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Abstract  

This paper presents a novel approach on the implementation of self-healing network solution leveraging the combined 

capabilities of ESP32 microcontroller and BME280 sensor. The proposed solution addresses the key limitations of 

conventional monitoring infrastructure including limited autonomy and fault tolerance. The ESP32 was utilized to 

achieve the self-healing capabilities due to its embedded wireless fidelity (Wi-Fi) features.  A smart contract was 

deployed to ensure data integrity and automate decision making process which is triggered locally by the ESP32 via a 

web3 interface to enable unified interactions between the decentralized backend and the ESP32 nodes. This was 

evaluated with a prototype using ESP32 and BME280 sensors to validate the feasibility of IoT-enabled self-healing 

network and to demonstrate its effectiveness in maintaining secure data transmission among peers efficiently. The 

results shows that the system demonstrates robust fault tolerance through its self-healing capabilities, recovering from 

node or network failure within 0.05 seconds. It archived an average interval of 15s relay of data collected showcasing 

its potential in timely submission of data, suitable for time sensitive networks application domain. The study provides a 

secure and reliable solution for modern communication challenges making it suitable for resource-constrained networks 

with dynamic topologies. These findings have practical implications for industries requiring robust and reliable network 

infrastructure, offering a transformative approach to decentralized communication systems.  
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1. Introduction 

The global increase of climate change has raised the 
concerns of real-time monitoring of environmental 
parameters for governments, researchers, and 
industrial players. Accurate data on temperature, 
humidity or air pressure are important not only to 
prevent natural disasters, but also to optimize the 
management of natural resources and strengthen 
sustainable development policies[1], [2]. The 
conventional monitoring systems have their associated 
constraints such as lack of autonomy recovery and 
limited fault tolerance, data centralization, and high 
risks of network disruptions[3]. Based on these 
challenges, the development of self-healing networks 
offers a promising alternative. These systems are 
characterized by their ability to automatically detect 
internal failures, dynamically reorganize, and maintain 
continuity of services without human intervention [4]. 
The implementation of such networks is based on 
distributed, resilient and adaptive architectures, 
integrating both high- robust communication protocols 
and performance microcontrollers[5]. This paper 
presents an innovative approach combining the ESP32 

microcontrollers, renowned for its local processing 
capabilities, built-in Wi-Fi/Bluetooth connectivity, and 
low power consumption, with the BME280 sensor, 
which enables multiple reliable measurement of 
environmental conditions[6]. This technology duo is at 
the heart of a real-time monitoring system, designed to 
operate in a variety of environments, including those 
with intermittent or harsh connectivity[7], [8]. But 
beyond the hardware aspect, this work draws its 
strength from the integration of smart contracts, 
deployed on a lightweight blockchain. These contracts 
not only automate the management and verification of 
the data collected, but also guarantee their integrity, 
immutability and traceability without requiring a 
trusted third party[9]. This means that every sensor 
reading is immediately and securely recorded, and can 
be audited at any time, increasing the transparency and 
reliability of the system[10], [11]. By combining IoT 
technologies, network resilience and blockchain, this 
study explores an innovative path towards the creation 
of autonomous, intelligent and reliable systems for 
reading and monitoring environmental data in real 
time. It opens the door to many applications in fields 
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such as precision agriculture, climate monitoring, smart 
cities and environmental risk management. 

2. Objectives 

This paper aims to design, implement, and evaluate 

self-healing network using ESP32 and BME280 

empowered by smart contracts. The study addresses 

the limitation of conventional network infrastructure 

issues in terms of autonomous recovery, data integrity, 

and fault tolerance.  This seeks to provide a secure, 

robust and real-time platform for environmental data 

collection and monitoring suitable for dynamic and 

resource-constrained networks. 

3. Methods 

The methodology adopted for this paper revolves 
around the development of a resilient, real-time 
environmental monitoring system that combines edge 
computing, wireless communication, and blockchain-
based data verification as illustrated in Figure 1. The 
architecture is composed of four main functional 
components: a BME280 sensor for data collection, an 
ESP32 microcontroller for local processing, a Wi-Fi 
interface for data transmission, and a Raspberry Pi 4 
device that handles data verification and storage 
through smart contracts on a blockchain. 

 

Figure 1: Block diagram of the implementation 

The process begins at the sensing level with the 
BME280 sensor, which captures real-time 
environmental parameters such as temperature, 
humidity, and atmospheric pressure. This sensor is 
selected for its high accuracy, low power consumption, 
and compact design, making it ideal for embedded 
applications. The sensor transmits the collected data 
directly to the ESP32, which serves as the core 
processing unit at the edge of the network. 

