

116

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

Implementation of self-healing network: An improved real-time
environmental data reading and monitoring using eps32 and bme28

sensor empowered by smart contract

Suale Yakubu1, Agnes Mindila2, Peter Kihato3

1Department of Electrical Engineering, Pan Africa University Institute for Basic Sciences, Technology and
Innovation, Kenya

2Department of Computing and Information Technology, Jomo Kenyatta University of Agriculture and
Technology, Kenya

3Department of Electrical and Electronic Engineering, Jomo Kenyatta University of Agriculture and
Technology, Kenya

Abstract

This paper presents a novel approach on the implementation of self-healing network solution leveraging the combined

capabilities of ESP32 microcontroller and BME280 sensor. The proposed solution addresses the key limitations of

conventional monitoring infrastructure including limited autonomy and fault tolerance. The ESP32 was utilized to

achieve the self-healing capabilities due to its embedded wireless fidelity (Wi-Fi) features. A smart contract was

deployed to ensure data integrity and automate decision making process which is triggered locally by the ESP32 via a

web3 interface to enable unified interactions between the decentralized backend and the ESP32 nodes. This was

evaluated with a prototype using ESP32 and BME280 sensors to validate the feasibility of IoT-enabled self-healing

network and to demonstrate its effectiveness in maintaining secure data transmission among peers efficiently. The

results shows that the system demonstrates robust fault tolerance through its self-healing capabilities, recovering from

node or network failure within 0.05 seconds. It archived an average interval of 15s relay of data collected showcasing

its potential in timely submission of data, suitable for time sensitive networks application domain. The study provides a

secure and reliable solution for modern communication challenges making it suitable for resource-constrained networks

with dynamic topologies. These findings have practical implications for industries requiring robust and reliable network

infrastructure, offering a transformative approach to decentralized communication systems.

Keywords: IoT, Smart contract, APIs, Self-healing Networks

1. Introduction

The global increase of climate change has raised the
concerns of real-time monitoring of environmental
parameters for governments, researchers, and
industrial players. Accurate data on temperature,
humidity or air pressure are important not only to
prevent natural disasters, but also to optimize the
management of natural resources and strengthen
sustainable development policies[1], [2]. The
conventional monitoring systems have their associated
constraints such as lack of autonomy recovery and
limited fault tolerance, data centralization, and high
risks of network disruptions[3]. Based on these
challenges, the development of self-healing networks
offers a promising alternative. These systems are
characterized by their ability to automatically detect
internal failures, dynamically reorganize, and maintain
continuity of services without human intervention [4].
The implementation of such networks is based on
distributed, resilient and adaptive architectures,
integrating both high- robust communication protocols
and performance microcontrollers[5]. This paper
presents an innovative approach combining the ESP32

microcontrollers, renowned for its local processing
capabilities, built-in Wi-Fi/Bluetooth connectivity, and
low power consumption, with the BME280 sensor,
which enables multiple reliable measurement of
environmental conditions[6]. This technology duo is at
the heart of a real-time monitoring system, designed to
operate in a variety of environments, including those
with intermittent or harsh connectivity[7], [8]. But
beyond the hardware aspect, this work draws its
strength from the integration of smart contracts,
deployed on a lightweight blockchain. These contracts
not only automate the management and verification of
the data collected, but also guarantee their integrity,
immutability and traceability without requiring a
trusted third party[9]. This means that every sensor
reading is immediately and securely recorded, and can
be audited at any time, increasing the transparency and
reliability of the system[10], [11]. By combining IoT
technologies, network resilience and blockchain, this
study explores an innovative path towards the creation
of autonomous, intelligent and reliable systems for
reading and monitoring environmental data in real
time. It opens the door to many applications in fields

117

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

such as precision agriculture, climate monitoring, smart
cities and environmental risk management.

2. Objectives

This paper aims to design, implement, and evaluate

self-healing network using ESP32 and BME280

empowered by smart contracts. The study addresses

the limitation of conventional network infrastructure

issues in terms of autonomous recovery, data integrity,

and fault tolerance. This seeks to provide a secure,

robust and real-time platform for environmental data

collection and monitoring suitable for dynamic and

resource-constrained networks.

