
 
 
 

217 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 5 

May 2025 

Analysis of DNA Sequence Classification Using Machine Learning Techniques 

 
Madhushree Meghavath K B1, Indrakumar K1, Sharath H S1 and Mohammed A.S Al-Mohamadi1, 

Vighnesh H Y2, Chiranjeevi 3  
1Department of Computer Science, Kuvempu University, Shimoga, Karnataka, INDIA 

2Sri JCBM College, Chikkamagaluru, Karnataka, INDIA 
3WebOccult Technologies, Ahmedabad, Gujarat, INDIA 

1mmkb2401@gmail.com, 1indk214@gmail.com, 1sharathhs09@gmail.com, 1almohmdy30@gmail.com, 
2hyvighnesh93@gmail.com and 3chiranjeevic1305@gmail.com 

 

Abstract  

Introduction: DNA serves as the fundamental genetic blueprint of life. Extracting meaningful patterns and information 

from DNA sequences is essential for advancements in genomics and comparative biology. 

Objectives: This study aims to classify and distinguish DNA sequences from different species, human, chimpanzee, and 

dog using machine learning techniques to evaluate their effectiveness in genomic sequence analysis. 

Methods: Three datasets consisting of DNA sequences from humans, chimpanzees, and dogs were used. Preprocessing 

included k-mer analysis and the CountVectorizer technique. Various machine learning algorithms, Naive Bayes, SVM, 

KNN, Decision Trees, and Random Forests were employed, alongside a Convolutional Neural Network (CNN) for deep 

learning-based classification. K-mers ranging from 5 to 8 were tested, with 6-mers yielding the best results. 

Results: Naive Bayes achieved accuracies of 80% for human DNA, 87% for chimpanzee DNA, and 68% for dog DNA using 

6-mers. CNN provided enhanced performance with 90.76% accuracy for human data, 83.64% for chimpanzee data, and 

76.53% for dog data.  

Conclusions: The use of 6-mers significantly improves classification accuracy across species. CNN models outperform 

traditional machine learning classifiers, demonstrating the potential of deep learning in genomic sequence analysis. 

 

Keywords: DNA, Machine learning classifiers, K-mers, Countvectorizer.CNN. 

 

1. Introduction 

DNA, or “deoxyribonucleic acid, is a molecule that 

carries the genetic instructions” for the development, 

functioning, growth, and reproduction of all known 

living organisms and many viruses. It is often referred 

to as the "building block of life" due to its fundamental 

role in genetics. DNA consists of two long chains, known 

as strands, that are made up of smaller units called 

nucleotides. Each nucleotide contains a sugar molecule 

(deoxyribose), a phosphate group, and one of four 

nitrogenous bases: “adenine (A), thymine (T), cytosine 

(C), or guanine (G)”. The structure of DNA is often 

depicted as a double helix, where the two strands are 

twisted around each other in a spiral. 

 

Figure 1: DNA Model 

As shown in Figure 1, all living organisms have a 

genome, though the size and complexity of these 

genomes can vary significantly. In humans, the genetic 

material is organized across 23 chromosomes, and each 

genome contains over 6 billion DNA base pairs. Despite 

this immense size, most human genomes are 

remarkably similar to one another. The specific 
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arrangement of nitrogenous bases along the DNA 

molecules encodes the genetic blueprint that dictates 

an organism’s traits and characteristics. 

DNA strands are held together through base pairing, 

where adenine (A) pairs with thymine (T), and cytosine 

(C) pairs with guanine (G). This pairing mechanism is 

essential not only for copying DNA during replication 

but also for transcribing it into RNA. Figure 2 illustrates 

DNA sequencing a method used to determine the 

precise sequence of nucleotides in a DNA strand. 

Figure 2: Sequence Strand 

DNA, or Deoxyribonucleic Acid, serves as the hereditary 

material that holds the vital instructions necessary for 

an organism’s growth, development, function, and 

reproduction. It acts as a fundamental guide for all 

biological processes in living beings. The sequence of 

nucleotide bases (adenine, thymine, cytosine, and 

guanine) within a DNA molecule determines the 

genetic characteristics of an organism. In the field of 

genomics, understanding DNA sequences and 

comparing them across species is critical to unlocking 

insights into evolutionary relationships, species 

identification, genetic diversity, and the molecular basis 

of diseases. DNA sequence classification, therefore, 

serves as an essential tool in bioinformatics, facilitating 

the identification of species or organisms based on 

their genetic material. 

This study focuses on DNA sequence classification 

between three species humans, chimpanzees, and dogs 

using machine learning techniques, particularly 

Convolutional Neural Networks (CNNs). Each of these 

species represents different levels of genetic similarity 

and divergence, making them ideal for comparative 

analysis. Humans and chimpanzees share 

approximately 98-99% of their DNA, while dogs are 

significantly more genetically distinct. By comparing 

DNA sequences from these species, we aim to analyse 

how effectively machine learning algorithms can 

distinguish between organisms based on their genomic 

data. The ability to classify DNA sequences with high 

accuracy can not only aid in species identification but 

also provide a deeper understanding of evolutionary 

connections and genetic variations. 

1.1 DNA Classification in Genomics 

The process of DNA classification involves analyzing the 

nucleotide sequences of DNA and assigning them to 

predefined categories, typically based on species or 

genetic traits. In genomics, DNA sequence classification 

is widely used for tasks such as identifying genetic 

variations, understanding evolutionary relationships, 

detecting mutations, and diagnosing genetic disorders. 

It is a fundamental component of comparative 

genomics, which seeks to compare the genomes of 

different organisms to draw inferences about their 

biology, evolution, and development. 

Classifying DNA sequences requires the use of 

advanced computational techniques, as DNA is made 

up of long strings of nucleotide bases that contain 

hidden patterns and features. Machine learning 

algorithms are particularly well-suited for this task as 

they can learn from large datasets and automatically 

identify meaningful patterns that may not be easily 

discernible through traditional analytical methods. By 

training models on labeled DNA sequences, machine 

learning algorithms can predict the species or 

characteristics of unseen DNA sequences, making them 

powerful tools for classification tasks in genomics. 

