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Abstract
Introduction: DNA serves as the fundamental genetic blueprint of life. Extracting meaningful patterns and information
from DNA sequences is essential for advancements in genomics and comparative biology.

Objectives: This study aims to classify and distinguish DNA sequences from different species, human, chimpanzee, and
dog using machine learning techniques to evaluate their effectiveness in genomic sequence analysis.

Methods: Three datasets consisting of DNA sequences from humans, chimpanzees, and dogs were used. Preprocessing
included k-mer analysis and the CountVectorizer technique. Various machine learning algorithms, Naive Bayes, SVM,
KNN, Decision Trees, and Random Forests were employed, alongside a Convolutional Neural Network (CNN) for deep
learning-based classification. K-mers ranging from 5 to 8 were tested, with 6-mers yielding the best results.

Results: Naive Bayes achieved accuracies of 80% for human DNA, 87% for chimpanzee DNA, and 68% for dog DNA using
6-mers. CNN provided enhanced performance with 90.76% accuracy for human data, 83.64% for chimpanzee data, and
76.53% for dog data.

Conclusions: The use of 6-mers significantly improves classification accuracy across species. CNN models outperform
traditional machine learning classifiers, demonstrating the potential of deep learning in genomic sequence analysis.

Keywords: DNA, Machine learning classifiers, K-mers, Countvectorizer.CNN.

1. Introduction

DNA, or “deoxyribonucleic acid, is a molecule that
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carries the genetic instructions” for the development,
functioning, growth, and reproduction of all known

living organisms and many viruses. It is often referred

Guanine Cytosine

to as the "building block of life" due to its fundamental
role in genetics. DNA consists of two long chains, known
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as strands, that are made up of smaller units called
nucleotides. Each nucleotide contains a sugar molecule
(deoxyribose), a phosphate group, and one of four
nitrogenous bases: “adenine (A), thymine (T), cytosine

(C), or guanine (G)”. The structure of DNA is often
depicted as a double helix, where the two strands are
twisted around each other in a spiral.

Figure 1: DNA Model

As shown in Figure 1, all living organisms have a
genome, though the size and complexity of these
genomes can vary significantly. In humans, the genetic
material is organized across 23 chromosomes, and each
genome contains over 6 billion DNA base pairs. Despite
this immense size, most human genomes are
remarkably similar to one another. The specific
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arrangement of nitrogenous bases along the DNA
molecules encodes the genetic blueprint that dictates
an organism’s traits and characteristics.

DNA strands are held together through base pairing,
where adenine (A) pairs with thymine (T), and cytosine
(C) pairs with guanine (G). This pairing mechanism is
essential not only for copying DNA during replication
but also for transcribing it into RNA. Figure 2 illustrates
DNA sequencing a method used to determine the
precise sequence of nucleotides in a DNA strand.

Sequence (green strand):
TCCACAGGGATCCA

Figure 2: Sequence Strand

DNA, or Deoxyribonucleic Acid, serves as the hereditary
material that holds the vital instructions necessary for
an organism’s growth, development, function, and
reproduction. It acts as a fundamental guide for all
biological processes in living beings. The sequence of
nucleotide bases (adenine, thymine, cytosine, and
guanine) within a DNA molecule determines the
genetic characteristics of an organism. In the field of
genomics, understanding DNA sequences and
comparing them across species is critical to unlocking
insights into evolutionary relationships, species
identification, genetic diversity, and the molecular basis
of diseases. DNA sequence classification, therefore,
serves as an essential tool in bioinformatics, facilitating
the identification of species or organisms based on
their genetic material.

This study focuses on DNA sequence classification
between three species humans, chimpanzees, and dogs
using machine learning techniques, particularly
Convolutional Neural Networks (CNNs). Each of these
species represents different levels of genetic similarity
and divergence, making them ideal for comparative
analysis. Humans and chimpanzees share
approximately 98-99% of their DNA, while dogs are
significantly more genetically distinct. By comparing
DNA sequences from these species, we aim to analyse
how effectively machine learning algorithms can
distinguish between organisms based on their genomic
data. The ability to classify DNA sequences with high
accuracy can not only aid in species identification but
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also provide a deeper understanding of evolutionary
connections and genetic variations.

1.1 DNA Classification in Genomics

The process of DNA classification involves analyzing the
nucleotide sequences of DNA and assigning them to
predefined categories, typically based on species or
genetic traits. In genomics, DNA sequence classification
is widely used for tasks such as identifying genetic
variations, understanding evolutionary relationships,
detecting mutations, and diagnosing genetic disorders.
It is a fundamental component of comparative
genomics, which seeks to compare the genomes of
different organisms to draw inferences about their
biology, evolution, and development.

Classifying  DNA sequences requires the use of
advanced computational techniques, as DNA is made
up of long strings of nucleotide bases that contain
hidden patterns and features. Machine learning
algorithms are particularly well-suited for this task as
they can learn from large datasets and automatically
identify meaningful patterns that may not be easily
discernible through traditional analytical methods. By
training models on labeled DNA sequences, machine
learning algorithms can predict the species or
characteristics of unseen DNA sequences, making them
powerful tools for classification tasks in genomics.

