
 
 
 

231 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 05 

May 2025 

Adaptive Multi-Tiered Replication for Fault Tolerance in Cloud 
Computing 

K.Vani1 and S. Sujatha2 

1Assistant professor, Department of computer science, Emerald Heights College For Women, Finger Post, Ooty. 

2Head of the Department, Department of computer science, Dr.G.R. Damodaran College of Science, Coimbatore. 

 

Abstract 
Cloud computing has emerged as a fundamental paradigm for delivering scalable and reliable services. However, 
ensuring fault tolerance in dynamic and distributed environments remains a significant challenge. This paper 
proposes an Adaptive Multi-Tiered Replication (AMTR) framework that enhances fault tolerance through a multi-
level replication strategy. By intelligently adapting replication strategies based on workload characteristics and 
system behaviors, AMTR optimizes resource utilization and enhances service availability. This paper introduces 
Adaptive Multi-Tiered Replication (AMTR), a novel method designed to enhance fault tolerance in cloud 
environments. AMTR classifies data into multiple tiers based on criticality, access frequency, and performance 
requirements, allowing for dynamic adjustment of replication strategies in real-time. By integrating predictive 
failure analysis, multi-region replication, and energy-efficient techniques, AMTR ensures high availability, minimizes 
latency, and reduces operational costs. The proposed approach is validated through simulations that demonstrate 
significant improvements in fault tolerance, resource efficiency, and overall system resilience compared to 
traditional replication strategies. 
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1. Introduction: 

Cloud computing has emerged as a 
foundational element of modern IT infrastructure, 
enabling organizations to leverage scalable, on-
demand computational resources without the need 
for significant upfront investments in hardware and 
maintenance[1-3]. Despite its benefits, cloud 
computing introduces new challenges in maintaining 
system reliability and data integrity. As cloud 
environments grow in complexity, ensuring 
uninterrupted access to data and services, even in 
the presence of failures, becomes paramount. Fault 
tolerance, which is the capability of a system to 
continue operating effectively in the event of 
component failures, is thus a critical feature of cloud 
infrastructure [4]. 

A common approach to achieving fault tolerance in 
cloud systems is data replication, where data is 
duplicated across multiple locations or nodes [5]. 
This strategy helps prevent data loss and ensures 
that users can access their data even if a server or 
data center goes down. Traditional replication 
methods, however, often follow static policies, 
which can lead to inefficiencies [6]. For instance, 
excessive replication may result in the  

 

 

underutilization of resources, while insufficient 
replication can leave the system vulnerable to  

failures. Additionally, static replication schemes may 
not respond effectively to the dynamic and diverse 
demands of cloud applications, which can vary in 
terms of latency sensitivity, fault tolerance 
requirements, and data access patterns [7]. 

To overcome these limitations, we propose an 
adaptive multi-tiered replication framework for fault 
tolerance in cloud computing [8-9]. Our framework 
introduces a novel approach to replication that 
dynamically adjusts to the changing conditions of the 
cloud environment. It operates by continuously 
monitoring key metrics such as workload intensity, 
the frequency of faults, and resource availability. 
Based on this real-time information, the framework 
can scale the replication level up or down, thus 
optimizing resource usage while ensuring data and 
service availability. 

The adaptive multi-tiered replication model is 
designed with several layers, each providing a 
different level of redundancy and fault tolerance 
[10]. This tiered structure allows for fine-grained 
control over the replication process, enabling the 
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system to tailor fault tolerance strategies to the 
specific needs of individual applications or services 
[11]. For example, critical applications with high fault 
tolerance requirements might be placed on a tier 
with more aggressive replication policies, while less 
critical or more fault-tolerant applications could 
utilize a tier with fewer replicas. 

In our research, we detail the design and 
implementation of the adaptive multi-tiered 
replication framework and evaluate its performance 
in various cloud computing scenarios. Jellyfish 
optimization is utilized for the data replication which 
demonstrates that our approach not only enhances 
system resilience but also improves the efficiency of 
resource utilization. The adaptive nature of our 
framework ensures that cloud environments can 
maintain high levels of availability and performance, 
even as they face fluctuating demands and potential 
failures. 

The specific contributions are: 

Dynamic Adaptation to Environmental Conditions: 
This research introduces a framework that 
dynamically adjusts replication levels based on real-
time monitoring of environmental factors such as 
workload intensity, fault frequency, and resource 
availability. 

Multi-Tiered Replication Model: By structuring 
replication into multiple tiers, the framework 
provides a fine-grained approach to fault tolerance. 