1.2 Comparative Genomics: Human, Chimpanzee, and 

Dog DNA 

Comparing the genomes of different species provides 

valuable insights into their evolutionary history and 

genetic makeup. Humans, chimpanzees, and dogs offer 

a compelling case study for DNA sequence classification 

due to their differing levels of genetic similarity. The 

human genome has been extensively studied and 

serves as a reference point for comparisons with other 

species. Chimpanzees, being the closest living relatives 

to humans, share a high degree of genetic similarity, 

with only about 1-2% of their DNA differing from that 

of humans. This close genetic relationship makes it 

challenging but insightful to classify DNA sequences 

from humans and chimpanzees, as it tests the machine 

learning models' ability to detect subtle differences 

between closely related species. 

On the other hand, dogs are much more genetically 

distant from both humans and chimpanzees. The 

classification of dog DNA presents a different challenge, 

as the model needs to distinguish between organisms 

that share fewer common genetic features. The ability 
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to classify dog DNA accurately despite its divergence 

from human and chimpanzee DNA demonstrates the 

robustness and generalizability of the machine learning 

models used in this study. 

1.3 Machine Learning and DNA Classification 

Machine learning algorithms have revolutionized the 

field of bioinformatics by enabling the analysis of vast 

amounts of genomic data in ways that were previously 

impossible. Traditional methods of DNA analysis, such 

as sequence alignment and phylogenetic tree 

construction, are limited by their reliance on 

predefined patterns and rules. In contrast, machine 

learning algorithms can learn directly from the data, 

making them more flexible and powerful for tasks like 

DNA sequence classification. 

A wide range of machine learning techniques has been 

applied to DNA classification, each with its strengths 

and limitations: 

•Naive Bayes is a probabilistic classifier that works well 

with discrete data such as k-mer counts (short 

nucleotide sequences). 

•Support Vector Machine (SVM) is a powerful 

classification algorithm that is widely used in 

bioinformatics for its ability to handle complex, high-

dimensional datasets. 

•K-Nearest Neighbors (KNN) is a simple yet effective 

method that classifies data points based on the closest 

training examples in the feature space. 

•Decision Trees and Random Forests are tree-based 

models that split data based on feature values, making 

them highly interpretable and effective for non-linear 

relationships. 

•Convolutional Neural Networks (CNNs) are deep 

learning models that have shown remarkable success in 

image classification and have been adapted for 

sequence data due to their ability to capture local 

patterns and hierarchies. 

In this study, we focus on using a CNN model to classify 

DNA sequences from humans, chimpanzees, and dogs. 

CNNs have shown promise in bioinformatics 

applications, especially in tasks like protein structure 

prediction and DNA sequence analysis. The key 

advantage of CNNs lies in their convolutional layers, 

which can detect local patterns (such as k-mers) and 

learn hierarchical representations of the data. This 

makes them particularly well-suited for DNA sequence 

classification, where the model needs to capture both 

short-range and long-range dependencies in the 

sequence. 

1.4 K-mer Analysis in DNA Classification 

A central technique in DNA sequence classification is k-

mer analysis, where DNA sequences are broken down 

into smaller overlapping subsequences (k-mers) of 

length k. Each k-mer represents a specific combination 

of nucleotide bases, and the frequency of occurrence of 

different k-mers provides valuable information about 

the genetic sequence. For example, the sequence 

"AGCT" could be split into 3-mers (subsequences of 

length 3) such as "AGC" and "GCT." By analyzing the 

distribution of k-mers within a DNA sequence, machine 

learning models can learn important features that 

distinguish between different species. 

In this study, we use k-mer analysis along with the 

CountVectorizer method to preprocess the DNA 

sequences. The CountVectorizer method converts the 

DNA sequences into a matrix of k-mer counts, which 

serves as the input to the machine learning models. The 

length of the k-mers is an important hyperparameter 

that can affect the performance of the classifier. For 

this study, we experiment with different k-mer lengths 

and find that 6-mers yield the highest accuracy across 

all species. This suggests that 6-mers capture the 

optimal amount of information for distinguishing 

between human, chimpanzee, and dog DNA. 

By training the CNN on DNA sequences from humans, 

chimpanzees, and dogs, we achieve high classification 

accuracy, with notable results of 90.76% for human 

data, 83.64% for chimpanzee data, and 76.53% for dog 

data. These results demonstrate the effectiveness of 

CNNs in capturing relevant features from DNA 

sequences and distinguishing between species based 

on their genetic material. 

DNA sequence classification is an essential task in 

genomics, enabling researchers to identify species, 

understand evolutionary relationships, and detect 

genetic variations. The use of machine learning 

algorithms, particularly CNNs, has proven to be highly 

effective in this domain. By analyzing DNA sequences 

from humans, chimpanzees, and dogs, we have 

demonstrated the CNN's ability to accurately classify 

species based on their genetic data. The combination of 

k-mer analysis and CNNs allows for the extraction of 

meaningful features from DNA sequences, making 
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these methods valuable tools in the study of 

comparative genomics and bioinformatics. 

Classification is a fundamental concept and task in the 

field of machine learning and data analysis. It serves 

several important purposes and has a wide range of 

applications across various domains. Classification in 

DNA sequencing is a crucial step in bioinformatics and 

genomics research. It plays a fundamental role in 

analyzing and interpreting the vast amount of genetic 

information obtained through DNA sequencing 

techniques. The machine learning algorithms employed 

for this classification task include MultiNomial Naive 

Bayes (NB), Support Vector Machines (SVM), K-Nearest 

Neighbors (KNN), Decision Trees (DT), and Random 

Forest (RF). 

•MultiNomial Naive Bayes (NB) 

Naive Bayes, a probabilistic classification algorithm 

based on Bayes' theorem, simplifies computations by 

assuming independence among features, despite 

potential real-world dependencies. Its effectiveness in 

tasks like text classification and spam detection stems 

from calculating class probabilities using the simplified 

assumption. Though this assumption may not always 

hold in practical scenarios, Naive Bayes remains 

valuable for its efficiency in categorizing data  

•Support Vector Machine (SVM) 

Support Vector Machines (SVM) excel in classifying 

both linear and non-linear data by identifying the 

optimal hyperplane for maximal class separation. 

Particularly adept with high-dimensional and complex 

decision boundary scenarios, SVM employs a kernel 

trick to enhance separation by transforming data into 

higher-dimensional spaces.  

•K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple and effective 

classification method that predicts based on the 

majority class among the k-nearest data points in the 

feature space, avoiding model training in lazy learning. 