1.2 Comparative Genomics: Human, Chimpanzee, and
Dog DNA

Comparing the genomes of different species provides
valuable insights into their evolutionary history and
genetic makeup. Humans, chimpanzees, and dogs offer
a compelling case study for DNA sequence classification
due to their differing levels of genetic similarity. The
human genome has been extensively studied and
serves as a reference point for comparisons with other
species. Chimpanzees, being the closest living relatives
to humans, share a high degree of genetic similarity,
with only about 1-2% of their DNA differing from that
of humans. This close genetic relationship makes it
challenging but insightful to classify DNA sequences
from humans and chimpanzees, as it tests the machine
learning models' ability to detect subtle differences
between closely related species.

On the other hand, dogs are much more genetically
distant from both humans and chimpanzees. The
classification of dog DNA presents a different challenge,
as the model needs to distinguish between organisms
that share fewer common genetic features. The ability
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to classify dog DNA accurately despite its divergence
from human and chimpanzee DNA demonstrates the
robustness and generalizability of the machine learning
models used in this study.

1.3 Machine Learning and DNA Classification

Machine learning algorithms have revolutionized the
field of bioinformatics by enabling the analysis of vast
amounts of genomic data in ways that were previously
impossible. Traditional methods of DNA analysis, such
as sequence alignment and phylogenetic tree
construction, are limited by their reliance on
predefined patterns and rules. In contrast, machine
learning algorithms can learn directly from the data,
making them more flexible and powerful for tasks like
DNA sequence classification.

A wide range of machine learning techniques has been
applied to DNA classification, each with its strengths
and limitations:

*Naive Bayes is a probabilistic classifier that works well
with discrete data such as k-mer counts (short
nucleotide sequences).

eSupport Vector Machine (SVM) is a powerful
classification algorithm that is widely used in
bioinformatics for its ability to handle complex, high-
dimensional datasets.

eK-Nearest Neighbors (KNN) is a simple yet effective
method that classifies data points based on the closest
training examples in the feature space.

eDecision Trees and Random Forests are tree-based
models that split data based on feature values, making
them highly interpretable and effective for non-linear
relationships.

eConvolutional Neural Networks (CNNs) are deep
learning models that have shown remarkable success in
image classification and have been adapted for
sequence data due to their ability to capture local
patterns and hierarchies.

In this study, we focus on using a CNN model to classify
DNA sequences from humans, chimpanzees, and dogs.
CNNs have shown promise in bioinformatics
applications, especially in tasks like protein structure
prediction and DNA sequence analysis. The key
advantage of CNNs lies in their convolutional layers,
which can detect local patterns (such as k-mers) and
learn hierarchical representations of the data. This
makes them particularly well-suited for DNA sequence
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classification, where the model needs to capture both
short-range and long-range dependencies in the
sequence.

1.4 K-mer Analysis in DNA Classification

A central technique in DNA sequence classification is k-
mer analysis, where DNA sequences are broken down
into smaller overlapping subsequences (k-mers) of
length k. Each k-mer represents a specific combination
of nucleotide bases, and the frequency of occurrence of
different k-mers provides valuable information about
the genetic sequence. For example, the sequence
"AGCT" could be split into 3-mers (subsequences of
length 3) such as "AGC" and "GCT." By analyzing the
distribution of k-mers within a DNA sequence, machine
learning models can learn important features that
distinguish between different species.

In this study, we use k-mer analysis along with the
CountVectorizer method to preprocess the DNA
sequences. The CountVectorizer method converts the
DNA sequences into a matrix of k-mer counts, which
serves as the input to the machine learning models. The
length of the k-mers is an important hyperparameter
that can affect the performance of the classifier. For
this study, we experiment with different k-mer lengths
and find that 6-mers yield the highest accuracy across
all species. This suggests that 6-mers capture the
optimal amount of information for distinguishing
between human, chimpanzee, and dog DNA.

By training the CNN on DNA sequences from humans,
chimpanzees, and dogs, we achieve high classification
accuracy, with notable results of 90.76% for human
data, 83.64% for chimpanzee data, and 76.53% for dog
data. These results demonstrate the effectiveness of
CNNs in capturing relevant features from DNA
sequences and distinguishing between species based
on their genetic material.

DNA sequence classification is an essential task in
genomics, enabling researchers to identify species,
understand evolutionary relationships, and detect
genetic variations. The use of machine learning
algorithms, particularly CNNs, has proven to be highly
effective in this domain. By analyzing DNA sequences
from humans, chimpanzees, and dogs, we have
demonstrated the CNN's ability to accurately classify
species based on their genetic data. The combination of
k-mer analysis and CNNs allows for the extraction of
meaningful features from DNA sequences, making
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these methods valuable tools in the study of
comparative genomics and bioinformatics.