Optimized Resource Utilization: The adaptive nature 
of the framework allows for optimal use of 
computational and storage resources by scaling 
replication according to current needs. 

Enhanced System Resilience and Performance: By 
ensuring that replication strategies are aligned with 
real-time conditions and application requirements, 
the framework enhances the overall resilience and 
performance of cloud systems. 

Comprehensive Evaluation and Validation: The 
study includes a detailed design, implementation, 
and evaluation of the framework in various cloud 
computing scenarios. The results demonstrate the 
effectiveness of the adaptive multi-tiered replication 
model in improving fault tolerance and resource 
efficiency compared to traditional static replication 
strategies. 

2. Literature Review: 

Previous research on fault tolerance in cloud 
computing has primarily focused on static replication 
strategies, which can lead to inefficient resource use 
and may not respond well to changing application 
demands. Techniques such as Primary-Backup, 
Paxos, and Raft have been extensively studied for 
state machine replication, ensuring consistency 
across distributed systems. However, these 
approaches often assume a static environment, 
which limits their applicability in dynamic cloud 
scenarios. 

Setlur et al [12] presented an unsupervised method 
for learning replication counts for tasks. Relative to 
other replication heuristics [17], this methodology is 
significantly more expedient and resilient, since it 
circumvents the necessity of examining every 
conceivable solution (HEFT schedules with diverse 
sets of replicas) within a combinatorial optimisation 
framework. A checkpointing method that 
encourages the dynamic resubmission of tasks to the 
most optimal resource has been presented. An 
extensive investigation of standard measures such as 
Resource Usage, Resource Wastage, and Total 
Execution Time demonstrates that the suggested 
approach outperforms the existing paradigm. 

Mansouri et al [13] proposed a multi-objective 
optimization algorithm for placement, utilising a 
meta-heuristic technique and fuzzy system to 
identify optimal replica locations by balancing trade-
offs among six optimization objectives: system 
availability, service time, load, energy consumption, 
latency, and centrality. The second difficulty is 
determining the ideal number of copies, as keeping 
several clones in the cloud is costly. To address this 
issue, we ascertain the quantity of clones while 
minimising performance degradation. Furthermore, 
we enhance the self-defence algorithm using a novel 
prey-predator model grounded on a fuzzy system to 
mimic the interactions between prey and predator 
populations.  

Zain Ulabedin and Babar Nazir [14] presented a 
workflow scheduling technique based on replication 
and data management for a multi-cloud data centre 
platform. Implemented a workflow scheduling 
approach to mitigate data transmission issues and 
perform process activities within established 
deadlines and budgetary limitations. The proposed 
methodologies encompass an initial data placement 
phase that clusters and allocates datasets according 
to their dependencies, alongside a replication-based 
partial critical path (R-PCP) technique that schedules 
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tasks with data locality and dynamically updates the 
dependency matrix for the placement of generated 
datasets. To minimise runtime dataset migration, we 
employ inter-data centre task replication and 
dataset replication to ensure dataset availability. The 
simulation outcomes involving four workflow 
applications demonstrate that our approach 
effectively minimises data transfer and completes all 
selected procedures within the user-defined budget 
and timeframe.  

M. A. Fazlina [15] introduced the Replication 
Strategy with a thorough Data Centre Selection 
Method (RS-DCSM), which identifies the suitable 
data centre for replica placement by evaluating 
three critical factors: Popularity, space availability, 
and centrality. The proposed RS-DCSM was 
simulated using CloudSim, demonstrating a 
significant reduction in data movement between 
data centres, with a 14% decrease in overall 
replication frequency and a 20% reduction in 
network usage, surpassing the existing Dynamic 
Popularity aware Replication Strategy (DPRS) 
algorithm.  

D. Rambabu & A. Govardhan [16] provides an 
innovative approach to data replication and 
scheduling on the cloud. The workflow management 
process has three phases: (1) workflow placement, 
(2) task clustering, and (3) scheduling and 
replication. The workflow placement occurs initially. 
The grouping of jobs is executed using an enhanced 
K-means algorithm. The jobs and datasets are 
duplicated throughout the scheduling and 
replication phase. Additionally, scheduling and 
replication are executed via the Self Modified Pelican 
Optimisation Algorithm (SM-POA), which considers 
execution cost, migration cost, storage cost, and 
replication. 

