 
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illuminates the tissue, the photodetector captures 

minor fluctuations in the light's reflection or 

transmission intensity due to blood flow, resulting 

in the generation of the PPG signal [7]. Devices like 

pulse oximeters and fitness trackers utilize PPG to 

non-invasively monitor minor skin changes based 

on this principle. Nonetheless, these conventional 

contact devices have several drawbacks, such as 

being inappropriate for identifying skin conditions 

in sensitive groups like infants and individuals with 

skin disorders [8]. They can also cause discomfort or 

even lead to skin infections with prolonged use [9], 

and their accuracy can be compromised by factors 

like skin moisture, temperature, color, and patient 

movement [10].  

To circumvent these drawbacks, researchers have 

started investigating non-contact techniques for 

remote heart rate monitoring, with rPPG emerging 

as a formidable alternative. This method employs a 

camera, such as a webcam, infrared camera, or RGB 

camera, to capture video footage of a person's face, 

detecting minute color variations in the skin to 

produce the remote PPG signal [11]. The underlying 

principle of rPPG is akin to that of traditional PPG, 

where the pulsation of blood through the 

cardiovascular system alters the blood volume in 

the microvascular tissue beneath the skin with each 

heartbeat, creating periodic waves. Presently, rPPG 

is recognized as superior because it eliminates the 

need for subjects to wear contact devices, thus 

avoiding their associated disadvantages, and it is 

also ideal for prolonged continuous monitoring, 

accommodating various patients. Additionally, the 

camera necessary for the rPPG technique is 

inexpensive and readily accessible, making it highly 

suitable for extensive promotion and use [1]. 

However, employing rPPG techniques in practical 

settings is more challenging due to factors such as 

lighting variations, facial hair, and skin tone, all of 

which can affect the precision of the signal 

obtained. Additionally, the rPPG signal is inherently 

weaker compared to that derived from traditional 

contact methods because of fundamental 

differences, necessitating meticulous and accurate 

processing. 

To overcome these challenges, obtaining a precise 

rPPG signal is essential. Consequently, a 

preprocessing algorithm is required to identify a 

region with distinct blood perfusion. Given the 

limited research on analysing blood perfusion 

through image processing, our study concentrates 

on these elements. The primary aim of this paper is 

to present a computer vision model that utilizes a 

machine learning technique for real-time analysis, 

enabling the classification of a patient's blood flow 

quality across the ROIs: the forehead, right cheek, 

and left cheek. 

The key contributions are as follows: i) A 

comprehensive literature review on the extraction 

and analysis of the rPPG signal is performed.  ii) An 

image processing algorithm is developed to extract 

features related to blood perfusion, and its 

performance is evaluated under different lighting 

conditions and recording setups. iii) A machine 

learning model is designed to classify the blood flow 

quality (Good or Poor) for each ROI. 

The remainder of the work is structured as follows. 

Section 2 gives an overview of the most widespread 

image processing approaches for rPPG extraction 

from videos. Section 3 provides the methodology 

that has been used for tracking the ROIs and 

extracting features linked to the blood perfusion. 

Sections 4 and 5 give the results and the 

conclusions, respectively. 

2. Related work 

As previously mentioned, rPPG involves several 

techniques. Below, we offer a summary of the key 

methods in image processing for rPPG. 

Although rPPG can be applied to all skin areas, most 

research focuses on the face due to its several 

benefits over other skin regions. Primarily, the face 

is usually not obscured by clothing. Additionally, it 

has a large skin surface and excellent blood flow, 

which are crucial for pulse signal extraction. A 

fundamental method involves using a cascade 

classifier to identify the face, as outlined by Viola 

and Jones [13]. This algorithm employs Haar-like 

image filters to detect facial features, resulting in a 

bounding box that indicates the face's position and 

size. Pulse signals for each color channel are then 

derived by averaging the image data within the 

face's bounding box [14]. A significant limitation of 

this technique is its restriction to specific viewing 

angles of the face. To address issues of rotation and 

subject movement, a widely adopted solution is the 
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implementation of a point tracking algorithm, such 

as the Kanade-Lucas-Tomasi Tracker [15], which 

adjusts the bounding box to follow the subject's 

movements [16], [17]. 