Classification is a fundamental concept and task in the
field of machine learning and data analysis. It serves
several important purposes and has a wide range of
applications across various domains. Classification in
DNA sequencing is a crucial step in bioinformatics and
genomics research. It plays a fundamental role in
analyzing and interpreting the vast amount of genetic
information obtained through DNA sequencing
techniques. The machine learning algorithms employed
for this classification task include MultiNomial Naive
Bayes (NB), Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Decision Trees (DT), and Random
Forest (RF).

eMultiNomial Naive Bayes (NB)

Naive Bayes, a probabilistic classification algorithm
based on Bayes' theorem, simplifies computations by
assuming independence among features, despite
potential real-world dependencies. Its effectiveness in
tasks like text classification and spam detection stems
from calculating class probabilities using the simplified
assumption. Though this assumption may not always
hold in practical scenarios, Naive Bayes remains
valuable for its efficiency in categorizing data

eSupport Vector Machine (SVM)

Support Vector Machines (SVM) excel in classifying
both linear and non-linear data by identifying the
optimal hyperplane for maximal class separation.
Particularly adept with high-dimensional and complex
decision boundary scenarios, SVM employs a kernel
trick to enhance separation by transforming data into
higher-dimensional spaces.

eK-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a simple and effective
classification method that predicts based on the
majority class among the k-nearest data points in the
feature space, avoiding model training in lazy learning.
The choice of k significantly influences predictive
accuracy, and while KNN performs well across dataset
sizes, computational efficiency becomes a concern with
large datasets.

eDecision Tree Classifier (DT)

Decision Trees, a fundamental classification method,
iteratively partitions data based on key attributes for
simplicity and interpretability. Prone to overfitting,
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especially in deep structures, techniques like pruning
and depth limitation are employed.

eRandom Forest Classifier (RF)

Random Forest is an ensemble learning technique that
enhances prediction accuracy by combining multiple
decision trees. During training, it builds a forest of
decision trees, with each tree trained on a random
subset of the data with replacement. This approach
helps reduce overfitting and enhances the model's
ability to generalize to new data. Random Forest is
robust to noisy data and is applicable for both
classification and regression tasks, making it a versatile
and powerful machine learning method.

eConvolutional Neural Network(CNN)

CNN, or Convolutional Neural Network, is a deep
learning algorithm widely used for tasks involving grid-
like data, such as image recognition or, in this case, DNA
sequence analysis. CNNs are particularly effective at
automatically learning features from raw data through
a series of convolutional layers, pooling layers, and fully
connected layers. In the context of DNA sequence
classification, CNNs can capture complex patterns
within the sequences, making them useful for
improving accuracy in genomics tasks. By applying CNN
to human, chimpanzee, and dog DNA sequences, we
achieved higher classification accuracy compared to
traditional machine learning models, particularly in
capturing the local dependencies within the DNA k-
mers.

Classification, a foundational concept in machine
learning, is crucial for automating tasks and making
informed decisions. Its applications span various fields,
such as image recognition, medical diagnosis, and
sentiment analysis in natural language processing.
Classification plays a pivotal role in predictive modeling
for fraud detection, recommendation systems, and
customer churn prediction.

Genomic data analysis confronts challenges like
managing massive volumes, addressing DNA structure
complexity, and handling sequence variability.
Selecting appropriate classification algorithms is vital,
considering strengths and weaknesses, and deep
genomics knowledge is essential for identifying
relevant features. Dealing with imbalances, high
dimensionality, and sequencing errors requires
specialized preprocessing, and ensuring interpretability
is crucial in scientific and medical applications. Ethical
concerns include genomic data privacy, label accuracy,

220



Journal of Harbin Engineering University
ISSN: 1006-7043

and model transferability across datasets and species.

Despite ethical considerations, overcoming
classification challenges is essential for advancing DNA
analysis's impact on  genetics, healthcare,
biotechnology, environmental research, agriculture,

security, and personalized medicine.

This research aims to use machine learning for DNA
sequence classification, comparing models based on
accuracy across human, dog, and chimpanzee datasets.
The primary goal is to identify the most consistently
accurate model, determining its robustness for genetic
classification tasks.

2. Objectives

The primary objective of this study is to develop and
evaluate a robust framework for classifying DNA
sequences from different species specifically, human,
chimpanzee, and dog using a combination of traditional
machine learning and deep learning techniques. The
study aims to:

2.1 Compare the Performance of ML Algorithms:
Assess and compare the effectiveness of various
machine learning classifiers including Naive Bayes,
Support Vector Machines (SVM), k-Nearest Neighbors
(KNN), Decision Trees, and Random Forests in
classifying genomic sequences from different species.

2.2 Apply k-mer Analysis for Feature Extraction:
Investigate the impact of different k-mer sizes (5-mers,
6-mers, 7-mers, and 8-mers) on classification accuracy
by converting DNA sequences into numerical feature
vectors suitable for machine learning models.