Zheng et al [17] proposed a data replica placement 
strategy based on Deep Reinforcement Learning 
(DRL), termed BRPS. This framework accounts for 
the diverse geographic locations of hardware 
devices, the varied storage capacities and reliability, 
and the distinct data requirements of different user 
services in edge-cloud contexts. Initially, we 
developed a model for data replica placement inside 
the edge-cloud context, considering critical 
characteristics such as latency, reliability, and load, 
while emphasising the heterogeneity of device 
resources and the varied data requirements of user 
services. Additionally, we present the BRPS strategy 
utilising the Double Deep Q-Network (DDQN) 

approach of Deep Reinforcement Learning (DRL), 
reframing the data replica placement challenge as a 
multi-objective optimisation problem. Isolating the 
DRL-based decision process into a distinct 
management edge node facilitates the segregation 
of decision-making and execution, hence improving 
the efficiency of data replica placement, ensuring 
data dependability, minimising latency, and 
achieving system load equilibrium. 

The prior studies on replication often place replicas 
in geographically distant locations or within the 
same type of storage. This can lead to high latency 
when accessing data, especially in real-time 
applications. Also all data is treated equally, meaning 
replication of low-priority or infrequently accessed 
data occurs at the same rate as high-priority data. 
This results in inefficient use of storage and network 
bandwidth. Single-tier replication can struggle with 
scaling as the system grows, leading to bottlenecks. 

These issues can be solved with the proposed AMTR 
architecture. By organizing data into different tiers 
(edge, regional, and cloud storage), multi-tier 
replication minimizes latency by storing high-priority 
data in lower-latency tiers like edge nodes. Less 
critical data is stored in higher-latency tiers such as 
the cloud, reducing overall access time. Data is 
replicated based on priority. Frequently accessed or 
critical data is replicated across lower tiers for fast 
access, while less important data is replicated less 
frequently or placed in higher, less accessible tiers. 
This prioritization leads to more efficient use of 
resources. As demand grows, data can be moved to 
more appropriate tiers, improving scalability and 
avoiding bottlenecks. The detailed methodology of 
the proposed model explained in the upcoming 
section. 

3. Materials and Methods  

The rapid growth of cloud computing has 
transformed the way organizations deploy and 
manage applications and data. The inherent 
scalability and flexibility of the cloud environment 
allow for efficient resource allocation and optimal 
performance. However, as cloud infrastructures 
become more complex, so do the challenges 
associated with ensuring reliability and fault 
tolerance. The failure of a single component can lead 
to substantial downtimes and data loss, negatively 
impacting service quality and user trust. Traditional 
fault tolerance mechanisms, such as data replication, 
often face limitations related to fixed replication 
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strategies that do not accommodate dynamic workload changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Adaptive Multi-Tiered Replication (AMTR) 
Framework 

The AMTR Framework is designed to overcome 
these limitations by dynamically adjusting replication 
strategies across different layers of the cloud 
architecture. This framework offers a flexible, 
efficient, and scalable solution for fault tolerance, 
ensuring high availability and performance in cloud 
environments. 

3.1.1 Overview of the AMTR Framework 

The Adaptive Multi-Tiered Replication (AMTR) 
Framework is a sophisticated fault tolerance 
approach that operates at multiple tiers within the 
cloud architecture. Each tier represents a different 
level of replication, such as: 

• Data Tier: Involves the replication of data 
stored in databases, file systems, or object 
storage. 

• Service Tier: Focuses on the replication of 
microservices, APIs, and other backend 
components. 

• Application Tier: Includes the replication of 
entire applications or virtual machines. 

The AMTR Framework adapts its replication 
strategies based on real-time conditions, such as 
system load, resource availability, and fault 
occurrences. By doing so, it ensures that resources 

are used efficiently while maintaining the highest 
possible level of fault tolerance. 

The AMTR Framework is organized into multiple 
tiers, each corresponding to a specific layer of the 
cloud architecture. This tiered structure allows for 
fine-grained control over replication strategies, 
enabling the system to adapt to the unique 
requirements of each layer. The heart of the AMTR 
Framework is its adaptive replication mechanism, 
which dynamically adjusts the replication strategies 
in response to real-time conditions. This mechanism 
leverages predictive analytics and monitoring tools 
to assess the current state of the system and make 
informed decisions about where and how to 
replicate resources. 