In [18], a method for tracking ROI was introduced, 

which involves generating regional proposals and 

utilizing multi-scale ROIs. Reference [19] presented 

a dynamic ROI tracking technique capable of 

monitoring minor movements and variations in 

lighting, with the ability to operate in real time. Wei 

et al. [20] employed the MediaPipe Face Mesh 

framework [21] to identify 468 facial landmarks 

within a frame and dynamically track the face 

region. Similarly, Pagano et al. [22] utilized the 

MediaPipe Face Mesh, integrating it with a support 

vector machine to extract the region of interest. 

Once a face is detected, it is often necessary to 

exclude areas with lower signal-to-noise ratio 

(SNR), such as the eyes and mouth, which can 

exhibit significant fluctuations during typical human 

activities like blinking and speaking. Wong et al. [23] 

introduced a novel ‘angle map’ representation of 

facial regions to identify areas with a higher SNR. 

In earlier research, Verkruysse et al. were the 

pioneers in suggesting the use of consumer-grade 

cameras to derive rPPG signals for heart rate 

monitoring [10]. Their study revealed that the Red, 

Green, and Blue (RGB) signal's different channels 

exhibited varying levels of PPG signal strength, with 

the green channel showing the most pronounced 

pulsatile signal. 

Poh et al. [14] introduced an Independent 

Component Analysis (ICA) algorithm that utilizes 

joint approximate diagonalization of eigenmatrices 

to eliminate correlations and higher-order 

dependencies among RGB channels, thereby 

extracting HR components in both stationary and 

naturally moving sitting scenarios.  The root mean 

square error (RMSE) for the motion scenario was 

reduced from 19.36 bpm to 4.63 bpm, indicating 

the potential of ICA for HR estimation. 

3. Methods 

Figure 1 illustrates the system diagram. The method 

we propose takes the facial RGB color from video 

footage of subjects as input and produces an 

assessment of blood flow quality across three 

designated regions of interest. Initially, the process 

involves detecting the subject's face in the initial 

frame and maintaining its tracking throughout the 

video. The next step focuses on generating three 

mask regions, which will be utilized to extract 

features through the bitwise operation technique. 

Finally, an SVM model is employed to determine 

which of the three regions contains the most 

significant physiological data. Each of these steps 

will be elaborated upon in the following 

subsections. 

3.1. Recording the video and face detection 

Face detection is a crucial component in numerous 

applications, including face authentication, 

recognition, tracking, and emotion recognition. The 

purpose of a face detection algorithm is to ascertain 

whether a face is present in an image. While 

humans can easily identify faces, this task poses a 

significant challenge for computers. Consequently, 

it has been a fascinating area of research for many 

years. In video processing, detecting a subject's face 

from a video frame is vital. To achieve accurate face 

detection, a dependable face tracking method is 

necessary. Therefore, for this project, the 

'CascadeObject-Detection' method [24], [25] from 

the Open Source Computer Vision (OpenCV) library, 

developed by Viola-Jones [26], was employed. In 

this part, the subject will face the webcam, and a 

video recording will be carried out. During the 

recording, the camera will try to detect the face and 

save an image of it. 