2.3 Utilize CountVectorizer for DNA Representation:
Employ the CountVectorizer technique for
transforming raw DNA sequences into sparse matrix
representations, facilitating model learning and
comparison.

2.4 Implement a Deep Learning Approach (CNN):
Design and train a Convolutional Neural Network (CNN)
to automatically extract hierarchical features from DNA
sequences, and benchmark its performance against
traditional machine learning models.

2.5 Identify Optimal k-mer Size and Classifier:
Determine which k-mer size yields the highest
classification performance and which classifier (among
both ML and DL methods) provides the best
generalization across species datasets.
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2.6 Evaluate Model
Test the models across multiple species datasets

Generalizability:

(human, chimpanzee, dog) to evaluate consistency,
robustness, and generalizability of the classification
framework.

2.7 Lay the Groundwork for Future Integration:
Provide insights that inform future research into hybrid
models combining deep learning and classical ML
methods, and their application in broader genomics
contexts such as variant detection, gene annotation,
and disease gene identification.

3. Literature Review

Ersoy Oz et al. [1] authored the book, "Support Vector
Machines in DNA Sequencing Quality Control," explores
SVM's application in classifying DNA sequencing data
quality. Using SVMs, the study distinguishes between
'high' and 'low' quality sequences, achieving accurate
labeling in 23 out of 24 chromatograms from the INSNP
dataset. The novel approach combines feature
extraction and SVMs, showcasing potential as a robust
solution for automatic quality screening in DNA
sequencing. Achieved an accuracy of 95.83%.

Teresita M. Porter et al. [2] book, "Rapid and Accurate
Taxonomic Classification of Insect DNA Barcode
Sequences," introduces a Naive Bayesian classifier for
swift and precise insect species identification using COI
DNA sequences. Emphasizing the importance in
ecological research, the book provides a valuable
contribution to entomology and DNA barcoding,
offering an efficient method for taxonomic
classification.

Authored by Lailil Muflikhah et al. [3] the book
"Prediction of Liver Cancer Based on DNA Sequence
Using Ensemble Method" explores the link between
chronic HBV infection and liver cancer. Through
machine learning techniques, the study mitigates
unbalanced data challenges, proposing an ensemble
method with an 88.4% accuracy, 88.4% sensitivity, and
91.4% specificity in predicting liver cancer based on
HBV DNA sequences.

Rodney T. Richardson et al. [4] investigate the
performance of widely used DNA metabarcoding
classification software in their paper "Evaluating and
optimizing the performance of software commonly
used for the taxonomic classification of DNA
metabarcoding sequence data." The study categorizes
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classification methods, focusing on rdp Naive Bayesian
Classifier, rtax, and utax, and underscores the need for
clear comparisons to improve the accuracy and
reliability of DNA metabarcoding in ecological research.
The research highlights challenges in selecting
appropriate tools due to the diversity of available
methods in DNA sequence classification.

Jiarong Guo, Ben Bolduc et al. [5] introduce
"VirSorter2," an expert-guided tool for identifying DNA
and RNA viruses. This sophisticated, freely accessible
resource excels in taxonomic and functional diversity
exploration of microbial communities, utilizing high-
throughput gene marker and metagenomic sequencing
technologies. VirSorter2's modular design facilitates
updates, though it may be less sensitive for very short
sequences; it stands out for differentiating eukaryotic
genomes, plasmids, and viruses with high specificity,
offering scalability for large datasets in virology and
metagenomics. Achieved an accuracy of >80%.

Hemalatha Gunasekaran et al. [6] book, "Analysis of
DNA Sequence Classification Using CNN and Hybrid
Models," explores effective biomedical data analysis
for virus identification. The study emphasizes the
power of Convolutional Neural Networks (CNNs),
specifically CNN, CNN-LSTM, and CNN-Bidirectional
LSTM, showcasing k-mer encoding's superiority for
accurate DNA sequence classification, achieving a
notable 93.16% accuracy.

Frederick I. Archer et al. [7] investigate subspecies
classification using machine learning, specifically
Random Forests, applied to mitochondrial DNA
(mtDNA) sequences. The study reveals insights into the
impact of simulation parameters, such as migration and
divergence time, on classification accuracy, ranging
from 70% to 85%. The research sheds light on
challenges and influential factors in accurately
classifying genetic data for subspecies differentiation.

Maitena Tellaetxe-Abete et al. [8] introduce Ideafix, a
decision tree-based algorithm refining variants in
formalin-fixed and paraffin-embedded (FFPE) DNA
sequencing data. Utilizing features like read pair
orientation bias, genomic context, and variant allele
frequency, Ideafix distinguishes deaminations from
non-deaminations, outperforming existing tools with
an accuracy of 96%.

Steven Salzberg et al. [9] introduce a gene-finding
system using decision tree classifiers and dynamic
programming, achieving a base-pair accuracy of 83% on
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human DNA sequences. The study emphasizes the
system's preliminary stage, with plans for further
refinement, including testing on a larger vertebrate
DNA database and incorporating lookup information
for enhanced performance.