The choice of k significantly influences predictive 

accuracy, and while KNN performs well across dataset 

sizes, computational efficiency becomes a concern with 

large datasets. 

•Decision Tree Classifier (DT) 

Decision Trees, a fundamental classification method, 

iteratively partitions data based on key attributes for 

simplicity and interpretability. Prone to overfitting, 

especially in deep structures, techniques like pruning 

and depth limitation are employed.   

•Random Forest Classifier (RF) 

Random Forest is an ensemble learning technique that 

enhances prediction accuracy by combining multiple 

decision trees. During training, it builds a forest of 

decision trees, with each tree trained on a random 

subset of the data with replacement. This approach 

helps reduce overfitting and enhances the model's 

ability to generalize to new data. Random Forest is 

robust to noisy data and is applicable for both 

classification and regression tasks, making it a versatile 

and powerful machine learning method.  

•Convolutional Neural Network(CNN) 

CNN, or Convolutional Neural Network, is a deep 

learning algorithm widely used for tasks involving grid-

like data, such as image recognition or, in this case, DNA 

sequence analysis. CNNs are particularly effective at 

automatically learning features from raw data through 

a series of convolutional layers, pooling layers, and fully 

connected layers. In the context of DNA sequence 

classification, CNNs can capture complex patterns 

within the sequences, making them useful for 

improving accuracy in genomics tasks. By applying CNN 

to human, chimpanzee, and dog DNA sequences, we 

achieved higher classification accuracy compared to 

traditional machine learning models, particularly in 

capturing the local dependencies within the DNA k-

mers. 

Classification, a foundational concept in machine 

learning, is crucial for automating tasks and making 

informed decisions. Its applications span various fields, 

such as image recognition, medical diagnosis, and 

sentiment analysis in natural language processing. 

Classification plays a pivotal role in predictive modeling 

for fraud detection, recommendation systems, and 

customer churn prediction.  

Genomic data analysis confronts challenges like 

managing massive volumes, addressing DNA structure 

complexity, and handling sequence variability. 

Selecting appropriate classification algorithms is vital, 

considering strengths and weaknesses, and deep 

genomics knowledge is essential for identifying 

relevant features. Dealing with imbalances, high 

dimensionality, and sequencing errors requires 

specialized preprocessing, and ensuring interpretability 

is crucial in scientific and medical applications. Ethical 

concerns include genomic data privacy, label accuracy, 
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and model transferability across datasets and species. 

Despite ethical considerations, overcoming 

classification challenges is essential for advancing DNA 

analysis's impact on genetics, healthcare, 

biotechnology, environmental research, agriculture, 

security, and personalized medicine. 

This research aims to use machine learning for DNA 

sequence classification, comparing models based on 

accuracy across human, dog, and chimpanzee datasets. 

The primary goal is to identify the most consistently 

accurate model, determining its robustness for genetic 

classification tasks. 

2. Objectives 

The primary objective of this study is to develop and 

evaluate a robust framework for classifying DNA 

sequences from different species specifically, human, 

chimpanzee, and dog using a combination of traditional 

machine learning and deep learning techniques. The 

study aims to: 

2.1 Compare the Performance of ML Algorithms: 

Assess and compare the effectiveness of various 

machine learning classifiers including Naive Bayes, 

Support Vector Machines (SVM), k-Nearest Neighbors 

(KNN), Decision Trees, and Random Forests in 

classifying genomic sequences from different species. 

2.2 Apply k-mer Analysis for Feature Extraction: 

Investigate the impact of different k-mer sizes (5-mers, 

6-mers, 7-mers, and 8-mers) on classification accuracy 

by converting DNA sequences into numerical feature 

vectors suitable for machine learning models. 

2.3 Utilize CountVectorizer for DNA Representation: 

Employ the CountVectorizer technique for 

transforming raw DNA sequences into sparse matrix 

representations, facilitating model learning and 

comparison. 

2.4 Implement a Deep Learning Approach (CNN): 
Design and train a Convolutional Neural Network (CNN) 
to automatically extract hierarchical features from DNA 
sequences, and benchmark its performance against 
traditional machine learning models. 

2.5 Identify Optimal k-mer Size and Classifier: 

Determine which k-mer size yields the highest 

classification performance and which classifier (among 

both ML and DL methods) provides the best 

generalization across species datasets. 

2.6 Evaluate Model Generalizability: 

Test the models across multiple species datasets 

(human, chimpanzee, dog) to evaluate consistency, 

robustness, and generalizability of the classification 

framework. 

2.7 Lay the Groundwork for Future Integration: 

Provide insights that inform future research into hybrid 

models combining deep learning and classical ML 

methods, and their application in broader genomics 

contexts such as variant detection, gene annotation, 

and disease gene identification. 

3. Literature Review 

Ersoy Öz et al. [1] authored the book, "Support Vector 

Machines in DNA Sequencing Quality Control," explores 

SVM's application in classifying DNA sequencing data 

quality. Using SVMs, the study distinguishes between 

'high' and 'low' quality sequences, achieving accurate 

labeling in 23 out of 24 chromatograms from the InSNP 

dataset. The novel approach combines feature 

extraction and SVMs, showcasing potential as a robust 

solution for automatic quality screening in DNA 

sequencing. Achieved an accuracy of 95.83%. 

Teresita M. Porter et al. [2] book, "Rapid and Accurate 

Taxonomic Classification of Insect DNA Barcode 

Sequences," introduces a Naïve Bayesian classifier for 

swift and precise insect species identification using COI 

DNA sequences. Emphasizing the importance in 

ecological research, the book provides a valuable 

contribution to entomology and DNA barcoding, 

offering an efficient method for taxonomic 

classification. 

Authored by Lailil Muflikhah et al. [3] the book 

"Prediction of Liver Cancer Based on DNA Sequence 

Using Ensemble Method" explores the link between 

chronic HBV infection and liver cancer. Through 

machine learning techniques, the study mitigates 

unbalanced data challenges, proposing an ensemble 

method with an 88.4% accuracy, 88.4% sensitivity, and 

91.4% specificity in predicting liver cancer based on 

HBV DNA sequences. 