3.2. Detection of the ROIs 

To determine this ROI, three rectangular masks 

were applied to the facial image identified in the 

earlier section. This method can identify the 

following three facial areas: the Forehead and both 

Cheeks. Constructing a mask within an image 

typically involves creating a binary mask where 

pixels within the desired region are assigned a value 

of one (or True=1), while those outside are given a 

value of zero (or False=0). These masks match the 

dimensions of the image captured by the camera, 

and mathematically, they are represented as [31]: 

𝑅𝑚(𝑥, 𝑦)

= {
1, 𝑖𝑓 𝑥1 ≤ 𝑥 ≤ 𝑥2 𝑎𝑛𝑑 𝑦1 ≤ 𝑦 ≤ 𝑦2 
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

    (1) 

With (𝑥1, 𝑦1) the coordinate at the top-left corner, 

and (𝑥2, 𝑦2) the coordinate at the bottom-right 
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corner, and (x, y) is the set of points belonging to 

the region of interest of  𝑅𝑚 

Left_Cheek_mask: When applied to the image, it 

results in an output where every area is blacked out 

except for the left cheek. 

 Right_Cheek_mask: Upon application to the image, 

it produces an output where all areas are black 

except for the right cheek.  

Forehead_mask: Similarly, this mask can be used to 

obscure all facial regions except the forehead. 

After preparing all the masks, the subsequent step 

involves applying these masks to the facial image 

through a method known as bitwise operation, a 

common technique in image processing. Bitwise 

operations manipulate the binary form of pixel 

values in images, allowing pixels to be processed as 

binary rather than numerical values. This approach 

is particularly beneficial for tasks like image 

masking, where selecting a specific part of an image 

based on another image's values is required [30]. 

 

 

Various bitwise operations can be employed in 

image processing, including: 

• AND: The bitwise AND operation compares 

corresponding bits between two images. It 

produces an image where the pixel value is 1 if both 

input images have a pixel value of 1, and 0 

otherwise. 

• OR: The bitwise OR operation evaluates the 

corresponding pixels in both input images. The 

resulting image has a pixel value of 1 if either of the 

input images has a pixel value of 1, and 0 otherwise. 

• XOR: The bitwise XOR operation compares the 

corresponding bits of two binary input images. It 

outputs an image with a pixel value of 1 when the 

bits differ in the input images, and 0 when they are 

the same. 

• NOT: The bitwise NOT operation inverts the bits of 

an image, changing each bit from 1 to 0 and vice 

versa. 

The purpose of using bitwise is to apply a mask on 

the original image to hide the face and only reveal 

the part that we need for future processing. 

According to our needs, the bitwise AND operation 

has been chosen for use because it aligns with our 

purpose. The result can be seen in section 4 of this 

paper. 

3.3. Extracting the features 

To select the optimal region from these three ROIs, 

it is crucial to assess a range of parameters related 

to both image features and physiological attributes. 

From [29]-[33], we learnt that among the 

parameters that should be taken into account are: 

3.3.1. Variance and standard deviation 

Detecting changes in pixel intensity can reveal 

details about texture and the dynamics of blood 

flow. The formulas for variance and standard 

deviation are provided as [33]: 

• Variance 𝜎2 of the pixel intensities in the region of 

interest are given by: 

𝜎2 =  
1

𝑁
∑ (𝐼𝑥,𝑦 −  𝜇)2

(𝑥,𝑦)∈𝑅𝑂𝐼                       (2)                 

With 𝐼𝑥,𝑦 is the pixel value at the coordinate (𝑥, 𝑦), 

and 𝑁 The number of pixels in the ROI. The 

expression (𝐼𝑥,𝑦 −  𝜇)2 presents the squared 

difference between each pixel value and the mean 

pixel value. 

𝜇  represents the mean pixel value in the ROI, and 

it is defined in [33] as: 

   𝜇 =
1

𝑁
∑ 𝐼𝑥,𝑦(𝑥,𝑦)∈𝑅𝑂𝐼                                             (3) 

• The standard deviation 𝜎𝑛 of the noise in the ROI is 

given by: 

𝜎𝑛 = √
1

𝑁
∑ (𝐼𝑥,𝑦 −  𝜇)2 (𝑥,𝑦)∈𝑅𝑂𝐼                    (4)  
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3.3.2. Entropy 

Entropy quantifies the complexity of texture, which 

might suggest irregularities in perfusion. As noted 

in [33], entropy is defined as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃(𝐼𝑖) log2 𝑃(𝐼𝑖)𝑖                      (5)   

Where 𝑃(𝐼𝑖) It is the probability of pixel intensity. 