3.1.2 Adaptive Replication in AMTR 

The Adaptive Replication Mechanism within the 
Adaptive Multi-Tiered Replication (AMTR) 
Framework is designed to dynamically adjust 
replication strategies in cloud environments to 
optimize fault tolerance and resource utilization. 
This mechanism ensures that replication is not static 
but evolves in response to changing conditions such 
as workload variations, resource availability, and 
potential faults. Below is a detailed explanation of 
the Adaptive Replication Mechanism, including its 
key steps. 

3.1.3 Replication based on Jellyfish 
Algorithm 

Preprocessing  

Data cleaning and 

partitioning 

System Design 

Tier Definition  

(Tire 1 to Tire 3) 

Replication 

Facilitates dynamic and 
adaptive replication 

across multiple tiers 

Testing and 

Validation 

Performance 

Evaluation Replication Management 

(Place replicas based on node 

capacity) 

Cloud Trace 

Dataset 

 

Figure 1. Architecture diagram of proposed Adaptive Multi-Tiered Replication  
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Jellyfish inhabit waters of varying depths and 
temperatures across the globe [18]. They are bell-
shaped, with some species having diameters smaller 
than a centimeter, while others can grow to be 
significantly larger. Their colors, sizes, and shapes 
are highly diverse, reflecting specific adaptations to 
their marine environments. Different species of 
jellyfish have distinct feeding methods: some use 
their tentacles to guide food to their mouths, others 
rely on filter-feeding to capture whatever the 
currents bring, and some actively hunt and 
immobilize prey with stings from their tentacles. 
Jellyfish sting their prey with their tentacles and 
inject venom that paralyzes it. While they do not 
typically attack, those who come into contact with 
them may suffer stings, which can be lethal. Jellyfish 
are particularly hazardous when they congregate in 
large groups, known as blooms. 

The Indian Ocean, the middle Pacific Ocean, the 
coastal waters of the Philippines, and Australia are 
home to the majority of jellyfish [19]. Due to their 
poor swimming abilities, jellyfish can form swarms in 
the water and a huge concentration of them is 
known as a jellyfish bloom. Jellyfish also float with 
the tides and water currents. Water currents, 
temperature, and the availability of oxygen are some 
of the many variables that influence swarm 
formation; nevertheless, the most important ones 
are the nutrients that are accessible. 

The ideal location with the most food will be 
identified since the ecology has significant effects on 
jellyfish flocks and because the amount of food 
fluctuates depending on where the jellyfish go. As a 
result, the Jellyfish Search (JS) Optimizer, a novel 
algorithm, is being created that is based on the 
movement of jellyfish in the water and their search 
for food. Algorithm 1 depicts the algorithm's steps 
and the behavior of jellyfish in the ocean.  

The proposed optimization algorithm is guided by 
three fundamental principles: 

• Jellyfish either follow ocean currents or 
move within the swarm, with a time control 
mechanism deciding when to alternate 
between these movement types. 

• Jellyfish search for food as they move 
through the ocean, drawn to areas where 
food is more abundant. 

• The amount of food discovered is 
determined by the jellyfish's position, 
assessed by the relevant objective function. 

Ocean current 

Jellyfish are attracted to the abundance of food in 
the ocean current. Eq. 1 determines the direction of 
the ocean current. 

𝑑 = 𝐽∗ − 𝛼 ∗ 𝑟(0,1) ∗ 𝜇 

where 𝛼 >  0 is a distribution coefficient associated 
with the length of trend, and 𝐽 is the jellyfish that 
currently has the best placement within the swarm. 
The average position of all jellyfish is µ. Additionally, 
Eq. 2 provides each jellyfish's new location. 

𝑗𝑥(𝑑 + 1) = 𝑗𝑥(𝑑) + 𝑟(0,1) ∗ 𝑑 

Jellyfish swarm 

Jellyfish move in two different ways when they 
swarm: passively (A) and actively (B). When a 
jellyfish swarm is first forming, the majority of them 
move in a type A manner. 

Over time, they are progressively exhibiting type B 
movements. Jellyfish move in type A motion in and 
around their own places; the corresponding updated 
location of each jellyfish is provided by Equation 3.  

𝑗𝑥(𝑑 + 1) = 𝑗𝑥(𝑑) + 𝛽 ∗ 𝑟(0,1) ∗ (𝐵𝑢 − 𝐵𝑙) 

where γ > 0 is a motion coefficient proportional to 
the length of motion around jellyfish spots, and 𝐵𝑢 
and 𝐵𝑙  are the upper and lower bounds of the search 
spaces, respectively. A jellyfish i or a jellyfish j that is 
not i is randomly selected, and a vector from the 
jellyfish i to the selected jellyfish j is utilized to define 
the direction of motion in order to replicate type B 
(active motion). A jellyfish i moves toward a jellyfish j 
when there is more food at the selected jellyfish j's 
location than there is at the jellyfish i's. Additionally, 
the selected jellyfish j moves straight away from a 
jellyfish i if it has less food available to it than it have. 
As a result, each jellyfish in a swarm travels in a 
better route in search of food. A jellyfish's direction 
of travel and updated location are simulated by 
equations 4 and 5, respectively. 