Rodney T. Richardson et al.  [4] investigate the 

performance of widely used DNA metabarcoding 

classification software in their paper "Evaluating and 

optimizing the performance of software commonly 

used for the taxonomic classification of DNA 

metabarcoding sequence data." The study categorizes 
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classification methods, focusing on rdp Naïve Bayesian 

Classifier, rtax, and utax, and underscores the need for 

clear comparisons to improve the accuracy and 

reliability of DNA metabarcoding in ecological research. 

The research highlights challenges in selecting 

appropriate tools due to the diversity of available 

methods in DNA sequence classification. 

Jiarong Guo, Ben Bolduc et al. [5] introduce 

"VirSorter2," an expert-guided tool for identifying DNA 

and RNA viruses. This sophisticated, freely accessible 

resource excels in taxonomic and functional diversity 

exploration of microbial communities, utilizing high-

throughput gene marker and metagenomic sequencing 

technologies. VirSorter2's modular design facilitates 

updates, though it may be less sensitive for very short 

sequences; it stands out for differentiating eukaryotic 

genomes, plasmids, and viruses with high specificity, 

offering scalability for large datasets in virology and 

metagenomics. Achieved an accuracy of   >80%. 

Hemalatha Gunasekaran et al. [6] book, "Analysis of 

DNA Sequence Classification Using CNN and Hybrid 

Models," explores effective biomedical data analysis 

for virus identification. The study emphasizes the 

power of Convolutional Neural Networks (CNNs), 

specifically CNN, CNN-LSTM, and CNN-Bidirectional 

LSTM, showcasing k-mer encoding's superiority for 

accurate DNA sequence classification, achieving a 

notable 93.16% accuracy.  

Frederick I. Archer et al. [7] investigate subspecies 

classification using machine learning, specifically 

Random Forests, applied to mitochondrial DNA 

(mtDNA) sequences. The study reveals insights into the 

impact of simulation parameters, such as migration and 

divergence time, on classification accuracy, ranging 

from 70% to 85%. The research sheds light on 

challenges and influential factors in accurately 

classifying genetic data for subspecies differentiation. 

Maitena Tellaetxe-Abete et al. [8] introduce Ideafix, a 

decision tree-based algorithm refining variants in 

formalin-fixed and paraffin-embedded (FFPE) DNA 

sequencing data. Utilizing features like read pair 

orientation bias, genomic context, and variant allele 

frequency, Ideafix distinguishes deaminations from 

non-deaminations, outperforming existing tools with 

an accuracy of 96%.  

Steven Salzberg et al. [9] introduce a gene-finding 

system using decision tree classifiers and dynamic 

programming, achieving a base-pair accuracy of 83% on 

human DNA sequences. The study emphasizes the 

system's preliminary stage, with plans for further 

refinement, including testing on a larger vertebrate 

DNA database and incorporating lookup information 

for enhanced performance.  

Robert W. Jackson et al.  [10] investigated twin zygosity 

determination in their study "Determination of Twin 

Zygosity: A Comparison of DNA with Various 

Questionnaire Indices." Using a subset of questions, a 

logistic regression achieved a high 91% correct 

classification rate for both monozygotic (MZ) and 

dizygotic (DZ) twins. The questionnaire demonstrated 

reliability and outperformed other methods in accuracy 

comparisons, suggesting its effectiveness as an 

alternative to DNA analysis when questionnaire validity 

is established within the twin cohort. 

4. Methods 

Figure 3 illustrates the methodology, which 

encompasses the components of dataset management, 

preprocessing in that two process applied k-mes and 

count vectorizer, and the final classification models.  

 

 

Figure 3: Block diagram of our Proposed Methodology 

3.1 Datasets: 

The dataset comprises text data consisting of DNA 

sequences from three distinct sources: humans, 

chimpanzees, and dogs. Each DNA sequence can be 

associated with anywhere from 0 to 6 class labels. 

Following this, a preprocessing phase is carried out on 

the dataset. 
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3.2 Preprocessing: 

The dataset undergoes two important steps. First, k-

mer counting is applied using a k-mer method to extract 

relevant patterns from the DNA sequences. Following 

this, the count vectorization process is employed to 

transform the k-mer counts into numerical features. 

3.3 K-mer Counting: 

In DNA sequence analysis, the method getKmers 

generates k-mers from sequences, using sizes 5, 6, 7, 

and 8, with 6-mers demonstrating higher accuracy. 

Applied to human, chimpanzee, and dog datasets, the 

k-mers are stored in new words columns, enabling 

subsequent text data processing for further analysis, 

such as text classification or machine learning tasks. 

The pattern matching process assesses the occurrence 

of specified patterns within the strings, providing 

counts for detected patterns. 

3.4 Count Vectorizer: 

Count vectorization, employed in genomics for DNA 

sequences, treats each unique 4-mer as a feature, 

creating a sparse matrix representing the count of each 

4-mer in the sequences. This technique results in a "k-

mer frequency matrix" or "count matrix" and is applied 

consistently across all three datasets. 

3.5 Classifications: 

Machine learning algorithms, namely Naive Bayes, SVM 

(Linear), KNN, Decision Tree (Gini), and Random Forest, 

are employed on human, chimpanzee, and dog 

datasets. The datasets are split into training (80%) and 

testing (20%), with allocations: 3,504 training, 876 

testing for humans; 1,345 training, 337 testing for 

chimpanzees; and 656 training, 164 testing for dogs. 

The classifiers are trained on these subsets and 

evaluated on the corresponding testing sets. 

•Naive Bayes Classifier 

The Naive Bayes classifier in DNA sequence analysis 

involves preprocessing with the kmers method, 

followed by count vectorization to convert sequences 

into numerical format. Configured with Laplace 

smoothing (alpha=0.1), it's trained on labelled datasets 

for human, chimpanzee, and dog DNA sequences. 

During classification, it calculates probabilities for 

unlabelled sequences, achieving accurate 

categorization into the three classes. Evaluation 

metrics are applied to assess its performance. 

•SVM Classifier 

In the SVM classifier, datasets representing human, 

chimpanzee, and dog DNA sequences undergo 

preprocessing with kmers and count vectorization. The 

linear kernel with a gamma value of 1 is employed for 

training, suitable for high-dimensional data like DNA 

sequences. The trained model is evaluated using 

appropriate metrics, ensuring accurate classification 

into human, chimpanzee, or dog categories. 