Robert W. Jackson et al. [10] investigated twin zygosity
determination in their study "Determination of Twin
Zygosity: A Comparison of DNA with Various
Questionnaire Indices." Using a subset of questions, a
logistic regression achieved a high 91% correct
classification rate for both monozygotic (MZ) and
dizygotic (DZ) twins. The questionnaire demonstrated
reliability and outperformed other methods in accuracy
comparisons, suggesting its effectiveness as an
alternative to DNA analysis when questionnaire validity
is established within the twin cohort.

4. Methods

Figure 3 illustrates the methodology, which
encompasses the components of dataset management,
preprocessing in that two process applied k-mes and
count vectorizer, and the final classification models.

Datasets

.V

Pre-processing

<z

Building Model

z

Classification using Machine
Learning Models

Figure 3: Block diagram of our Proposed Methodology
3.1 Datasets:

The dataset comprises text data consisting of DNA
sequences from three distinct sources: humans,
chimpanzees, and dogs. Each DNA sequence can be
associated with anywhere from 0 to 6 class labels.
Following this, a preprocessing phase is carried out on
the dataset.
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3.2 Preprocessing:

The dataset undergoes two important steps. First, k-
mer counting is applied using a k-mer method to extract
relevant patterns from the DNA sequences. Following
this, the count vectorization process is employed to
transform the k-mer counts into numerical features.

3.3 K-mer Counting:

In DNA sequence analysis, the method getKmers
generates k-mers from sequences, using sizes 5, 6, 7,
and 8, with 6-mers demonstrating higher accuracy.
Applied to human, chimpanzee, and dog datasets, the
k-mers are stored in new words columns, enabling
subsequent text data processing for further analysis,
such as text classification or machine learning tasks.
The pattern matching process assesses the occurrence
of specified patterns within the strings, providing
counts for detected patterns.

3.4 Count Vectorizer:

Count vectorization, employed in genomics for DNA
sequences, treats each unique 4-mer as a feature,
creating a sparse matrix representing the count of each
4-mer in the sequences. This technique results in a "k-
mer frequency matrix" or "count matrix" and is applied
consistently across all three datasets.

3.5 Classifications:

Machine learning algorithms, namely Naive Bayes, SVM
(Linear), KNN, Decision Tree (Gini), and Random Forest,
are employed on human, chimpanzee, and dog
datasets. The datasets are split into training (80%) and
testing (20%), with allocations: 3,504 training, 876
testing for humans; 1,345 training, 337 testing for
chimpanzees; and 656 training, 164 testing for dogs.
The classifiers are trained on these subsets and
evaluated on the corresponding testing sets.

eNaive Bayes Classifier

The Naive Bayes classifier in DNA sequence analysis
involves preprocessing with the kmers method,
followed by count vectorization to convert sequences
into numerical format. Configured with Laplace
smoothing (alpha=0.1), it's trained on labelled datasets
for human, chimpanzee, and dog DNA sequences.
During classification, it calculates probabilities for
unlabelled sequences, achieving accurate
categorization into the three classes. Evaluation

metrics are applied to assess its performance.

oSVM Classifier
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In the SVM classifier, datasets representing human,
chimpanzee, and dog DNA sequences undergo
preprocessing with kmers and count vectorization. The
linear kernel with a gamma value of 1 is employed for
training, suitable for high-dimensional data like DNA
sequences. The trained model is evaluated using
appropriate metrics, ensuring accurate classification
into human, chimpanzee, or dog categories.

oKNN Classifier

The KNN classifier involves preprocessing with the
kmers method and count vectorization for human,
chimpanzee, and dog DNA sequences. The KNeighbors
Classifier is configured with neighbors=5 and p=2,
utilizing the Euclidean distance measure. The model is
trained on the datasets, and evaluation metrics are
applied to gauge its performance in accurate
categorization.

eDecision Tree Classifier

For the Decision Tree classifier, preprocessing utilizes
the kmer method and count vectorization for human,
chimpanzee, and dog DNA sequences. The Decision
Tree Classifier is configured with the gini criterion,
assessing impurity for optimal node splits during
training. Evaluation metrics are applied to assess the
model's performance in classifying DNA sequences into
the respective categories.

eRandom Forest

In Random Forest classification, preprocessing involves
kmers and count vectorization for human, chimpanzee,
and dog DNA sequences. The RandomForest Classifier
is configured with 100 decision trees and a fixed
random state. The model is trained and evaluated using
appropriate metrics for robust classification into
human, chimpanzee, or dog categories.

eConvolutional Neural Network(CNN)

This CNN model is structured to classify sequence data
[Figure 4], such as DNA sequences, using several layers
that progressively extract and process features from
the input data. The model starts with a Sequential
structure, which allows stacking layers sequentially
where each layer has a direct input and output
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Figure 4: Architecture of CNN

The first layer is a 1D Convolutional Layer (Conv1D). It
applies convolution operations on the input data using
64 different filters (or feature detectors), each of which
is of length 3. These filters move across the input DNA
sequences to extract important features or patterns.
The RelU (Rectified Linear Unit) activation function
introduces non-linearity, enabling the model to learn
complex patterns within the sequences. The input data
is shaped as "(maxlen, 1)°, where "'maxlen’ is the length
of the sequence, and "1’ represents that we are working
with a single channel (such as nucleotide information in
DNA sequences).