 

𝑑𝑖𝑟⃗⃗⃗⃗⃗⃗⃗ = {
𝑗𝑦(𝑑) − 𝑗𝑥(𝑑)      𝑖𝑓 =≫ 𝑓(𝑗𝑥) ≥  𝑓(𝑗𝑦) 

𝑗𝑥(𝑑) − 𝑗𝑦(𝑑)      𝑖𝑓 =≫ 𝑓(𝑗𝑥) <  𝑓(𝑗𝑦)
 

where 𝑓 is the location 𝐽′𝑠 objective function. 

𝑗𝑥(𝑑 + 1) = 𝑗𝑥(𝑑) + 𝑟(0,1) ∗ 𝑑𝑖𝑟 
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Time control mechanism 

In addition to controlling jellyfish motions in 
the direction of an ocean current, the time control 
mechanism is utilized to detect the type of motion 
(type A and type B motions in a swarm) over time. 
The time control mechanism, which consists of a 
time control function 𝑐𝑓(𝑑) and a constant 𝑆0, is 
introduced to govern the motion of jellyfish between 
migrating inside a swarm and following the ocean 
current. Over time, the random value of the time 
control function shifts from 0 to 1. The time control 
function is calculated by Equation 6, and the jellyfish 
follow the ocean current when its value rises to 𝑆0. 
They travel within a swarm when its value is less 
than 𝑆0. There is no known equal 𝑆0 value, and the 
time control varies arbitrarily from zero to one. As a 
result, 𝑆0 is set to 0.5, or the mean of 0 and 1. 

𝑐𝑓(𝑑) = |(1 −
𝑑

𝑀𝑖𝑡𝑒𝑟

) ∗ (2 ∗ 𝑟(0,1) − 1)| 

where t is the time given as the iteration number, 
𝑀𝑖𝑡𝑒𝑟  is the maximum number of iterations, and an 
initialized parameter. 

Boundary conditions 

According to Eq. 7, a jellyfish will return to the 
opposite bound if it ventures outside the search 
region. 

{
𝐽𝑥,𝑖 

′ = (𝐽𝑥,𝑖 − 𝐵𝑢,𝑖) + 𝐵𝑢(𝑖)  𝑖𝑓 𝐽𝑥,𝑖 >  𝐵𝑢,𝑖 

𝐽𝑥,𝑖 
′ = (𝐽𝑥,𝑖 − 𝐵𝑙,𝑖) + 𝐵𝑏(𝑖)  𝑖𝑓   𝐽𝑥,𝑖 <  𝐵𝑙,𝑖

 

where 𝐽𝑥,𝑖 
′  is the updated location following 

boundary constraint checking, and 𝐽𝑥,𝑖  is the location 

of the xth jellyfish in the dth dimension. In search 
spaces, the dth dimension has upper and lower 
limits denoted by 𝐵𝑢,𝑖  and 𝐵𝑙,𝑖  respectively. 

Data replication in cloud computing involves creating 
and maintaining copies of data across multiple 
locations or servers to ensure data availability, 
reliability, and fault tolerance. Using the Jellyfish 
Search (JFS) optimization algorithm for data 
replication in the cloud is an innovative approach 
that can optimize how data is replicated, balancing 
factors like latency, bandwidth, storage costs, and 
fault tolerance. Table 1 provides the pseudocode of 
jelly fish search optimization in replication.  

Table 1: pseudo code of jelly fish search optimization in replication. 

