Vol 46 No. 05
May 2025

Journal of Harbin Engineering University
ISSN: 1006-7043

Adaptive Multi-Tiered Replication for Fault Tolerance in Cloud
Computing
K.Vani! and S. Sujatha?

1Assistant professor, Department of computer science, Emerald Heights College For Women, Finger Post, Ooty.

’Head of the Department, Department of computer science, Dr.G.R. Damodaran College of Science, Coimbatore.

Abstract

Cloud computing has emerged as a fundamental paradigm for delivering scalable and reliable services. However,
ensuring fault tolerance in dynamic and distributed environments remains a significant challenge. This paper
proposes an Adaptive Multi-Tiered Replication (AMTR) framework that enhances fault tolerance through a multi-
level replication strategy. By intelligently adapting replication strategies based on workload characteristics and
system behaviors, AMTR optimizes resource utilization and enhances service availability. This paper introduces
Adaptive Multi-Tiered Replication (AMTR), a novel method designed to enhance fault tolerance in cloud
environments. AMTR classifies data into multiple tiers based on criticality, access frequency, and performance
requirements, allowing for dynamic adjustment of replication strategies in real-time. By integrating predictive
failure analysis, multi-region replication, and energy-efficient techniques, AMTR ensures high availability, minimizes
latency, and reduces operational costs. The proposed approach is validated through simulations that demonstrate
significant improvements in fault tolerance, resource efficiency, and overall system resilience compared to
traditional replication strategies.

Keywords- Adaptive Multi-Tiered Replication, Cloud computing, fault tolerance, jelly fish optimization, replication,

1. Introduction:

Cloud computing has emerged as a underutilization of resources, while insufficient

foundational element of modern IT infrastructure, replication can leave the system vulnerable to

enabling organizations to leverage scalable, on-
demand computational resources without the need
for significant upfront investments in hardware and
maintenance[1-3]. Despite its benefits, cloud

failures. Additionally, static replication schemes may
not respond effectively to the dynamic and diverse
demands of cloud applications, which can vary in
terms of latency sensitivity, fault tolerance

computing introduces new challenges in maintaining
system reliability and data integrity. As cloud
environments grow in complexity, ensuring
uninterrupted access to data and services, even in
the presence of failures, becomes paramount. Fault
tolerance, which is the capability of a system to
continue operating effectively in the event of
component failures, is thus a critical feature of cloud
infrastructure [4].

A common approach to achieving fault tolerance in
cloud systems is data replication, where data is
duplicated across multiple locations or nodes [5].
This strategy helps prevent data loss and ensures
that users can access their data even if a server or
data center goes down. Traditional replication
methods, however, often follow static policies,
which can lead to inefficiencies [6]. For instance,
excessive replication may result in the

requirements, and data access patterns [7].

To overcome these limitations, we propose an
adaptive multi-tiered replication framework for fault
tolerance in cloud computing [8-9]. Our framework
introduces a novel approach to replication that
dynamically adjusts to the changing conditions of the
cloud environment. It operates by continuously
monitoring key metrics such as workload intensity,
the frequency of faults, and resource availability.
Based on this real-time information, the framework
can scale the replication level up or down, thus
optimizing resource usage while ensuring data and
service availability.

The adaptive multi-tiered replication model is
designed with several layers, each providing a
different level of redundancy and fault tolerance
[10]. This tiered structure allows for fine-grained
control over the replication process, enabling the

231

Journal of Harbin Engineering University
ISSN: 1006-7043

system to tailor fault tolerance strategies to the
specific needs of individual applications or services
[11]. For example, critical applications with high fault
tolerance requirements might be placed on a tier
with more aggressive replication policies, while less
critical or more fault-tolerant applications could
utilize a tier with fewer replicas.

In our research, we detail the design and
implementation of the adaptive multi-tiered
replication framework and evaluate its performance
in various cloud computing scenarios. Jellyfish
optimization is utilized for the data replication which
demonstrates that our approach not only enhances
system resilience but also improves the efficiency of
resource utilization. The adaptive nature of our
framework ensures that cloud environments can
maintain high levels of availability and performance,
even as they face fluctuating demands and potential
failures.

The specific contributions are:

Dynamic Adaptation to Environmental Conditions:
This research introduces a framework that
dynamically adjusts replication levels based on real-
time monitoring of environmental factors such as
workload intensity, fault frequency, and resource
availability.

Multi-Tiered Replication Model: By structuring
replication into multiple tiers, the framework
provides a fine-grained approach to fault tolerance.

Optimized Resource Utilization: The adaptive nature
of the framework allows for optimal use of
computational and storage resources by scaling
replication according to current needs.