After the convolutional layer, a MaxPooling1D layer is
applied. This layer performs a downsampling
operation, reducing the dimensionality of the feature
maps produced by the convolutional layer. It pools the
maximum value within a window of size 2, effectively
retaining the most important features while reducing
the number of parameters and computations. This also
helps in reducing overfitting by simplifying the model’s
representation of the data.

Next, a Flatten layer is used, which reshapes the pooled
feature maps into a 1-dimensional vector. This is
necessary because the upcoming dense (fully
connected) layers require a flattened input to perform
classification tasks. Once the data is flattened, it is
passed into a Dense layer with 100 neurons. This fully
connected layer applies learned weights to the features
extracted by the convolutional layers and introduces a
non-linear transformation using the RelLU activation
function. The layer captures complex feature
interactions and relationships in the data.

To prevent overfitting, a Dropout layer with a rate of
0.5 is introduced. During each iteration of training, this
layer randomly drops out (sets to zero) 50% of the
neurons in the dense layer, ensuring that the model
does not become overly reliant on specific neurons and
is better able to generalize to unseen data.

Finally, the output is processed by another Dense layer
with a number of neurons equal to the number of
classes (DNA classifications), using the softmax
activation function. Softmax converts the raw output
values into a probability distribution across the classes,
which makes it possible to classify the input into one of
the categories.

Once the model is defined, it is compiled using the
Adam optimizer, which is an adaptive learning rate
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optimization algorithm. Adam is chosen for its
efficiency and ability to handle sparse gradients. The
categorical crossentropy loss function is used because
the classification task involves multiple classes, and the
model’s performance is evaluated using accuracy as the
metric.

The model is then trained using the fit function. The
training data (padded DNA sequences) and
corresponding one-hot encoded labels are provided to
the model. Training runs for 10 epochs, where in each
epoch, the model processes the entire dataset, but in
batches of 16 samples at a time. Additionally, 20% of
the training data is set aside as a validation set, allowing
the model to monitor its performance on unseen data
during training.

This CNN model is particularly well-suited for tasks like
DNA sequence classification, where local patterns
within the sequences (k-mers) are important. The
convolutional layers automatically learn these patterns
and the combination of pooling, dense layers, and
dropout ensures the model is both powerful and
generalizable.

5. Results and Discussion

This study employed the k-mer method using values of
5, 6, 7, and 8. Among these, the utilization of 6
demonstrated superior accuracy, leading to a detailed
discussion of the outcomes generated by the k-mer
value of 6. In Figure 5 diverse classifiers, including Naive
Bayes, SVM, KNN, Decision Trees, Random Forests and
CNN were evaluated on the human DNA dataset.
Following thorough experimentation, Naive Bayes
consistently outperformed, proving its accuracy and
reliability in predicting patterns within human DNA
sequences.

Figure 5: Comparison of Classifiers for Human DNA
Sequence
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Figure 6: Comparison of Classifiers for Chimpanzee
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Within Figure 6, which illustrates the comparison of
classifiers for the analysis of chimpanzee DNA
sequences, it was determined that among the machine
learning algorithms employed, Naive Bayes yielded the
most favourable results. The similarity between
chimpanzee DNA sequences and human DNA
sequences was found to be significant. Consequently,
for both of these datasets, Naive Bayes was identified
as the most effective classifier.
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Figure 7: Comparison of Classifiers for Dog DNA
Sequence

In the dog DNA sequence comparison (Figure 7), Naive
Bayes emerges as the top performer, attributed to its
efficiency and effectiveness in handling text-like data.
However, classifier selection depends on the dataset
and problem, necessitating consideration of diverse
factors for optimal choice.

Comparison of DNA Sequence Classification using CNN
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Figure 8: Comparison of DNA Sequence Classification
using CNN
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Figure 8 illustrates the performance of the CNN
classifier in classifying DNA sequences from three
different species: human, chimpanzee, and dog. The
CNN model demonstrates its effectiveness in capturing
complex patterns within DNA sequences, achieving
high accuracy across all datasets. Specifically, the
model achieves an accuracy of 90.76% for human DNA,
indicating its strong ability to correctly identify human-
specific genetic sequences. For chimpanzee DNA, the
model attains an accuracy of 83.64%, highlighting its
proficiency in distinguishing closely related species with
subtle genetic differences. In the case of dog DNA, the
CNN classifier achieves a notable accuracy of 76.53%,
despite the greater genetic divergence from the human
and chimpanzee datasets.