And mathematically it is given as: 

𝑃(𝐼𝑖) =  
ℎ(𝐼𝑖)

𝑁
                                                          (6)  

With   ℎ(𝐼𝑖) is the number of pixels with intensity 𝐼𝑖   

And 𝑁 The total number of pixels in the ROI. 

3.3.3. Gaussian filter 

To smooth the image, eliminate noise, and 

emphasize significant intensity changes associated 

with blood flow, a Gaussian filter is utilized. The 

Gaussian equation is represented as [31]: 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2                                        (7)  

(𝑥, 𝑦) The coordinates of a pixel relative to the 

center of the filter. And σ is the standard deviation 

of the Gaussian distribution. 

3.3.4. Gabor filter 

Gabor captures information about frequency and 

orientation, which aids in identifying structural 

patterns in perfusion. The Gabor filter is employed 

for analyzing edges and textures. It is characterized 

as [32]: 

𝐺(𝑥, 𝑦; 𝜆, 𝜃, 𝜎, 𝛾) =

exp (−
𝑥′2+ 𝛾2𝑦′2

2𝜎2 ) cos (2𝜋
𝑥′2

𝜆
+

∅)                                                                                 (8)  

Where: 

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃                                       (9) 

𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃                                    (10) 

 λ is the wavelength, θ is the orientation, σ is the 

standard deviation of the Gaussian envelope, γ is 

the spatial aspect ratio, and ϕ is the phase offset. 

3.3.5. signal-to-noise ratio 

In the realm of image processing, determining the 

signal-to-noise ratio of an image is a crucial step. 

This evaluation helps us gauge the image's quality. 

The SNR is particularly useful in scenarios like 

evaluating image quality and diagnostic precision. 

In such instances, a higher signal-to-noise ratio 

indicates superior image quality, which is essential 

for accurate interpretation. It quantifies the 

usefulness of the signal relative to the noise. The 

signal-to-noise ratio is defined as the ratio of the 

average signal value to the noise's standard 

deviation. 

𝑆𝑁𝑅 =  
𝜇

𝜎𝑛
                                                       (11)  

With  𝜇  and 𝜎𝑛 have been calculated respectively 

in equations (3) and (4). 

3.4. Using machine learning for detecting the best 

region of interest 

The main purpose of this part is to classify the blood 

flow quality (good or poor) in the different regions 

(forehead, right cheek, and left cheek). However, to 

achieve this objective, a machine learning algorithm 

based on classification was used. 

3.4.1. Dataset 

This study utilizes the PURE dataset [29]. To access 

it, it is possible through [34], which includes data 

from 10 individuals engaged in various controlled 

head movements in front of a camera. Throughout 

these sessions, both the image sequences of the 

head and reference pulse measurements were 

captured. The group of 10 participants (comprising 

8 males and 2 females) was recorded across 6 

distinct setups, resulting in a total of 60 sequences, 

each lasting 1 minute. 

3.4.2. Labelling the dataset 

To categorize blood flow quality into Good and 

Poor, it is essential to establish labels based on the 

features extracted. A detailed explanation using a 

structured method is presented in Table 1. To 

determine numerical thresholds for each quality 

label (Good and Poor), a statistical analysis-based 

method in [29]-[31] was applied to the dataset. The 

following is an approach for setting these 

thresholds: To compute feature distribution, we 

calculate the Mean (μ) and Standard Deviation (σ) 

for each feature throughout the dataset. A typical 

method involves establishing quality labels using 

percentiles. The findings are presented in Section 4, 

Figure 5.   