Within the ESP32, the incoming data is handled through 
a modular node-based structure designated as 
NODE_1, NODE_2, and NODE_3. Each node is 
responsible for a distinct task such as data filtering, 
formatting, and temporary storage. This design not 
only streamlines processing but also introduces fault 
tolerance into the system. If one node fails or becomes 
unresponsive, the others can dynamically reassign the 
workload, ensuring that data continues to flow without 
interruption a key aspect of the self-healing network 
principle. 

Once the data has been processed and structured, it is 
transmitted wirelessly via Wi-Fi to a Raspberry Pi 4, 
which operates as the central data gateway. At this 
stage, the Raspberry Pi runs two application 
programming interfaces: API1 and API2. API1 is 
responsible for handling HTTP POST requests from the 
ESP32. It verifies the data format and stores it in a local 
database. API2, on the other hand, handles the smart 
contract logic. It takes the verified data and submits it 
to a lightweight blockchain client running on the 
Raspberry Pi. This interaction with the blockchain 
ensures that every data point is securely recorded with 
a timestamp, providing tamper-proof, verifiable 
storage without the need for a centralized authority. 

The integration of smart contracts enhances the 
transparency and reliability of the system, allowing for 
real-time monitoring, immutable logging, and historical 
audits of environmental data. Furthermore, the use of 
local edge computing (ESP32) combined with 
decentralized storage (via blockchain) reduces 
dependency on cloud infrastructure and mitigates risks 
associated with network downtime or data breaches. 

A) Implementation 

BME280 sensor was utilized to measure temperature, 
humidity and barometric pressure which is submitted 
by the ESP32 to the raspberry pi APIs for validation, 
verification and storage as shown in Figure 1.  The 
ESP32 establishes a mesh connection with its 
neighbours via wireless connectivity. It is used to 
process and submit the collected data from the 
BME280 sensor. This was configured to retain the APIs 
of the HTTP and the smart contract post request. When 
submitted, the raspberry pi hosting the blockchain 
smart contract verifies and log transactions in blocks 
whiles the HTTP verifies and store in MYSQL database 
as shown in Figure 1 and Figure 3. Wi-Fi was chosen as 
the based communication mode to facilitate automatic 
recovery from failures [12], [13] such as power failures. 
Since wireless communication devices can reconfigure 
themselves back to the network, the optimal operation 
will be enhanced. When any device fails, due to power 
or any reason, it’s able to reconnect when available and 
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continuous operations[14], [15]. This minimizes human 
error and interferences. In the other hand, the 
raspberry pi hosts the smart contract, HTTP post APIs 
which receives and verifies the data submitted by 
ESP32 which is subsequently stored in the database and 
append a new block in addition to the existing blocks in 
the blockchain.   

 

Figure 2: Structure of Communication between the 
devices 

All the responds from the APIs can be monitored over 
the serial monitor on the Arduino integrated 
development environment (IDE). The implementation 
was done by using three ESP32 as communication 
nodes with individual BME280 sensor for data 
collection. The data collection was done in every 30s to 
allow the boards to switched into different mode to 
minimize the power consumption and heat. The 
structure of the setup can be seen in Figure 3. 

 

Figure 3: Structure of Setup 

Figure 3 shows the setup of the implementation and 
demonstrate the logics behind it. A smart contract and 
HTTP post request was created to handle data 
submission form the ESP32 collected by the BME280 
sensors to be verified and stored. These was written in 
solidity language using remix IDE, monitored over 
ganache client on the local host machine. This 
facilitated the verification and monitoring of the nature 
of data submission and blocks increments when 
success. As the name implies, smart contract is a self-
executable file that facilitate an agreement between 
participant upon meet certain predefined 

conditions[16], [17]. With the help of web 3 on node 
java script (js)[18], the initiation of the smart contract 
by the ESP32 was made possible and easy to integrating 
two APIs (http & smart contract APIs) for data 
(transaction) submission.  

4. Results 

This paper employs the implementation of innovative 
approach to enhance self-healing and self-organizing 
mesh networks. The ESP32 in combination with 
BME280 was utilized as nodes to initiate transaction in 
a blockchain by submitting the collected data by the 
sensor. Raspberry pi4 was used as the local server that 
host both AIPs of the HTTP and blockchain post request. 
Table 1 shows the nature of data collection at an 
interval of 15 seconds. 

Table 1: Sample data collected from various stations 

Senso
r 

Locatio
n 

Temperatu
re 

Humidit
y 

Pressur
e 

Node
3 

Room3 25.97 44.08 849.39 

Node
2 

Room2 25.45 47.32 849.95 

Node
1 

Room1 26.34 43.67 849.43 

Node
3 

Room3 25.84 47.06 849.99 

Node
2 

Room2 26.36 45.23 849.43 

Node
1 

Room1 25.87 47.36 850.05 

Node
3 

Room3 26.32 44.69 849.41 

Node
2 

Room2 25.85 47.49 850.00 

Node
1 

Room1 26.3 44.03 849.45 

Node
3 

Room3 25.89 46.67 849.99 

Node
2 

Room2 26.26 43.91 849.45 

Node
1 

Room1 25.91 46.13 850.01 

Node
3 

Room3 26.26 45.42 849.42 

Node
2 

Room2 25.92 47.23 849.99 

Node
1 

Room1 26.25 45.94 849.44 

Node
3 

Room3 25.92 48.11 850.01 

The results in Table 1 shows that the minimum, 
average, and maximum temperature red was 25.45oC, 
26.04oC, and 26.36oC respectively whiles humidity was 
43.67%, 45.90%, and 48.11% similarly for pressure, it 
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was 849.39, 849.71 and 850.05 Pa. Figure 4-6 show the 
graphical representation of the temperature, humidity 
and pressure readings. 