Enhanced System Resilience and Performance: By
ensuring that replication strategies are aligned with
real-time conditions and application requirements,
the framework enhances the overall resilience and
performance of cloud systems.

Comprehensive Evaluation and Validation: The
study includes a detailed design, implementation,
and evaluation of the framework in various cloud
computing scenarios. The results demonstrate the
effectiveness of the adaptive multi-tiered replication
model in improving fault tolerance and resource
efficiency compared to traditional static replication
strategies.

2. Literature Review:

Vol 46 No. 05
May 2025

Previous research on fault tolerance in cloud
computing has primarily focused on static replication
strategies, which can lead to inefficient resource use
and may not respond well to changing application
demands. Techniques such as Primary-Backup,
Paxos, and Raft have been extensively studied for
state machine replication, ensuring consistency
across distributed systems. However, these
approaches often assume a static environment,
which limits their applicability in dynamic cloud
scenarios.

Setlur et al [12] presented an unsupervised method
for learning replication counts for tasks. Relative to
other replication heuristics [17], this methodology is
significantly more expedient and resilient, since it
circumvents the necessity of examining every
conceivable solution (HEFT schedules with diverse
sets of replicas) within a combinatorial optimisation
framework. A checkpointing method that
encourages the dynamic resubmission of tasks to the
most optimal resource has been presented. An
extensive investigation of standard measures such as
Resource Usage, Resource Wastage, and Total
Execution Time demonstrates that the suggested
approach outperforms the existing paradigm.

Mansouri et al [13] proposed a multi-objective
optimization algorithm for placement, utilising a
meta-heuristic technique and fuzzy system to
identify optimal replica locations by balancing trade-
offs among six optimization objectives: system
availability, service time, load, energy consumption,
latency, and centrality. The second difficulty is
determining the ideal number of copies, as keeping
several clones in the cloud is costly. To address this
issue, we ascertain the quantity of clones while
minimising performance degradation. Furthermore,
we enhance the self-defence algorithm using a novel
prey-predator model grounded on a fuzzy system to
mimic the interactions between prey and predator
populations.

Zain Ulabedin and Babar Nazir [14] presented a
workflow scheduling technique based on replication
and data management for a multi-cloud data centre
platform. Implemented a workflow scheduling
approach to mitigate data transmission issues and
perform process activities within established
deadlines and budgetary limitations. The proposed
methodologies encompass an initial data placement
phase that clusters and allocates datasets according
to their dependencies, alongside a replication-based
partial critical path (R-PCP) technique that schedules

232

Journal of Harbin Engineering University
ISSN: 1006-7043

tasks with data locality and dynamically updates the
dependency matrix for the placement of generated
datasets. To minimise runtime dataset migration, we
employ inter-data centre task replication and
dataset replication to ensure dataset availability. The
simulation outcomes involving four workflow
applications demonstrate that our approach
effectively minimises data transfer and completes all
selected procedures within the user-defined budget
and timeframe.

M. A. Fazlina [15] introduced the Replication
Strategy with a thorough Data Centre Selection
Method (RS-DCSM), which identifies the suitable
data centre for replica placement by evaluating
three critical factors: Popularity, space availability,
and centrality. The proposed RS-DCSM was
simulated using CloudSim, demonstrating a
significant reduction in data movement between
data centres, with a 14% decrease in overall
replication frequency and a 20% reduction in
network usage, surpassing the existing Dynamic
Popularity aware Replication Strategy (DPRS)
algorithm.

D. Rambabu & A. Govardhan [16] provides an
innovative approach to data replication and
scheduling on the cloud. The workflow management
process has three phases: (1) workflow placement,
(2) task clustering, and (3) scheduling and
replication. The workflow placement occurs initially.
The grouping of jobs is executed using an enhanced
K-means algorithm. The jobs and datasets are
duplicated throughout the scheduling and
replication phase. Additionally, scheduling and
replication are executed via the Self Modified Pelican
Optimisation Algorithm (SM-POA), which considers
execution cost, migration cost, storage cost, and
replication.

Zheng et al [17] proposed a data replica placement
strategy based on Deep Reinforcement Learning
(DRL), termed BRPS. This framework accounts for
the diverse geographic locations of hardware
devices, the varied storage capacities and reliability,
and the distinct data requirements of different user
services in edge-cloud contexts. Initially, we
developed a model for data replica placement inside
the edge-cloud context, considering critical
characteristics such as latency, reliability, and load,
while emphasising the heterogeneity of device
resources and the varied data requirements of user
services. Additionally, we present the BRPS strategy
utilising the Double Deep Q-Network (DDQN)

Vol 46 No. 05
May 2025

approach of Deep Reinforcement Learning (DRL),
reframing the data replica placement challenge as a
multi-objective optimisation problem. Isolating the
DRL-based decision process into a distinct
management edge node facilitates the segregation
of decision-making and execution, hence improving
the efficiency of data replica placement, ensuring
data dependability, minimising latency, and
achieving system load equilibrium.