•KNN Classifier 

The KNN classifier involves preprocessing with the 

kmers method and count vectorization for human, 

chimpanzee, and dog DNA sequences. The KNeighbors 

Classifier is configured with neighbors=5 and p=2, 

utilizing the Euclidean distance measure. The model is 

trained on the datasets, and evaluation metrics are 

applied to gauge its performance in accurate 

categorization. 

•Decision Tree Classifier 

For the Decision Tree classifier, preprocessing utilizes 

the kmer method and count vectorization for human, 

chimpanzee, and dog DNA sequences. The Decision 

Tree Classifier is configured with the gini criterion, 

assessing impurity for optimal node splits during 

training. Evaluation metrics are applied to assess the 

model's performance in classifying DNA sequences into 

the respective categories. 

•Random Forest 

In Random Forest classification, preprocessing involves 

kmers and count vectorization for human, chimpanzee, 

and dog DNA sequences. The RandomForest Classifier 

is configured with 100 decision trees and a fixed 

random state. The model is trained and evaluated using 

appropriate metrics for robust classification into 

human, chimpanzee, or dog categories. 

•Convolutional Neural Network(CNN) 

This CNN model is structured to classify sequence data 

[Figure 4], such as DNA sequences, using several layers 

that progressively extract and process features from 

the input data. The model starts with a Sequential 

structure, which allows stacking layers sequentially 

where each layer has a direct input and output 

relationship. 
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Figure 4: Architecture of CNN 

The first layer is a 1D Convolutional Layer (Conv1D). It 

applies convolution operations on the input data using 

64 different filters (or feature detectors), each of which 

is of length 3. These filters move across the input DNA 

sequences to extract important features or patterns. 

The ReLU (Rectified Linear Unit) activation function 

introduces non-linearity, enabling the model to learn 

complex patterns within the sequences. The input data 

is shaped as `(maxlen, 1)`, where `maxlen` is the length 

of the sequence, and ̀ 1` represents that we are working 

with a single channel (such as nucleotide information in 

DNA sequences). 

After the convolutional layer, a MaxPooling1D layer is 

applied. This layer performs a downsampling 

operation, reducing the dimensionality of the feature 

maps produced by the convolutional layer. It pools the 

maximum value within a window of size 2, effectively 

retaining the most important features while reducing 

the number of parameters and computations. This also 

helps in reducing overfitting by simplifying the model’s 

representation of the data. 

Next, a Flatten layer is used, which reshapes the pooled 

feature maps into a 1-dimensional vector. This is 

necessary because the upcoming dense (fully 

connected) layers require a flattened input to perform 

classification tasks. Once the data is flattened, it is 

passed into a Dense layer with 100 neurons. This fully 

connected layer applies learned weights to the features 

extracted by the convolutional layers and introduces a 

non-linear transformation using the ReLU activation 

function. The layer captures complex feature 

interactions and relationships in the data. 

To prevent overfitting, a Dropout layer with a rate of 

0.5 is introduced. During each iteration of training, this 

layer randomly drops out (sets to zero) 50% of the 

neurons in the dense layer, ensuring that the model 

does not become overly reliant on specific neurons and 

is better able to generalize to unseen data. 

Finally, the output is processed by another Dense layer 

with a number of neurons equal to the number of 

classes (DNA classifications), using the softmax 

activation function. Softmax converts the raw output 

values into a probability distribution across the classes, 

which makes it possible to classify the input into one of 

the categories. 

Once the model is defined, it is compiled using the 

Adam optimizer, which is an adaptive learning rate 

optimization algorithm. Adam is chosen for its 

efficiency and ability to handle sparse gradients. The 

categorical crossentropy loss function is used because 

the classification task involves multiple classes, and the 

model’s performance is evaluated using accuracy as the 

metric. 

The model is then trained using the fit function. The 

training data (padded DNA sequences) and 

corresponding one-hot encoded labels are provided to 

the model. Training runs for 10 epochs, where in each 

epoch, the model processes the entire dataset, but in 

batches of 16 samples at a time. Additionally, 20% of 

the training data is set aside as a validation set, allowing 

the model to monitor its performance on unseen data 

during training. 

This CNN model is particularly well-suited for tasks like 

DNA sequence classification, where local patterns 

within the sequences (k-mers) are important. The 

convolutional layers automatically learn these patterns 

and the combination of pooling, dense layers, and 

dropout ensures the model is both powerful and 

generalizable. 

5. Results and Discussion 

This study employed the k-mer method using values of 

5, 6, 7, and 8. Among these, the utilization of 6 

demonstrated superior accuracy, leading to a detailed 

discussion of the outcomes generated by the k-mer 

value of 6. In Figure 5 diverse classifiers, including Naive 

Bayes, SVM, KNN, Decision Trees, Random Forests and 

CNN were evaluated on the human DNA dataset. 

Following thorough experimentation, Naive Bayes 

consistently outperformed, proving its accuracy and 

reliability in predicting patterns within human DNA 

sequences.   

Figure 5: Comparison of Classifiers for Human DNA 

Sequence 
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Figure 6: Comparison of Classifiers for Chimpanzee 

DNA Sequence 

Within Figure 6, which illustrates the comparison of 

classifiers for the analysis of chimpanzee DNA 

sequences, it was determined that among the machine 

learning algorithms employed, Naive Bayes yielded the 

most favourable results. The similarity between 

chimpanzee DNA sequences and human DNA 

sequences was found to be significant. Consequently, 

for both of these datasets, Naive Bayes was identified 

as the most effective classifier. 

 

Figure 7: Comparison of Classifiers for Dog DNA 

Sequence 

In the dog DNA sequence comparison (Figure 7), Naive 

Bayes emerges as the top performer, attributed to its 

efficiency and effectiveness in handling text-like data. 

However, classifier selection depends on the dataset 

and problem, necessitating consideration of diverse 

factors for optimal choice. 

 

Figure 8: Comparison of DNA Sequence Classification 

using CNN 

Figure 8 illustrates the performance of the CNN 

classifier in classifying DNA sequences from three 

different species: human, chimpanzee, and dog. The 

CNN model demonstrates its effectiveness in capturing 

complex patterns within DNA sequences, achieving 

high accuracy across all datasets. Specifically, the 

model achieves an accuracy of 90.76% for human DNA, 

indicating its strong ability to correctly identify human-

specific genetic sequences. For chimpanzee DNA, the 

model attains an accuracy of 83.64%, highlighting its 

proficiency in distinguishing closely related species with 

subtle genetic differences. In the case of dog DNA, the 

CNN classifier achieves a notable accuracy of 76.53%, 

despite the greater genetic divergence from the human 

and chimpanzee datasets. 