3. Methods

The methodology adopted for this paper revolves
around the development of a resilient, real-time
environmental monitoring system that combines edge
computing, wireless communication, and blockchain-
based data verification as illustrated in Figure 1. The
architecture is composed of four main functional
components: a BME280 sensor for data collection, an
ESP32 microcontroller for local processing, a Wi-Fi
interface for data transmission, and a Raspberry Pi 4
device that handles data verification and storage
through smart contracts on a blockchain.

Figure 1: Block diagram of the implementation

The process begins at the sensing level with the
BME280 sensor, which captures real-time
environmental parameters such as temperature,
humidity, and atmospheric pressure. This sensor is
selected for its high accuracy, low power consumption,
and compact design, making it ideal for embedded
applications. The sensor transmits the collected data
directly to the ESP32, which serves as the core
processing unit at the edge of the network.

Within the ESP32, the incoming data is handled through
a modular node-based structure designated as
NODE_1, NODE_2, and NODE_3. Each node is
responsible for a distinct task such as data filtering,
formatting, and temporary storage. This design not
only streamlines processing but also introduces fault
tolerance into the system. If one node fails or becomes
unresponsive, the others can dynamically reassign the
workload, ensuring that data continues to flow without
interruption a key aspect of the self-healing network
principle.

Once the data has been processed and structured, it is
transmitted wirelessly via Wi-Fi to a Raspberry Pi 4,
which operates as the central data gateway. At this
stage, the Raspberry Pi runs two application
programming interfaces: API1 and API2. API1 is
responsible for handling HTTP POST requests from the
ESP32. It verifies the data format and stores it in a local
database. API2, on the other hand, handles the smart
contract logic. It takes the verified data and submits it
to a lightweight blockchain client running on the
Raspberry Pi. This interaction with the blockchain
ensures that every data point is securely recorded with
a timestamp, providing tamper-proof, verifiable
storage without the need for a centralized authority.

The integration of smart contracts enhances the
transparency and reliability of the system, allowing for
real-time monitoring, immutable logging, and historical
audits of environmental data. Furthermore, the use of
local edge computing (ESP32) combined with
decentralized storage (via blockchain) reduces
dependency on cloud infrastructure and mitigates risks
associated with network downtime or data breaches.

A) Implementation

BME280 sensor was utilized to measure temperature,
humidity and barometric pressure which is submitted
by the ESP32 to the raspberry pi APIs for validation,
verification and storage as shown in Figure 1. The
ESP32 establishes a mesh connection with its
neighbours via wireless connectivity. It is used to
process and submit the collected data from the
BME280 sensor. This was configured to retain the APIs
of the HTTP and the smart contract post request. When
submitted, the raspberry pi hosting the blockchain
smart contract verifies and log transactions in blocks
whiles the HTTP verifies and store in MYSQL database
as shown in Figure 1 and Figure 3. Wi-Fi was chosen as
the based communication mode to facilitate automatic
recovery from failures [12], [13] such as power failures.
Since wireless communication devices can reconfigure
themselves back to the network, the optimal operation
will be enhanced. When any device fails, due to power
or any reason, it’s able to reconnect when available and

118

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

continuous operations[14], [15]. This minimizes human
error and interferences. In the other hand, the
raspberry pi hosts the smart contract, HTTP post APIs
which receives and verifies the data submitted by
ESP32 which is subsequently stored in the database and
append a new block in addition to the existing blocks in
the blockchain.

Figure 2: Structure of Communication between the
devices

All the responds from the APIs can be monitored over
the serial monitor on the Arduino integrated
development environment (IDE). The implementation
was done by using three ESP32 as communication
nodes with individual BME280 sensor for data
collection. The data collection was done in every 30s to
allow the boards to switched into different mode to
minimize the power consumption and heat. The
structure of the setup can be seen in Figure 3.