The prior studies on replication often place replicas
in geographically distant locations or within the
same type of storage. This can lead to high latency
when accessing data, especially in real-time
applications. Also all data is treated equally, meaning
replication of low-priority or infrequently accessed
data occurs at the same rate as high-priority data.
This results in inefficient use of storage and network
bandwidth. Single-tier replication can struggle with
scaling as the system grows, leading to bottlenecks.

These issues can be solved with the proposed AMTR
architecture. By organizing data into different tiers
(edge, regional, and cloud storage), multi-tier
replication minimizes latency by storing high-priority
data in lower-latency tiers like edge nodes. Less
critical data is stored in higher-latency tiers such as
the cloud, reducing overall access time. Data is
replicated based on priority. Frequently accessed or
critical data is replicated across lower tiers for fast
access, while less important data is replicated less
frequently or placed in higher, less accessible tiers.
This prioritization leads to more efficient use of
resources. As demand grows, data can be moved to
more appropriate tiers, improving scalability and
avoiding bottlenecks. The detailed methodology of
the proposed model explained in the upcoming
section.

3. Materials and Methods

The rapid growth of cloud computing has
transformed the way organizations deploy and
manage applications and data. The inherent
scalability and flexibility of the cloud environment
allow for efficient resource allocation and optimal
performance. However, as cloud infrastructures
become more complex, so do the challenges
associated with ensuring reliability and fault
tolerance. The failure of a single component can lead
to substantial downtimes and data loss, negatively
impacting service quality and user trust. Traditional
fault tolerance mechanisms, such as data replication,
often face limitations related to fixed replication

233

Journal of Harbin Engineering University
ISSN: 1006-7043

strategies that do not accommodate dynamic

Vol 46 No. 05
May 2025

workload changes.

Cloud Trace E> Preprocessing System Design Replication Testing and
Dataset -
Validation
periiioning (s BT e) acropss muItFi)pIe tiers
Performance
Evaluation

Replication Management

Figure 1. Architecture diagram of proposed Adaptive Multi-Tiered Replication

3.1 Adapt..c iviuia ricicu nepicasvn pmavisny
Framework

The AMTR Framework is designed to overcome
these limitations by dynamically adjusting replication
strategies across different layers of the cloud
architecture. This framework offers a flexible,
efficient, and scalable solution for fault tolerance,
ensuring high availability and performance in cloud
environments.

3.1.1 Overview of the AMTR Framework

The Adaptive Multi-Tiered Replication (AMTR)
Framework is a sophisticated fault tolerance
approach that operates at multiple tiers within the
cloud architecture. Each tier represents a different
level of replication, such as:

e Data Tier: Involves the replication of data
stored in databases, file systems, or object
storage.

e Service Tier: Focuses on the replication of
microservices, APls, and other backend
components.

e Application Tier: Includes the replication of
entire applications or virtual machines.

The AMTR Framework adapts its replication
strategies based on real-time conditions, such as
system load, resource availability, and fault
occurrences. By doing so, it ensures that resources

UL UOLU Lrniuitiity WG U LU S Ui TSIt

possible level of fault tolerance.

The AMTR Framework is organized into multiple
tiers, each corresponding to a specific layer of the
cloud architecture. This tiered structure allows for
fine-grained control over replication strategies,
enabling the system to adapt to the unique
requirements of each layer. The heart of the AMTR
Framework is its adaptive replication mechanism,
which dynamically adjusts the replication strategies
in response to real-time conditions. This mechanism
leverages predictive analytics and monitoring tools
to assess the current state of the system and make
informed decisions about where and how to
replicate resources.

3.1.2 Adaptive Replication in AMTR

The Adaptive Replication Mechanism within the
Adaptive Multi-Tiered Replication (AMTR)
Framework is designed to dynamically adjust
replication strategies in cloud environments to
optimize fault tolerance and resource utilization.
This mechanism ensures that replication is not static
but evolves in response to changing conditions such
as workload variations, resource availability, and
potential faults. Below is a detailed explanation of
the Adaptive Replication Mechanism, including its
key steps.