 

Figure 4: Temperature Readings 

 

Figure 5: Humidity Readings 

 

Figure 6: Barometric Pressure Readings 

These show variation pattern of the reading of 
temperature, humidity and pressure by the various 
bme280 sensor against the number of times it was able 
to read data in the various rooms.  

The results of the robust monitoring system highlight 
the system's ability to reliably track network traffic in 
real-time. Leveraging ESP32 microcontrollers, BME280 
sensors, and the mesh network, the system effectively 
addresses the challenges of data collection, secure 
communication, and accurate visualization of data as 
shown in Figure 7. 

 

Figure 7:  Network Monitor Results 

The robust monitoring system demonstrates its 
effectiveness in tracking network data and secure data 
management within the network. The responsive 
dashboard effectively visualizes real-time data, 
allowing administrators to monitor conditions and 
promptly receive alerts for threshold breaches. The 
system's rapid responsiveness to environmental 
changes and low power consumption enhanced its 
practicality for continuous operation.  

5. Discussion 

In comparison to centralized networks for 
environmental monitoring, the deployment of a self-
healing network demonstrated notable gains in 
network recovery, fault tolerance, and autonomy. The 
BME280 sensors and ESP32 microcontrollers facilitate 
effective local data collection while preserving the 
networks' resilience and fault tolerance. Real-time 
monitoring in unstable environments requires a robust 
self-healing capability, which is highlighted by the 
system's ability to freely recover from node 
catastrophes in less than 0.05 seconds.  One of the main 
issues in dynamic and fault-prone environments was 
effectively resolved by the self-healing network's 
exceptional recovery performance. According to 
experimental results, the ESP32-based mesh network 
was able to detect and reconfigure itself autonomously 
in 0.05 seconds on average when a node or network 
failed, whether as a result of hardware malfunction, 
power outage, or disconnection. The ESP32's Wi-Fi 
mesh networking protocol's built-in features, which 
enable automatic neighbor discovery and re-
association without human assistance, are responsible 
for this quick recovery. The system's operational 
continuity was thus preserved even in cases where one 
or more nodes momentarily disconnected from the 
network; data transmission resumed nearly 
immediately upon their re-entry. Furthermore, data 
integrity was maintained throughout recovery, thanks 
to the integration of edge computing and decentralized 
data handling (through blockchain smart contracts). By 
functioning autonomously, the ESP32 nodes 
maintained their local processing power, enabling 
smooth task realignment and transition between active 
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nodes, reducing transmission delays and data loss. 
These results demonstrate the system's resilience and 
robustness, demonstrating that it can continue to 
monitor the environment in real time without 
experiencing major disruptions. With this performance 
level, the suggested system is ideal for deployment in 
settings like disaster monitoring zones, remote 
agricultural fields, or smart industrial sites where 
dependability and low downtime are crucial.  However, 
even though the recovery rate was remarkable, it is 
acknowledged that extensive deployments in more 
complicated environmental settings or with more 
nodes. Without depending on a central authority, the 
implementation of a lightweight network with smart 
contracts guarantees unchangeable data records, 
improving trust and traceability. The dangers of data 
breaches, tampering, and single points of failure are 
greatly decreased by this decentralized strategy. 
Additionally, by concurrently uploading data to a 
blockchain and a local database, the system maintained 
redundancy, improving reliability and auditability.  The 
system is highly suitable for time-sensitive applications 
such as precision agriculture, smart city deployments, 
and environmental risk assessment since it can 
successfully collect and transmit environmental data in 
every 15 seconds. The consistency of the observed 
temperature, humidity, and pressure readings across 
the nodes showed how well the BME280 sensors 
worked and how stable the communication network 
was. The study recognizes possible issues with 
scalability, power consumption optimization, and wider 
cloud integration, even though the prototype 
demonstrated remarkable efficacy in a controlled 
setting. Future improvements could include adding 
more nodes to the network, putting energy harvesting 
strategies into practice, and incorporating hybrid cloud-
edge architectures to accommodate larger 
deployments and reduce latency even more. Overall, 
the study effectively confirms that utilizing a blockchain 
and IoT framework together is feasible. 
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