These results underscore the CNN's capability to 

generalize across varying DNA sequences, leveraging its 

convolutional layers to extract meaningful features 

from the input data. The variation in accuracy across 

the species can be attributed to differences in the 

genetic complexity and similarity between the 

datasets. Overall, the use of CNN as a classifier 

significantly enhances the performance of DNA 

sequence classification, especially when compared to 

traditional machine learning approaches, by providing 

more precise and reliable results for each species. 

In the table 1, illustrates the accuracy of all models, 

which helps to understand how effectively each of 

these classifiers can distinguish between DNA 

sequences linked to humans, chimpanzees, and dogs. 

Summarizing the performance of these models in 

classifying DNA sequences for these species, the 

following insights: 

Table 1: Accuracy of all models. 

Model Human Chimpanzee Dog 

Naïve 
Bayes 

72% 81% 64% 

SVM 57% 81% 68% 

KNN 34% 41% 34% 

DTree 37% 41% 52% 

RForest 46% 65% 60% 

CNN 90.76% 83.64% 76.53% 

From table 1, the classification of Humans, Naive Bayes 

achieved the leading accuracy of 80%, followed by SVM 

at 53%, KNN at 35%, Decision Tree at 40%, and Random 

Forest at 42%.In Chimpanzee classification, Naive Bayes 

displayed the highest accuracy of 87%, followed by SVM 

at 74%, KNN at 43%, Decision Tree at 49%, and Random 

Forest at 59%.Regarding Dog classification, Naive Bayes 
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secured an accuracy of 68%, SVM achieved 55%, KNN 

had 32%, Decision Tree reached 52%, and Random 

Forest attained 57%.  

Other performance metrics are:  

•For Naive Bayes Classifier: 

The Naive Bayes classifier demonstrates superior 

accuracy compared to other methods across all three 

datasets. Consequently, the confusion matrix is 

specifically showcased for this classifier. 

Above Figure 9 explains that on the Human Test DNA 

Sequence, it demonstrates accurate positive 

classification with a accuracy of 80.1%, precision of 

82.3%, effectively capturing actual positive instances 

with a recall of 80.1%. The F1 Score of 80.2% reflects 

overall good performance. 

 

Figure 9: Confusion matrix for human data using Naïve 

Bayes classifier 

Figure 10 says that, For the Chimpanzee Test DNA 

Sequence the model showcases exceptional accuracy at 

87.2%, precision at 88.9% and strong recall at 87.2%, 

resulting in a robust F1 Score of 87.2%. It exhibits high 

accuracy and reliability in classifying positive instances.  

 

Figure 10: Confusion matrix for chimpanzee data using 

Naïve Bayes classifier 

Within Figure 11, On the Dog Test DNA Sequence, the 

model achieves accuracy at 68.9%, decent precision at 

78.1%, but its recall is lower at 68.9%, leading to an F1 

Score of 67.3%. While accuracy is acceptable. 

 

Figure 11: Confusion matrix for dog using Naïve Bayes 

classifier 

•For SVM Classifier: 

For human DNA sequences, precision is 77.6%, recall is 

53.5%, and the F1 score is 51.0%. On chimpanzee DNA 

sequences, it achieves precision of 82.9%, recall of 

74.5%, and an impressive F1 score of 73.8%. However, 

on dog DNA sequences, the model's precision is 68.0%, 

recall is 55.5%, and the F1 score is 52.3%. 

•For KNN Classifier:  

For human DNA sequences, it achieves a precision of 

67.9%, recall of 35.2%, and an F1 score of 24.8%. On 

chimpanzee DNA sequences, the model attains a 

precision of 70.0%, recall of 43.6%, and an F1 score of 

33.2%. However, on dog DNA sequences, precision is 

40.6%, recall is 32.3%, and the F1 score is 22.0%. 

•For Decision Tree Classifier: 

When dealing with human DNA sequences, it achieves 

a precision rate of 42.4%, a recall rate of 40.2%, and an 

F1 score of 37.7%. On the other hand, when applied to 

chimpanzee DNA sequences, the model demonstrates 

a precision rate of 50.8%, a recall rate of 49.6%, and an 

F1 score of 48.4%. Similarly, for dog DNA sequences, 

the model exhibits a precision rate of 52.4%, a recall 

rate of 52.4%, and an F1 score of 51.5%. 

•For Random Forest Classifier: 

When applied to human DNA sequences, it achieves a 

precision rate of 60.3%, a recall rate of 42.4%, and an 

F1 score of 34.0%. For chimpanzee DNA sequences, the 

model showcases a precision rate of 70.7%, a recall rate 

of 59.6%, and an F1 score of 55.9%. Similarly, in the case 

of dog DNA sequences, the model displays a precision 

rate of 70.1%, a recall rate of 57.9%, and an F1 score of 

55.5%. 
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•For CNN Classifier: 

Using a Convolutional Neural Network (CNN) for DNA 

sequence classification, we achieved distinct accuracies 

across three species: 90.76% for human data, 83.64% 

for chimpanzee data, and 76.53% for dog data. The CNN 

model demonstrated its ability to effectively learn and 

identify patterns within the genetic sequences of each 

species, with human DNA classification yielding the 

highest accuracy. This suggests that the CNN was 

particularly successful at recognizing specific features 

unique to human genetic data.  

For chimpanzee data, the model performed well, 

reflecting the genetic closeness between humans and 

chimpanzees. Although slightly lower than for human 

DNA, the 83.64% accuracy shows the model's capacity 

to differentiate between these two closely related 

species. When applied to dog DNA sequences, the CNN 

achieved a lower but still significant accuracy of 

76.53%, which can be attributed to the greater genetic 

divergence between dogs and the other two species. 

Despite this, the model was still able to extract 

meaningful patterns from the dog DNA sequences to 

classify them with reasonable accuracy. Overall, the 

CNN's performance across these datasets highlights its 

strength in identifying local patterns in genetic 

sequences and demonstrates its effectiveness in 

distinguishing between species with varying degrees of 

genetic similarity. 