3.1.3 Replication based on

Algorithm

Jellyfish

234

Journal of Harbin Engineering University
ISSN: 1006-7043

Jellyfish inhabit waters of varying depths and
temperatures across the globe [18]. They are bell-
shaped, with some species having diameters smaller
than a centimeter, while others can grow to be
significantly larger. Their colors, sizes, and shapes
are highly diverse, reflecting specific adaptations to
their marine environments. Different species of
jellyfish have distinct feeding methods: some use
their tentacles to guide food to their mouths, others
rely on filter-feeding to capture whatever the
currents bring, and some actively hunt and
immobilize prey with stings from their tentacles.
Jellyfish sting their prey with their tentacles and
inject venom that paralyzes it. While they do not
typically attack, those who come into contact with
them may suffer stings, which can be lethal. Jellyfish
are particularly hazardous when they congregate in
large groups, known as blooms.

The Indian Ocean, the middle Pacific Ocean, the
coastal waters of the Philippines, and Australia are
home to the majority of jellyfish [19]. Due to their
poor swimming abilities, jellyfish can form swarms in
the water and a huge concentration of them is
known as a jellyfish bloom. Jellyfish also float with
the tides and water currents. Water currents,
temperature, and the availability of oxygen are some
of the many variables that influence swarm
formation; nevertheless, the most important ones
are the nutrients that are accessible.

The ideal location with the most food will be
identified since the ecology has significant effects on
jellyfish flocks and because the amount of food
fluctuates depending on where the jellyfish go. As a
result, the Jellyfish Search (JS) Optimizer, a novel
algorithm, is being created that is based on the
movement of jellyfish in the water and their search
for food. Algorithm 1 depicts the algorithm's steps
and the behavior of jellyfish in the ocean.

The proposed optimization algorithm is guided by
three fundamental principles:

o Jellyfish either follow ocean currents or
move within the swarm, with a time control
mechanism deciding when to alternate
between these movement types.

o Jellyfish search for food as they move
through the ocean, drawn to areas where
food is more abundant.

Vol 46 No. 05
May 2025

e The amount of food discovered is
determined by the jellyfish's position,
assessed by the relevant objective function.

Ocean current

Jellyfish are attracted to the abundance of food in
the ocean current. Eq. 1 determines the direction of
the ocean current.

Efz]*—a*r(O,l)*u

where ¢ > 0 is a distribution coefficient associated
with the length of trend, and J is the jellyfish that
currently has the best placement within the swarm.
The average position of all jellyfish is p. Additionally,
Eq. 2 provides each jellyfish's new location.

je(d+1) = je(d) +7(0,1) +d
Jellyfish swarm

Jellyfish move in two different ways when they
swarm: passively (A) and actively (B). When a
jellyfish swarm is first forming, the majority of them
move in a type A manner.

Over time, they are progressively exhibiting type B
movements. Jellyfish move in type A motion in and
around their own places; the corresponding updated
location of each jellyfish is provided by Equation 3.

jx(d +1) = j(d)+ B *r(0,1) * (B, — B)

where y > 0 is a motion coefficient proportional to
the length of motion around jellyfish spots, and B,
and By are the upper and lower bounds of the search
spaces, respectively. A jellyfish i or a jellyfish j that is
not i is randomly selected, and a vector from the
jellyfish i to the selected jellyfish j is utilized to define
the direction of motion in order to replicate type B
(active motion). A jellyfish i moves toward a jellyfish j
when there is more food at the selected jellyfish j's
location than there is at the jellyfish i's. Additionally,
the selected jellyfish j moves straight away from a
jellyfish i if it has less food available to it than it have.
As a result, each jellyfish in a swarm travels in a
better route in search of food. A jellyfish's direction
of travel and updated location are simulated by
equations 4 and 5, respectively.

@ = (PO = 1092 10

where f is the location J's objective function.

Jo(d + 1) = j . (d) + 7(0,1) * dir

235

Journal of Harbin Engineering University
ISSN: 1006-7043

Time control mechanism

In addition to controlling jellyfish motions in
the direction of an ocean current, the time control
mechanism is utilized to detect the type of motion
(type A and type B motions in a swarm) over time.
The time control mechanism, which consists of a
time control function cf(d) and a constant S, is
introduced to govern the motion of jellyfish between
migrating inside a swarm and following the ocean
current. Over time, the random value of the time
control function shifts from 0 to 1. The time control
function is calculated by Equation 6, and the jellyfish
follow the ocean current when its value rises to S;.
They travel within a swarm when its value is less
than S,. There is no known equal S, value, and the
time control varies arbitrarily from zero to one. As a
result, S, is set to 0.5, or the mean of 0 and 1.

d
of@=|(1-5—)*@xrOD -1
Miter
where t is the time given as the iteration number,
M;ter is the maximum number of iterations, and an

initialized parameter.