These results underscore the CNN's capability to
generalize across varying DNA sequences, leveraging its
convolutional layers to extract meaningful features
from the input data. The variation in accuracy across
the species can be attributed to differences in the
genetic complexity and similarity between the
datasets. Overall, the use of CNN as a classifier
significantly enhances the performance of DNA
sequence classification, especially when compared to
traditional machine learning approaches, by providing
more precise and reliable results for each species.

In the table 1, illustrates the accuracy of all models,
which helps to understand how effectively each of
these classifiers can distinguish between DNA
sequences linked to humans, chimpanzees, and dogs.
Summarizing the performance of these models in
classifying DNA sequences for these species, the
following insights:

Table 1: Accuracy of all models.

Model Human Chimpanzee Dog
Naive 72% 81% 64%
Bayes
SVM 57% 81% 68%
KNN 34% 41% 34%
DTree 37% 41% 52%
RForest 46% 65% 60%
CNN 90.76% 83.64% 76.53%

From table 1, the classification of Humans, Naive Bayes
achieved the leading accuracy of 80%, followed by SVM
at 53%, KNN at 35%, Decision Tree at 40%, and Random
Forest at 42%.In Chimpanzee classification, Naive Bayes
displayed the highest accuracy of 87%, followed by SVM
at 74%, KNN at 43%, Decision Tree at 49%, and Random
Forest at 59%.Regarding Dog classification, Naive Bayes
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secured an accuracy of 68%, SVM achieved 55%, KNN
had 32%, Decision Tree reached 52%, and Random
Forest attained 57%.

Other performance metrics are:
*For Naive Bayes Classifier:

The Naive Bayes classifier demonstrates superior
accuracy compared to other methods across all three
datasets. Consequently, the confusion matrix is
specifically showcased for this classifier.

Above Figure 9 explains that on the Human Test DNA
Sequence, it demonstrates accurate positive
classification with a accuracy of 80.1%, precision of
82.3%, effectively capturing actual positive instances
with a recall of 80.1%. The F1 Score of 80.2% reflects
overall good performance.
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Figure 9: Confusion matrix for human data using Naive
Bayes classifier

Figure 10 says that, For the Chimpanzee Test DNA
Sequence the model showcases exceptional accuracy at
87.2%, precision at 88.9% and strong recall at 87.2%,
resulting in a robust F1 Score of 87.2%. It exhibits high
accuracy and reliability in classifying positive instances.
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Figure 10: Confusion matrix for chimpanzee data using
Naive Bayes classifier

Within Figure 11, On the Dog Test DNA Sequence, the
model achieves accuracy at 68.9%, decent precision at
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78.1%, but its recall is lower at 68.9%, leading to an F1
Score of 67.3%. While accuracy is acceptable.
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Figure 11: Confusion matrix for dog using Naive Bayes
classifier

oFor SVM Classifier:

For human DNA sequences, precision is 77.6%, recall is
53.5%, and the F1 score is 51.0%. On chimpanzee DNA
sequences, it achieves precision of 82.9%, recall of
74.5%, and an impressive F1 score of 73.8%. However,
on dog DNA sequences, the model's precision is 68.0%,
recall is 55.5%, and the F1 score is 52.3%.

oFor KNN Classifier:

For human DNA sequences, it achieves a precision of
67.9%, recall of 35.2%, and an F1 score of 24.8%. On
chimpanzee DNA sequences, the model attains a
precision of 70.0%, recall of 43.6%, and an F1 score of
33.2%. However, on dog DNA sequences, precision is
40.6%, recall is 32.3%, and the F1 score is 22.0%.

oFor Decision Tree Classifier:

When dealing with human DNA sequences, it achieves
a precision rate of 42.4%, a recall rate of 40.2%, and an
F1 score of 37.7%. On the other hand, when applied to
chimpanzee DNA sequences, the model demonstrates
a precision rate of 50.8%, a recall rate of 49.6%, and an
F1 score of 48.4%. Similarly, for dog DNA sequences,
the model exhibits a precision rate of 52.4%, a recall
rate of 52.4%, and an F1 score of 51.5%.

eFor Random Forest Classifier:

When applied to human DNA sequences, it achieves a
precision rate of 60.3%, a recall rate of 42.4%, and an
F1 score of 34.0%. For chimpanzee DNA sequences, the
model showcases a precision rate of 70.7%, a recall rate
0f 59.6%, and an F1 score of 55.9%. Similarly, in the case
of dog DNA sequences, the model displays a precision
rate of 70.1%, a recall rate of 57.9%, and an F1 score of
55.5%.
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oFor CNN Classifier:

Using a Convolutional Neural Network (CNN) for DNA
sequence classification, we achieved distinct accuracies
across three species: 90.76% for human data, 83.64%
for chimpanzee data, and 76.53% for dog data. The CNN
model demonstrated its ability to effectively learn and
identify patterns within the genetic sequences of each
species, with human DNA classification yielding the
highest accuracy. This suggests that the CNN was
particularly successful at recognizing specific features
unique to human genetic data.