3.4.3. Evaluation Metrics  
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The proposed system model was assessed using 

standard metrics from the literature, including 

accuracy (ACC), precision (PR), recall (R), F1-score, 

and false positive rate (FPR). Accuracy measures the 

model's rate of correct classifications, precision 

indicates the positive predictive value, recall (also 

known as sensitivity) reflects the True positive rate 

(TPR), and the F1-score is calculated as the 

harmonic mean of precision and recall. The 

equations for each of these metrics are defined in 

[22] as follows: 

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
                                   (12)  

𝑃𝑅 =
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑃)
                                                      (13)  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

(𝑇𝑃 + 𝐹𝑁)
                                              (14)  

 

𝐹𝑃𝑅 =
𝐹𝑃 

(𝐹𝑃 + 𝑇𝑁)
                                                (15)  

 

F1 − score = 2 ∗
(𝑃𝑅 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)  

(𝑃𝑅+ 𝑅𝑒𝑐𝑎𝑙𝑙) 
                       (16)  

TP represents True Positives, which are the 

correctly predicted positive cases. TN stands for 

True Negatives, indicating the correctly predicted 

negative cases. FP refers to False Positives, where 

positive cases are incorrectly predicted. FN denotes 

False Negatives, where negative cases are 

incorrectly predicted. 

4. Results 

This section provides a detailed, step-by-step 

presentation of the experimental results, as 

outlined in the methodology. 

4.1. Video and face detection  

In this part, the subject faces the webcam, and a 

video is recorded. During the recording, the camera 

detects in real-time the face and saves an image of 

it. The result is shown in Figure 2. 

 

 

 

 

     (a)                                           (b)                                          

 Figure 2. (a) is recording video with face detection.  

(b) is the image’s face detected 

The purpose of that picture (b) is to carry out a pre-

processing on it, allowing us to decide on which 

area of the face will be extracted for the rPPG 

signal. All steps concerning this pre-processing are 

explained in the next subsection. 

4.2. Extracting the ROIs 

Figure 3 presents the three masks that have been 

developed. Figure 4 shows the result of the process 

of extracting the ROIs. The technique consisted of 

using the bitwise AND operation between the 

original image in Figure 2 (b) and the three masks in 

Figure 3. 

 

 

 

 

Figure 3.  (a) is the forehead mask, (b) is the right 

cheek mask, and (c) is the left cheek mask. 

4.3. Machine learning algorithm 

In this section, a support vector machine was 

employed to categorize the quality of blood flow 

(either good or poor) across various regions, 

including the forehead, right cheek, and left cheek. 

Initially, a preprocessing step was implemented, 

which relied on image processing techniques. 

Specifically, the algorithm accessed images from 

the PURE database.  

Through our preprocessing method, each image 

underwent face detection, and the three regions of 

interest were extracted. The subsequent step 

involved constructing the dataset. This dataset 

incorporated features that pertain to both image 

and physiological characteristics within each ROI. 

 

The features were extracted from parameters 

including SNR, average intensity, variance, standard 

deviation, entropy, Sobel filter, Gaussian filter, and 

Gabor filter. The final phase involved labeling the 

dataset by assessing the quality of blood flow, 

(a) (b) (c) 
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Face image 

 

 

Video 

 

 

Masks Image 

 

 

 

 

ROI selection 

(a) 

(b) 

(c) 

categorizing it as Good if the ROI demonstrated 

high quality, and Poor if the quality was low.  

To assign these labels, numerical thresholds for 

each quality category (Good and Poor) were 

established using a statistical analysis method. The 

approach of defining Good Blood Flow (High 

Quality) and Poor Blood Flow (Low Quality) through 

statistical thresholds, such as μ (mean) ± 0.5σ 

(standard deviation), is a heuristic method 

commonly used in image processing and signal 

analysis [31]. When a feature (e.g., variance, 

standard deviation, entropy) significantly surpasses 

the mean (μ + 0.5σ), it indicates high texture 

complexity and variability, often linked to stronger 

blood flow. Conversely, if a feature falls significantly 

below the mean (μ-0.5σ), it suggests low variation 

and smoothness, potentially indicating poor blood 

flow due to low contrast or weak perfusion.  