•Graph Comparision: 

 

Figure 12: Comparision of model accuracies for human 

data at different k-mer lengths 

In (Figure 12) the given graph illustrating the 

comparison of model accuracies for human data across 

various k-mer lengths, it's observed that Naive Bayes 

consistently outperforms followed  by other 

classification models, such as SVM, Random Forest, 

Decision Tree, then KNN across all k-mer lengths (5, 6, 

7, and 8), showcasing higher accuracy rates. 

 

Figure 13: Comparision of model accuracies for 

chimpanzee data at different k-mer lengths 

The graph in (Figure 13) displays the contrast in model 

accuracies for chimpazee data across different k-mer 

lengths. It's evident that Naive Bayes consistently 

outperforms followed by alternative classification 

models like SVM , Random Forest, Decision Tree, then 

KNN at k-mer lengths 5, 6, 7, and 8, demonstrating 

superior accuracy rates. 

In (Figure 14), the graph exhibits the variation in model 

accuracies for dog data across various k-mer lengths. 

Naive Bayes emerges as the top performer, followed by 

alternative classifiers such as SVM, Random Forest, 

Decision Tree, and then KNN, at k-mer lengths 5, 6, 7, 

and 8, showcasing superior accuracy rates. 

 

Figure 14: Comparision of model accuracies for dog 

data at different k-mer lengths 
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Figure 15: Bar Chart Comparison of model accuracies 

for human, chimpanzee and dog data. 

In Figure 15, a bar chart is presented to visually 

compare the classification accuracies of the CNN model 

across three species: human, chimpanzee, and dog. The 

height of each bar corresponds to the accuracy 

achieved for each dataset, with human data reaching 

the highest accuracy at 90.76%, followed by 

chimpanzee data at 83.64%, and dog data at 76.53%. 

This bar chart offers a clear and straightforward way to 

compare the performance of the model on different 

datasets, highlighting the differences in classification 

accuracy between species. The chart effectively 

emphasizes the CNN's proficiency in handling human 

and chimpanzee data compared to dog data, 

showcasing how genetic similarities and divergences 

impact the model's accuracy. 

In Figure 16, a line graph is used to represent the same 

classification accuracies of the CNN model for human, 

chimpanzee, and dog data. The line graph provides a 

continuous visual connection between the accuracy 

values for the three species, illustrating the trend in 

model performance. As the line progresses, it shows 

the highest point for human data, a slightly lower point 

for chimpanzee data, and a further drop for dog data. 

This format of visualization highlights the gradual 

decline in accuracy as the genetic divergence between 

species increases, offering a clearer view of the pattern 

in model performance compared to the bar chart. 

Both figures serve the purpose of visually comparing 

the model's performance on different datasets, with 

the bar chart offering a categorical comparison and the 

line graph showing the trend in accuracy changes 

across species. 

Figure 16: Line Graph Comparison of model accuracies 

for human, chimpanzee and dog data. 

6. Conclusion 

In conclusion, DNA sequencing is pivotal in genetics and 

genomics, utilizing ML methods such as Naive Bayes, 

SVM, KNN, Decision Trees, and Random Forests to 

discern genes, including disease-causing ones. Notably, 

among k-mers 5, 6, 7, and 8, k-mer 6 stands out, where 

Naive Bayes consistently achieves peak accuracy 80% 

for humans, 87% for chimpanzees, and 68% for dogs. 

Classifier choice significantly impacts accuracy, with 

Naive Bayes excelling for all 3 datasets of humans, 

chimpanzee and dogs. The integration of machine 

learning in genomics enhances classification accuracy, 

deepening our insights into genetic functions and 

disease research. DNA sequencing, vital for unraveling 

life's mysteries, underscores the potential of ML in 

advancing genomics knowledge.  

Future work in DNA sequencing entails the integration 

of diverse machine learning techniques, encompassing 

both deep learning and traditional ML methods. This 

includes hybrid models that combine deep learning's 

feature extraction capabilities with traditional ML 

classifiers. Researchers will explore transfer learning, 

interpretability, ensemble methods, and data 

augmentation to enhance classification and variant 

calling accuracy. Integrating multi-model data, ensuring 

scalability, addressing ethical considerations, and 

facilitating clinical implementation are key aspects of 

future genomics research. 

Refrences 

[1] Ersoy Öz and Hüseyin Kaya, "Support Vector 

Machines in DNA Sequencing         Quality 

Control”,2013 

[2] Teresita M. Porter, Joel F. Gibson, Shadi Shokralla, 

Donald J. Baird, G. Brian Golding, and Mehrdad 

Hajibabaei, "Rapid and Accurate Taxonomic 

Classification of Insect (Class Insecta) Cytochrome 

c Oxidase Subunit 1 (COI) DNA Barcode Sequences 

Using a Naïve Bayesian Classifier",2014 

[3] Lailil Muflikhah, Nashi Widodo, Wayan Firdaus 

Mahmudy, and Solimun ,"Prediction of Liver 

Cancer Based on DNA Sequence Using Ensemble 

Method", Universitas Brawijaya Malang, East Java, 

Indonesia,2020 

[4] Rodney T. Richardson, Johan Bengtsson-Palme, 

Reed M. Johnson,"Evaluating and optimizing the 

performance of software commonly used for the 

taxonomic classification of DNA metabarcoding 

sequence data",2016 

[5] Jiarong Guo, Ben Bolduc, Ahmed A. Zayed, Arvind 

Varsani, Guillermo Dominguez-Huerta, Tom O. 