Figure 3: Structure of Setup

Figure 3 shows the setup of the implementation and
demonstrate the logics behind it. A smart contract and
HTTP post request was created to handle data
submission form the ESP32 collected by the BME280
sensors to be verified and stored. These was written in
solidity language using remix IDE, monitored over
ganache client on the local host machine. This
facilitated the verification and monitoring of the nature
of data submission and blocks increments when
success. As the name implies, smart contract is a self-
executable file that facilitate an agreement between
participant upon meet certain predefined

conditions[16], [17]. With the help of web 3 on node
java script (js)[18], the initiation of the smart contract
by the ESP32 was made possible and easy to integrating
two APIs (http & smart contract APIs) for data
(transaction) submission.

4. Results

This paper employs the implementation of innovative
approach to enhance self-healing and self-organizing
mesh networks. The ESP32 in combination with
BME280 was utilized as nodes to initiate transaction in
a blockchain by submitting the collected data by the
sensor. Raspberry pi4 was used as the local server that
host both AIPs of the HTTP and blockchain post request.
Table 1 shows the nature of data collection at an
interval of 15 seconds.

Table 1: Sample data collected from various stations

Senso
r

Locatio
n

Temperatu
re

Humidit
y

Pressur
e

Node
3

Room3 25.97 44.08 849.39

Node
2

Room2 25.45 47.32 849.95

Node
1

Room1 26.34 43.67 849.43

Node
3

Room3 25.84 47.06 849.99

Node
2

Room2 26.36 45.23 849.43

Node
1

Room1 25.87 47.36 850.05

Node
3

Room3 26.32 44.69 849.41

Node
2

Room2 25.85 47.49 850.00

Node
1

Room1 26.3 44.03 849.45

Node
3

Room3 25.89 46.67 849.99

Node
2

Room2 26.26 43.91 849.45

Node
1

Room1 25.91 46.13 850.01

Node
3

Room3 26.26 45.42 849.42

Node
2

Room2 25.92 47.23 849.99

Node
1

Room1 26.25 45.94 849.44

Node
3

Room3 25.92 48.11 850.01

The results in Table 1 shows that the minimum,
average, and maximum temperature red was 25.45oC,
26.04oC, and 26.36oC respectively whiles humidity was
43.67%, 45.90%, and 48.11% similarly for pressure, it

119

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

was 849.39, 849.71 and 850.05 Pa. Figure 4-6 show the
graphical representation of the temperature, humidity
and pressure readings.

Figure 4: Temperature Readings

Figure 5: Humidity Readings

Figure 6: Barometric Pressure Readings

These show variation pattern of the reading of
temperature, humidity and pressure by the various
bme280 sensor against the number of times it was able
to read data in the various rooms.

The results of the robust monitoring system highlight
the system's ability to reliably track network traffic in
real-time. Leveraging ESP32 microcontrollers, BME280
sensors, and the mesh network, the system effectively
addresses the challenges of data collection, secure
communication, and accurate visualization of data as
shown in Figure 7.

Figure 7: Network Monitor Results

The robust monitoring system demonstrates its
effectiveness in tracking network data and secure data
management within the network. The responsive
dashboard effectively visualizes real-time data,
allowing administrators to monitor conditions and
promptly receive alerts for threshold breaches. The
system's rapid responsiveness to environmental
changes and low power consumption enhanced its
practicality for continuous operation.

5. Discussion

In comparison to centralized networks for
environmental monitoring, the deployment of a self-
healing network demonstrated notable gains in
network recovery, fault tolerance, and autonomy. The
BME280 sensors and ESP32 microcontrollers facilitate
effective local data collection while preserving the
networks' resilience and fault tolerance. Real-time
monitoring in unstable environments requires a robust
self-healing capability, which is highlighted by the
system's ability to freely recover from node
catastrophes in less than 0.05 seconds. One of the main
issues in dynamic and fault-prone environments was
effectively resolved by the self-healing network's
exceptional recovery performance. According to
experimental results, the ESP32-based mesh network
was able to detect and reconfigure itself autonomously
in 0.05 seconds on average when a node or network
failed, whether as a result of hardware malfunction,
power outage, or disconnection. The ESP32's Wi-Fi
mesh networking protocol's built-in features, which
enable automatic neighbor discovery and re-
association without human assistance, are responsible
for this quick recovery. The system's operational
continuity was thus preserved even in cases where one
or more nodes momentarily disconnected from the
network; data transmission resumed nearly
immediately upon their re-entry. Furthermore, data
integrity was maintained throughout recovery, thanks
to the integration of edge computing and decentralized
data handling (through blockchain smart contracts). By
functioning autonomously, the ESP32 nodes
maintained their local processing power, enabling
smooth task realignment and transition between active