Algorithm 1: Jellyfish Search (JFS) 

# Initialize parameters 

Initialize population of jellyfish (replication strategies) 

Define the objective function (e.g., minimize latency, cost, maximize availability) 

Set maximum iterations (max_iters) and other algorithm-specific parameters 

 

for iteration in range(1, max_iters + 1): 

 

    # Evaluate fitness of each jellyfish (replication strategy) 

    for each jellyfish in population: 

        Evaluate the fitness of the jellyfish using the objective function 

 

    # Determine the best jellyfish (best solution) in the current population 

    best_jellyfish = jellyfish with the best fitness score 

 

    # Update the ocean current (global influence) based on the best jellyfish 

    ocean_current = calculate_ocean_current(best_jellyfish) 
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    # Move each jellyfish (replication strategy) in the population 

    for each jellyfish in population: 

 

        # Determine movement type (active or passive) 

        if time_control_mechanism(iteration): 

            # Active movement (exploitation): move towards the best solution 

            new_position = move_towards_best(jellyfish, best_jellyfish) 

        else: 

            # Passive movement (exploration): move randomly with the ocean current 

            new_position = move_with_ocean_current(jellyfish, ocean_current) 

 

        # Update the jellyfish position in the solution space 

        jellyfish.position = new_position 

 

    # Optional: Introduce random mutations to explore new solutions 

    if random_chance(): 

        Introduce random mutation to a subset of jellyfish positions 

 

    # Check for convergence (e.g., if the best fitness score has not improved) 

    if convergence_criteria_met(): 

        break 

 

# Finalize the best replication strategy 

best_replication_strategy = best_jellyfish.position 

 

# Output the optimized data replication strategy 

return best_replication_strategy 

 

  The algorithm starts by initializing a population of 
jellyfish, each representing a different data 
replication strategy. The objective function is 
defined to guide the optimization process, typically 
focusing on minimizing latency, cost, and maximizing 
data availability. Each jellyfish's fitness is evaluated 
based on the objective function, which assesses how 
well the replication strategy meets the desired 
criteria. The ocean current is updated based on the 
best jellyfish (best solution) found so far. Jellyfish 

either move actively towards the best solution 
(exploitation) or passively with the ocean current 
(exploration).  Random mutations may be 
introduced to explore new potential solutions, 
preventing the algorithm from getting stuck in local 
optima. The algorithm checks for convergence based 
on predefined criteria, such as the improvement in 
the best solution. If convergence is achieved, the 
loop breaks. The best replication strategy found 
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during the iterations is returned as the optimized 
data replication plan for the cloud environment. 

3.1.4 AMTR Framework with Jellyfish 
Optimization 

The Adaptive Multi-Tiered Replication (AMTR) 
Framework is a strategic approach to data 
replication in cloud environments, designed to 
optimize performance, availability, and resource 
utilization. When incorporating the Jellyfish Search 
(JFS) optimization algorithm into this framework, the 
replication process becomes dynamic and adaptive, 
allowing the system to efficiently manage data 
across multiple tiers (e.g., primary, secondary, and 
tertiary storage). 

Steps of the AMTR Framework with Jellyfish 
Optimization: 

System Initialization 

Define Tiers: Identify and configure 
different storage tiers (e.g., high-speed SSDs, regular 
HDDs, cold storage). Each tier may have distinct 
characteristics in terms of speed, cost, and reliability. 

Data Classification: Classify data based on 
access frequency, importance, and redundancy 
requirements. This helps determine the appropriate 
tier for each data segment. 

Jellyfish Population Initialization 

Create Jellyfish Population: Initialize a 
population of jellyfish, where each jellyfish 
represents a potential replication strategy across the 
different tiers. Each jellyfish’s position in the solution 
space corresponds to a specific combination of data 
placement across these tiers. 

Set Objective Function: Define the 
objective function, which may involve minimizing 
latency, replication cost, maximizing data 
availability, and optimizing resource utilization 
across tiers. 

 Fitness Evaluation 

Assess the fitness of each jellyfish by 
applying the objective function. The fitness score is 
calculated based on how well the replication 
strategy meets the performance and cost 
requirements. 

Identify the jellyfish with the best fitness 
score, representing the most optimal replication 
strategy so far. 

Ocean Current and Movement Strategy 

The ocean current is updated based on the best 
jellyfish’s position, representing a global influence 
that guides other jellyfish toward more promising 
regions of the solution space. 

Determine Movement Type: 

o Active Movement (Exploitation): Jellyfish 
move towards the best-known solution 
(best jellyfish). This helps fine-tune the 
replication strategy, ensuring critical data is 
placed on optimal storage tiers. 

o Passive Movement (Exploration): Jellyfish 
explore other potential replication 
strategies by drifting with the ocean 
current, allowing the framework to discover 
new, possibly better, replication 
configurations. 

Adaptation and Rebalancing 

Dynamic Rebalancing: Continuously 
monitor cloud environment changes, such 
as data access patterns, storage availability, 
and network conditions. The framework 
adapts the replication strategy based on 
these real-time conditions. 