Figure 5 illustrates the dataset with quality labels, 

where Good quality signifies that the ROI has high 

quality, and Poor indicates weak quality. 

Throughout the rest of the work, good quality was 

numerically represented as 1, and poor quality as 0.

 

Table 1. Simulation result using testing data 

Model metric Value in (%) 

 accuracy 0.99 => (99%) 

Support Vector Machine precision 0.92 => (92%) 

 recall 0.96 => (96%) 

 F1-score 0.94 => (94%) 

 false positive rate 0.007 => (0.7%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              Figure 4.  (a): forehead, (b): right cheek, (c): left cheek 
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Table 2. Characteristics for labelling the features 

features Quality Characteristics of the image 

Variance and standard deviation High • Fluctuations in pixel intensity 

• strong blood flow dynamics 

 Low • Minimal fluctuation in pixel 
intensity 

• weak blood flow 

 High • well-lit  

• well-perfused skin regions 

Average intensity Low • indicate poor lighting  

• reduced blood perfusion 

 High • a strong physiological signal with 
minimal noise 

Signal-to-noise ratio Low • Noisy or weak physiological signal 

 High • rich texture 

• active blood flow 

Entropy Low • Texture is smooth  

• lacks complexity 

• poor blood flow 

Sobel filter High • visible vascular structures 

 Low • No strong vascular structures are 
visible 

Gabor and Gaussian High • Strong spatial frequency 
components in areas with good 
perfusion. 

 Low • a lack of significant frequency 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Dataset labelled with Good and Poor quality. 
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   Figure 6. Confusion matrix for SVM blood flow quality classification from three ROIs on the face. 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 7. Training and validation accuracy of the model. 

 

The model's outcomes are highly encouraging for 

our needs: 

• Accuracy (99%): Exceptionally high, indicating the 

model's overall strong performance.  

• Precision (92%): A high precision rate signifies that 

when the model predicts "Good" blood flow, it is 

accurate 92% of the time, which is crucial for 

reducing false positives.  

• Recall (96%): A high recall rate shows the model's 

effectiveness in identifying actual instances of 

"Good" blood flow, capturing 96% of them, which is 

excellent for ensuring no good samples are 

overlooked.  

• F1-score (94%): This score reflects a well-balanced 

trade-off between precision and recall, indicating a 

strong balance between the two metrics.  

• False Positive Rate (0.7%): Extremely low, 

suggesting the model seldom misclassifies "Poor" 

blood flow as "Good," thereby minimizing false 

alarms.  
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In the realm of real-time blood flow quality 

assessment, these metrics demonstrate the 

model's robustness. It efficiently identifies high-

quality blood flow with minimal false positives and 

high recall, which is vital for precise monitoring in 

real-time applications. 

5. Conclusion and future work 

In this study, a computer vision model employing a 

machine learning approach for real-time analysis 

was introduced, allowing for the classification of a 

patient's blood flow quality in the regions of 

interest: the forehead, right cheek, and left cheek. 

The process begins by detecting the subject's face 

in the initial frame and maintaining its tracking 

throughout the video. Next, three mask regions are 

generated to facilitate feature extraction using the 

bitwise operation method. Finally, a Support Vector 

Machine model is utilized to determine which of the 

three areas exhibits good blood flow quality. 

The proposed system shows promising results 

when evaluated using the PURE dataset. It 

delivered outstanding performance, achieving an 

accuracy rate of 99% and a False Positive Rate of 

merely 0.7%. This classification aims to identify the 

region of interest that contains the most vital 

physiological data. This will help us reduce errors in 

future work when estimating the rPPG signal. 

In our upcoming research, we plan to utilize 

advanced artificial intelligence algorithms to 

predict the patient's rPPG signal, which will allow us 

to determine the heart rate. 
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