120

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

nodes, reducing transmission delays and data loss.
These results demonstrate the system's resilience and
robustness, demonstrating that it can continue to
monitor the environment in real time without
experiencing major disruptions. With this performance
level, the suggested system is ideal for deployment in
settings like disaster monitoring zones, remote
agricultural fields, or smart industrial sites where
dependability and low downtime are crucial. However,
even though the recovery rate was remarkable, it is
acknowledged that extensive deployments in more
complicated environmental settings or with more
nodes. Without depending on a central authority, the
implementation of a lightweight network with smart
contracts guarantees unchangeable data records,
improving trust and traceability. The dangers of data
breaches, tampering, and single points of failure are
greatly decreased by this decentralized strategy.
Additionally, by concurrently uploading data to a
blockchain and a local database, the system maintained
redundancy, improving reliability and auditability. The
system is highly suitable for time-sensitive applications
such as precision agriculture, smart city deployments,
and environmental risk assessment since it can
successfully collect and transmit environmental data in
every 15 seconds. The consistency of the observed
temperature, humidity, and pressure readings across
the nodes showed how well the BME280 sensors
worked and how stable the communication network
was. The study recognizes possible issues with
scalability, power consumption optimization, and wider
cloud integration, even though the prototype
demonstrated remarkable efficacy in a controlled
setting. Future improvements could include adding
more nodes to the network, putting energy harvesting
strategies into practice, and incorporating hybrid cloud-
edge architectures to accommodate larger
deployments and reduce latency even more. Overall,
the study effectively confirms that utilizing a blockchain
and IoT framework together is feasible.

Acknowledgement

The authors acknowledgement goes to the Pan Africa

University Institute for Basic Science, Technology and

Innovation for the support in finding this work.

References

[1] U. A. K. Betz et al., “Game changers in science

and technology - now and beyond,” Technol

Forecast Soc Change, vol. 193, p. 122588, Aug.

2023, doi: 10.1016/J.TECHFORE.2023.122588.

[2] M. H. Rehmani, A. Davy, B. Jennings, and C. Assi,

“Software Defined Networks-Based Smart Grid

Communication: A Comprehensive Survey,”

IEEE Communications Surveys and Tutorials,

vol. 21, no. 3, pp. 2637–2670, Jul. 2019, doi:

10.1109/COMST.2019.2908266.

[3] E. al. Nand Kumar, “Self-Healing Networks AI-

Based Approaches for Fault Detection and

Recovery,” Power System Technology, vol. 47,

no. 4, pp. 371–386, Dec. 2023, doi:

10.52783/PST.206.

[4] D. C. Nguyen et al., “6G Internet of Things: A

Comprehensive Survey,” IEEE Internet Things J,

vol. 9, no. 1, pp. 359–383, Jan. 2022, doi:

10.1109/JIOT.2021.3103320.

[5] M. Acevedo-Iles, D. Romero-Quete, and C. A.

Cortes, “A Distributed Coordination Approach

for Enhancing Protection System Adaptability in

Active Distribution Networks,” Energies 2024,

Vol. 17, Page 4338, vol. 17, no. 17, p. 4338, Aug.

2024, doi: 10.3390/EN17174338.

[6] S. Bosch, “BME280-Data sheet,” 2018.