Mutation for Exploration: Introduce 
random mutations in some jellyfish 
positions to explore new replication 
strategies that may not be immediately 
apparent. This ensures the system remains 
adaptive and does not get trapped in local 
optima. 

Convergence and Optimization 

Convergence Check: After each iteration, 
check if the best solution has stabilized (i.e., 
no significant improvement in the fitness 
score over several iterations). If 
convergence criteria are met, the algorithm 
can stop. 

Final Optimal Strategy: Once convergence 
is achieved, select the jellyfish with the 
highest fitness score as the optimal data 
replication strategy. 

Replication Execution 

Implement Replication Strategy: Deploy 
the selected replication strategy across the 
cloud environment. Data is replicated 
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across the defined tiers according to the 
optimal plan derived from the Jellyfish 
Search optimization. 

Monitor and Adjust: Continuously monitor 
the performance of the replication strategy 
in the live environment. If necessary, re-run 
the JFS algorithm periodically to adjust the 
replication strategy in response to changing 
conditions. 

 

Performance Review and Feedback Loop 

After implementation, analyze the system’s 
performance in terms of latency, 
availability, cost-effectiveness, and resource 
utilization. 

In the AMTR framework using Jellyfish Optimization, 
the system dynamically adapts to changing cloud 
conditions by continuously optimizing data 
placement across multiple storage tiers. The Jellyfish 
Search algorithm allows the framework to balance 
exploration and exploitation, finding optimal 
replication strategies that meet the cloud 
environment's diverse demands while ensuring 
efficiency and robustness. 

4. Result and discussion 
The AMTR framework proves to be more 
efficient in handling cloud trace data by 
improving fault tolerance, and reliability. 
The Jellyfish algorithm's random yet 
adaptive nature plays a crucial role in 
ensuring that data replication is efficient 
and responsive to real-time demands. The 
cloudsim is utilized for the implementation 
on cloud cloud trace dataset. The following 
tables and figure 2 and 3 provides the 
achieved result on proposed model 

This table reflects the redundancy and reliability of 
data replication across different tiers. 

Table 2: Redundancy and reliability of data replication across 
different tiers 

Data 
Type 

Tier 
1 
(%) 

Tier 
2 
(%) 

Tier 
3 
(%) 

Overall 
Reliability 
(%) 

CPU-
intensive 
tasks 

80 40 30 95 

Memory-
intensive 
tasks 

65 50 35 85 

Mixed 
workload 

60 50 40 75 

 

Tier 1 (%), Tier 2 (%), Tier 3 (%)represent 
the proportion of tasks handled or replicated by 
each tier. Higher-tier replication is usually more 
reliable and faster, while lower-tier replication (like 
Tier 3) provides redundancy but may be slower. 

CPU-intensive tasks: 

80% of the replication happens in Tier 1, 
suggesting that the most critical CPU-intensive tasks 
are handled by the most reliable tier. 40% is 
replicated in Tier 2, and 30% in Tier 3, adding layers 
of redundancy. The high overall reliability of 95% 
reflects the strong reliance on Tier 1 for critical 
replication. 

Memory-intensive tasks: 

  65% of the replication happens in Tier 1, 
with 50% in Tier 2 and 35% in Tier 3. While more 
distributed across tiers than CPU-intensive tasks, Tier 
1 still handles the bulk of replication. The overall 
reliability of 85% suggests solid fault tolerance but 
slightly lower than CPU tasks, possibly due to the 
more distributed replication. 

Mixed workload: 

The replication is spread more evenly across 
tiers: 60% in Tier 1, 50% in Tier 2, and 40% in Tier 3. 
Since mixed workloads involve both CPU and 
memory demands, the replication strategy is more 
balanced across the three tiers, leading to a more 
distributed fault tolerance. The overall reliability of 
75% is the lowest in this table, which may reflect the 
increased complexity of mixed workloads and the 
reliance on lower tiers. 

Overall Reliability:  

This column shows the total fault tolerance 
for each type of workload, representing the system's 
ability to continue functioning despite failures. CPU-
intensive tasks have the highest overall reliability at 
95%, likely due to their heavy reliance on Tier 1, the 
most reliable tier. Memory-intensive tasks have an 
85% overall reliability, with a more distributed 
replication across tiers. Mixed workload has the 
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lowest overall reliability at 75%, due to a more 
balanced but less robust replication across all tiers. 