For chimpanzee data, the model performed well,
reflecting the genetic closeness between humans and
chimpanzees. Although slightly lower than for human
DNA, the 83.64% accuracy shows the model's capacity
to differentiate between these two closely related
species. When applied to dog DNA sequences, the CNN
achieved a lower but still significant accuracy of
76.53%, which can be attributed to the greater genetic
divergence between dogs and the other two species.
Despite this, the model was still able to extract
meaningful patterns from the dog DNA sequences to
classify them with reasonable accuracy. Overall, the
CNN's performance across these datasets highlights its
strength in identifying local patterns in genetic
sequences and demonstrates its effectiveness in
distinguishing between species with varying degrees of
genetic similarity.

eGraph Comparision:

Figure 12: Comparision of model accuracies for human
data at different k-mer lengths

In (Figure 12) the given graph illustrating the
comparison of model accuracies for human data across
various k-mer lengths, it's observed that Naive Bayes
consistently outperforms followed by other
classification models, such as SVM, Random Forest,
Decision Tree, then KNN across all k-mer lengths (5, 6,
7, and 8), showcasing higher accuracy rates.
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kemer Length

Figure 13: Comparision of model accuracies for
chimpanzee data at different k-mer lengths

The graph in (Figure 13) displays the contrast in model
accuracies for chimpazee data across different k-mer
lengths. It's evident that Naive Bayes consistently
outperforms followed by alternative classification
models like SVM , Random Forest, Decision Tree, then
KNN at k-mer lengths 5, 6, 7, and 8, demonstrating
superior accuracy rates.

In (Figure 14), the graph exhibits the variation in model
accuracies for dog data across various k-mer lengths.
Naive Bayes emerges as the top performer, followed by
alternative classifiers such as SVM, Random Forest,
Decision Tree, and then KNN, at k-mer lengths 5, 6, 7,
and 8, showcasing superior accuracy rates.

Figure 14: Comparision of model accuracies for dog
data at different k-mer lengths
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Model Accuracy for Human, Chimpanzee, and Dog

- uman 9076%
- cmmpanzee

54%
80 - 53%
74.0%
8.0%
59.0%
7.0%
510%
47.0%
43.0% I 2.0
) I
Naive Bayes DTree RForest NN

SVM

87.0%

accuracy ()
o
g

"
&

N
8

Models

Figure 15: Bar Chart Comparison of model accuracies
for human, chimpanzee and dog data.

In Figure 15, a bar chart is presented to visually
compare the classification accuracies of the CNN model
across three species: human, chimpanzee, and dog. The
height of each bar corresponds to the accuracy
achieved for each dataset, with human data reaching
the highest accuracy at 90.76%, followed by
chimpanzee data at 83.64%, and dog data at 76.53%.
This bar chart offers a clear and straightforward way to
compare the performance of the model on different
datasets, highlighting the differences in classification
accuracy between species. The chart effectively
emphasizes the CNN's proficiency in handling human
and chimpanzee data compared to dog data,
showcasing how genetic similarities and divergences
impact the model's accuracy.

In Figure 16, a line graph is used to represent the same
classification accuracies of the CNN model for human,
chimpanzee, and dog data. The line graph provides a
continuous visual connection between the accuracy
values for the three species, illustrating the trend in
model performance. As the line progresses, it shows
the highest point for human data, a slightly lower point
for chimpanzee data, and a further drop for dog data.
This format of visualization highlights the gradual
decline in accuracy as the genetic divergence between
species increases, offering a clearer view of the pattern
in model performance compared to the bar chart.

Both figures serve the purpose of visually comparing
the model's performance on different datasets, with
the bar chart offering a categorical comparison and the
line graph showing the trend in accuracy changes
across species.

Figure 16: Line Graph Comparison of model accuracies
for human, chimpanzee and dog data.

6. Conclusion
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In conclusion, DNA sequencing is pivotal in genetics and
genomics, utilizing ML methods such as Naive Bayes,
SVM, KNN, Decision Trees, and Random Forests to
discern genes, including disease-causing ones. Notably,
among k-mers 5, 6, 7, and 8, k-mer 6 stands out, where
Naive Bayes consistently achieves peak accuracy 80%
for humans, 87% for chimpanzees, and 68% for dogs.
Classifier choice significantly impacts accuracy, with
Naive Bayes excelling for all 3 datasets of humans,
chimpanzee and dogs. The integration of machine
learning in genomics enhances classification accuracy,
deepening our insights into genetic functions and
disease research. DNA sequencing, vital for unraveling
life's mysteries, underscores the potential of ML in
advancing genomics knowledge.

Future work in DNA sequencing entails the integration
of diverse machine learning techniques, encompassing
both deep learning and traditional ML methods. This
includes hybrid models that combine deep learning's
feature extraction capabilities with traditional ML
classifiers. Researchers will explore transfer learning,
interpretability, ensemble methods, and data
augmentation to enhance classification and variant
calling accuracy. Integrating multi-model data, ensuring
scalability, addressing ethical considerations, and
facilitating clinical implementation are key aspects of
future genomics research.
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