[7] R. Uddin and I. Koo, “Real-Time Remote Patient

Monitoring: A Review of Biosensors Integrated

with Multi-Hop IoT Systems via Cloud

Connectivity,” Mar. 01, 2024, Multidisciplinary

Digital Publishing Institute (MDPI). doi:

10.3390/app14051876.

[8] A. Benharref and M. A. Serhani, “Novel cloud

and SOA-based framework for E-health

monitoring using Novel cloud and SOA-based

framework for E-health monitoring using

wireless biosensors wireless biosensors.”

[Online]. Available:

https://ro.uow.edu.au/dubaipapers/550

[9] S. Tern, “Survey of Smart Contract Technology

and Application Based on Blockchain,” Open

Journal of Applied Sciences, vol. 11, no. 10, pp.

1135–1148, 2021, doi:

10.4236/OJAPPS.2021.1110085.

[10] M. G. Alles, A. Kogan, and M. A. Vasarhelyi,

“Restoring auditor credibility: Tertiary

monitoring and logging of continuous

assurance systems,” International Journal of

Accounting Information Systems, vol. 5, no. 2,

pp. 183–202, Jul. 2004, doi:

10.1016/j.accinf.2004.01.010.

[11] S. Mirzamohammadi, J. A. Chen, A. A. Sani, S.

Mehrotra, and G. Tsudik, “Trustworthy Auditing

of Sensor Activities in Mobile & IoT Devices,”

121

Journal of Harbin Engineering University

ISSN: 1006-7043

Vol 46 No. 5

May 2025

Mobile & IoT Devices, vol. 14, no. 17, pp. 1–14,

Nov. 2017, doi: 10.1145/3131672.3131688.

[12] T. Brockmann, M. Rethfeldt, B. Beichler, F.

Golatowski, and C. Haubelt, “MAC-Filter based

Topology Control for WLAN Mesh Networks”,

Accessed: Sep. 20, 2024. [Online]. Available:

https://github.com/o11s/open80211s/wiki/H

OWTO

[13] L. Claire, O. K. Shana, and W. Zongjie, “Self‐

Healing Materials for Bioelectronic Devices - Liu

- 2024 - Advanced Materials - Wiley Online

Library,” Wiley-VCHGmbH. Accessed: Sep. 20,

2024. [Online]. Available:

https://onlinelibrary.wiley.com/doi/pdf/10.10

02/adma.202401219

[14] S. Vladov, R. Yakovliev, V. Vysotska, M.

Nazarkevych, and V. Lytvyn, “The Method of

Restoring Lost Information from Sensors Based

on Auto-Associative Neural Networks,” Applied

System Innovation 2024, Vol. 7, Page 53, vol. 7,

no. 3, p. 53, Jun. 2024, doi:

10.3390/ASI7030053.

[15] I. Burcea, H. A. Jacobsen, E. De Lara, V.

Muthusamy, and M. Petrovic, “Disconnected

operation in publish/subscribe middleware,”

Proceedings - 2004 IEEE International

Conference on Mobile Data Management, pp.

39–50, 2004, doi:

10.1109/MDM.2004.1263041.

[16] N. Afraz, F. Wilhelmi, H. Ahmadi, and M. Ruffini,

“Blockchain and Smart Contracts for

Telecommunications: Requirements vs. Cost

Analysis,” IEEE Access, vol. 11, pp. 95653–

95666, 2023, doi:

10.1109/ACCESS.2023.3309423.

[17] S. Wang et al., “Blockchain-Enabled Smart

Contracts: Architecture, Applications, and

Future Trends; Blockchain-Enabled Smart

Contracts: Architecture, Applications, and

Future Trends,” SYSTEMS, vol. 49, no. 11, 2019,

doi: 10.1109/TSMC.2019.2895123.

[18] O. Takahiro, “Handle smart contract on

Ethereum with Arduino or ESP32 | by Takahiro

Okada | Medium,” Medium. Accessed: Sep. 22,

2024. [Online]. Available:

https://medium.com/@takahirookada/handle

-smart-contract-on-ethereum-with-arduino-or-

esp32-1bb5cbaddbf4