Table 3: fault tolerance of the replication strategy 

Data Type 
Tier 1 
(%) 

Tier 2 
(%) 

Tier 3 
(%) 

Overall 
Reliability (%) 

CPU-intensive 
tasks 

90 7 3 95 

Memory-
intensive 
tasks 

70 20 10 85 

Mixed 
workload 

50 40 10 70 

With replication, the system demonstrated a 
significant reduction in compared to non-replicated 
environments. 

For CPU-intensive tasks, Tier 1 handles 90% 
of the replication, while Tier 2 and Tier 3 handle only 
7% and 3%, respectively. This suggests that the 
majority of CPU-intensive tasks are replicated in the 
highest-performing tier, leading to a high degree of 
fault tolerance. 

 

Figure 2 reliability of data replication on different tiers 

 

Figure 3 fault tolerance of the replication strategy 

For memory-intensive tasks, 70% are 
replicated in Tier 1, with more offloaded to Tier 2 
(20%) and Tier 3 (10%). This strategy indicates a 
more balanced approach across tiers. 

For mixed workload, Tier 1 handles only 
50% of the replication, while Tier 2 handles 40%, and 
Tier 3 handles 10%. This implies that the replication 
strategy for mixed workloads is more distributed 
across all tiers. 

Overall Reliability shows the total fault 
tolerance or reliability for each workload type. CPU-
intensive tasks have an overall reliability of 95%, 
which is very high, largely because Tier 1 takes most 
of the replication burden. Memory-intensive tasks 
have a lower overall reliability of 85%, possibly 
because the replication is more spread out across 
tiers. Mixed workloads have the lowest overall 
reliability at 70%, suggesting that the workload's 
diverse nature leads to higher chances of failure, as 
tasks are distributed more evenly across tiers. 

CPU-intensive tasks achieve the highest 
fault tolerance since most replication occurs in Tier 
1, which is likely more reliable and capable of 
handling failure effectively. Memory-intensive tasks 
distribute the replication across multiple tiers, 
reducing the overall reliability compared to CPU-
intensive tasks, but still achieving a decent fault 
tolerance. Mixed workload has the lowest overall 
fault tolerance because the replication is more 
spread out, leading to less fault tolerance in higher 
tiers and more dependence on lower-performing 
tiers. 

4.1 Discussion 
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The Adaptive Multi-Tiered Replication (AMTR) 
Framework offers several key benefits that make it 
an attractive solution for fault tolerance in cloud 
computing: 

4.1.1 Enhanced Fault Tolerance: 

By dynamically adjusting replication 
strategies in response to real-time conditions, the 
AMTR Framework provides a high level of fault 
tolerance, ensuring that services remain available 
even in the face of unexpected failures. 

4.1.2 Resource Efficiency: 

The adaptive nature of the framework 
ensures that resources are used efficiently. By only 
replicating resources when and where they are 
needed, the system avoids the wasteful over-
provisioning that is common in traditional replication 
approaches. 

4.1.3 Scalability: 

The tiered structure of the AMTR 
Framework makes it highly scalable. It can easily 
adapt to growing workloads and increasing system 
complexity, making it suitable for large-scale cloud 
environments. 

4.1.4 Cost-Effective: 

The optimization algorithms integrated into 
the framework help minimize the costs associated 
with replication. By balancing the trade-offs 
between fault tolerance and resource usage, the 
system ensures that cloud providers can maintain 
high availability without incurring excessive costs. 

4.1.5 Proactive Fault Management: 

The inclusion of fault prediction capabilities 
allows the AMTR Framework to proactively manage 
faults, reducing the likelihood of service disruptions 
and improving overall system reliability. 

5. Conclusion: 

This study explores a novel replication strategy for 
improving fault tolerance in cloud computing 
environments, particularly focusing on adaptive 
multi-tiered replication using the Jellyfish algorithm. 
The study leverages the Google Cloud Trace dataset 
to analyze the performance and reliability of various 
types of workloads (CPU-intensive, memory-
intensive, and mixed) across different replication 
tiers. The Jellyfish algorithm is applied for the 
replication process, offering flexibility and 

adaptability in how data is replicated. The algorithm 
dynamically adjusts replication across tiers based on 
system load and workload characteristics, improving 
overall fault tolerance and system efficiency. AMTR 
ensures high availability and performance while 
minimizing costs and energy usage. The success of 
AMTR in simulated environments suggests its 
potential for wide adoption in cloud infrastructures, 
paving the way for more robust and sustainable 
cloud computing systems. 
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