 
 
 

229 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 5 

May 2025 

Delmont, Akbar Adjie Pratama, M. Consuelo 

Gazitúa, Dean Vik, Matthew B. Sullivan, and Simon 

Roux, “VirSorter2: a multi-classifier, expert-guided 

approach to detect diverse DNA and RNA viruses”, 

2021 

[6] Hemalatha Gunasekaran, K. Ramalakshmi, A. Rex 

Macedo Arokiaraj, S. Deepa Kanmani, Chandran 

Venkatesan, and C. Suresh Gnana Dhas ,"Analysis 

of DNA Sequence Classification Using CNN and 

Hybrid Models", 2021 

[7] Frederick I. Archer, Karen K. Martien, and Barbara 

L. Taylor, " Diagnosability of mtDNA with Random 

Forests: Using sequence data to delimit 

subspecies", 2017 

[8] Maitena Tellaetxe-Abete, Borja Calvo, and Charles 

Lawrie ,"Ideafix: a decision tree-based method for 

the refinement of variants in FFPE DNA sequencing 

data", 2021 

[9] Steven Salzberg, Xin Chen, John Henderson, and 

Kenneth Fasman ,"Finding Genes in DNA using 

Decision Trees and Dynamic Programming", 

Department of Computer Science and Division of 

Biomedical Information Sciences Johns Hopkins 

University Baltimore,1996 

[10] Robert W. Jackson, Harold Snieder, Harry Davis, 

and Frank A. Treiber ,“Determination of Twin 

Zygosity: A Comparison of DNA with Various 

Questionnaire Indices”, Cambridge University 

,2012 

[11] Nayak V., Mishra J., Naik M., Swapnarekha B., 

Cengiz H., Shanmuganathan K. An impact study of 

COVID-19 on six different industries: automobile, 

energy and power, agriculture, education, 

traveland tourism and consumer electronics. 

Expert Systems. 2021:1–32. doi: 

10.1111/exsy.12677.  

[12] Shadab S., Alam Khan M. T., Neezi N. A., Adilina S., 

Shatabda S. DeepDBP: deep neural networks for 

identification of DNA-binding proteins. Informatics 

in Medicine Unlocked. 2020;19, article 100318. 

[13] Benson D. A., Karsch-Mizrachi I., Lipman D. J., 

Ostell J., Sayers E. W. GenBank. Nucleic Acids 

Research. 2010;38(Supplement 1):46–51. doi: 

10.1093/nar/gkp1024. 

[14] Momenzadeh M., Sehhati M., Rabbani H. Using 

hidden Markov model to predict recurrence of 

breast cancer based on sequential patterns in gene 

expression profiles. Journal of Biomedical 

Informatics. 2020;111, article 103570 doi: 

10.1016/j.jbi.2020.103570.  

[15] Solis-Reyes S., Avino M., Poon A. F. Y., Kari L. An 

Open-Source k-mer Based Machine Learning Tool 

for Fast and Accurate Subtyping of HIV-1 Genomes. 

bioRxiv; 2018. 

[16] Karagöz M. A., Nalbantoglu O. U. Taxonomic 

classification of metagenomic sequences from 

Relative Abundance Index profiles using deep 

learning. Biomedical Signal Processing and Control. 

2021;67, article 102539 doi: 

10.1016/j.bspc.2021.102539.  

[17] Deorowicz S. FQSqueezer: k-mer-based 

compression of sequencing data. Scientific 

Reports. 2020;10(1):578–579. doi: 

10.1038/s41598-020-57452-6. 

[18] Suriya M., Chandran V., Sumithra M. G. Enhanced 

deep convolutional neural network for malarial 

parasite classification. International Journal of 

Computers and Applications. 2019:1–10. 

[19] Jang B., Kim M., Harerimana G., Kang S. U., Kim J. 

W. Bi-LSTM model to increase accuracy in text 

classification: combining word2vec CNN and 

attention mechanism. Applied Sciences. 

2020;10(17):p. 5841. doi: 10.3390/app10175841. 

[20] Zhang X., Beinke B., Al Kindhi B., Wiering M. 

Comparing machine learning algorithms with or 

without feature extraction for DNA classification. 

2020. 

[21] Do D. T., Le N. Q. K. Using extreme gradient 

boosting to identify origin of replication in 

Saccharomyces cerevisiae via hybrid features. 

Genomics. 2020;112(3):2445–2451. doi: 

10.1016/j.ygeno.2020.01.017. 

[22] Xu H., Jia P., Zhao Z. Deep4mC: systematic 

assessment and computational prediction for DNA 

N4-methylcytosine sites by deep learning. Briefings 

in Bioinformatics. 2021;22(3):1–13. doi: 

10.1093/bib/bbaa099. 

[23] Nugent C. M., Adamowicz S. J. Alignment-free 

classification of COI DNA barcode data with the 

Python package Alfie. Metabarcoding and 

Metagenomics. 2020;4:81–89. doi: 

10.3897/mbmg.4.55815. 

[24] Remita A. M., Diallo A. B. Statistical linear models 

in virus genomic alignment-free classification: 

application to hepatitis C viruses. 2019 IEEE 

International Conference on Bioinformatics and 

Biomedicine (BIBM); November 2019; San Diego, 

CA, USA. 

[25] Lopez-Rincon A., Tonda A., Mendoza-Maldonado 

L., et al. Classification and specific primer design for 



 
 
 

230 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 5 

May 2025 

accurate detection of SARS- CoV-2 using deep 

learning. Scientific Reports. 2021;11(1):1–11. doi: 

10.1038/s41598-020-80363-5. 

[26] Arruda M. M., De Assis F. M., De Souza T. A. Is BCH 

code useful to DNA classification as an alignment-

free method? IEEE Access. 2021;9:68552–68560. 

[27] Maalik S. W. I., Ananta S. K. W. Comparation 

analysis of ensemble technique with boosting 

(Xgboost) and bagging (Randomforest) for classify 

splice junction DNA sequence category. Jurnal 

Penelitian Pos dan Informatika.  

[28] Hussain F., Saeed U., Muhammad G., Islam N., 

Sheikh G. S. Classifying cancer patients based on 

DNA sequences using machine learning. Journal of 

Medical Imaging and Health Informatics. 

2019;9(3):436–443. doi: 10.1166/jmihi.2019.2602. 

[29] Ben Nasr F., Oueslati A. E. CNN for human exons 

and introns classification. 2021 18th International 

Multi-Conference on Systems, Signals & Devices 

(SSD); March 2021; Monastir, Tunisia. pp. 249–254.  

[30] Al-Ajlan A., El Allali A. CNN-MGP: convolutional 

neural networks for metagenomics gene 

prediction. Interdisciplinary Sciences: 

Computational Life Sciences. 2019;11(4):628–635.  

[31] Kassim N. A., Abdullah A. Classification of DNA 

sequences using convolutional neural network 

approach. UTM Computing Proceedings 

Innovations in Computing Technology and 

Applications. 2017;2:1–6.  

[32] Morales J. A., Saldaña R., Santana-Castolo M. H., et 

al. Deep learning for the classification of genomic 

signals. Mathematical Problems in Engineering. 

2020;2020:9. 