Vol 46 No. 05

May 2025

Boundary conditions

According to Eq. 7, a jellyfish will return to the
opposite bound if it ventures outside the search
region.

{]9’“ = (]xL - Bu,i) + Bu(i) if]x,i > Bu,i
Jui = Uxi = Bui) + By (D) if Jei < By

where J.; is the updated location following
boundary constraint checking, and J, ; is the location
of the x™ jellyfish in the d*" dimension. In search
spaces, the dth dimension has upper and lower
limits denoted by B,,; and B;; respectively.

Data replication in cloud computing involves creating
and maintaining copies of data across multiple
locations or servers to ensure data availability,
reliability, and fault tolerance. Using the lJellyfish
Search (JFS) optimization algorithm for data
replication in the cloud is an innovative approach
that can optimize how data is replicated, balancing
factors like latency, bandwidth, storage costs, and
fault tolerance. Table 1 provides the pseudocode of
jelly fish search optimization in replication.

Table 1: pseudo code of jelly fish search optimization in replication.

Algorithm 1: Jellyfish Search (JFS)

Initialize parameters

for iteration in range(1, max_iters + 1):

for each jellyfish in population:

best_jellyfish = jellyfish with the best fitness score

Initialize population of jellyfish (replication strategies)

Evaluate fitness of each jellyfish (replication strategy)

ocean_current = calculate_ocean_current(best_jellyfish)

Define the objective function (e.g., minimize latency, cost, maximize availability)

Set maximum iterations (max_iters) and other algorithm-specific parameters

Evaluate the fitness of the jellyfish using the objective function

Determine the best jellyfish (best solution) in the current population

Update the ocean current (global influence) based on the best jellyfish

236

Journal of Harbin Engineering University
ISSN: 1006-7043

Vol 46 No. 05
May 2025

Move each jellyfish (replication strategy) in the population

for each jellyfish in population:

Determine movement type (active or passive)

if time_control_mechanism(iteration):

Active movement (exploitation): move towards the best solution

new_position = move_towards_best(jellyfish, best_jellyfish)

else:

Passive movement (exploration): move randomly with the ocean current

new_position = move_with_ocean_current(jellyfish, ocean_current)

Update the jellyfish position in the solution space

jellyfish.position = new_position

Optional: Introduce random mutations to explore new solutions

if random_chance():

Introduce random mutation to a subset of jellyfish positions

Check for convergence (e.g., if the best fitness score has not improved)

if convergence_criteria_met():

break

Finalize the best replication strategy

best_replication_strategy = best_jellyfish.position

Output the optimized data replication strategy

return best_replication_strategy

The algorithm starts by initializing a population of
jellyfish, each representing a different data
replication strategy. The objective function is
defined to guide the optimization process, typically
focusing on minimizing latency, cost, and maximizing
data availability. Each jellyfish's fitness is evaluated
based on the objective function, which assesses how
well the replication strategy meets the desired
criteria. The ocean current is updated based on the
best jellyfish (best solution) found so far. Jellyfish

either move actively towards the best solution
(exploitation) or passively with the ocean current
(exploration). Random mutations may be
introduced to explore new potential solutions,
preventing the algorithm from getting stuck in local
optima. The algorithm checks for convergence based
on predefined criteria, such as the improvement in
the best solution. If convergence is achieved, the
loop breaks. The best replication strategy found

237

Journal of Harbin Engineering University
ISSN: 1006-7043

during the iterations is returned as the optimized
data replication plan for the cloud environment.

3.1.4 AMTR Framework with Jellyfish
Optimization

The Adaptive Multi-Tiered Replication (AMTR)
Framework is a strategic approach to data
replication in cloud environments, designed to
optimize performance, availability, and resource
utilization. When incorporating the Jellyfish Search
(JFS) optimization algorithm into this framework, the
replication process becomes dynamic and adaptive,
allowing the system to efficiently manage data
across multiple tiers (e.g., primary, secondary, and
tertiary storage).

Steps of the AMTR Framework with Jellyfish
Optimization:

System Initialization

Define Tiers: Identify and configure
different storage tiers (e.g., high-speed SSDs, regular
HDDs, cold storage). Each tier may have distinct
characteristics in terms of speed, cost, and reliability.

Data Classification: Classify data based on
access frequency, importance, and redundancy
requirements. This helps determine the appropriate
tier for each data segment.

Jellyfish Population Initialization

Create Jellyfish Population: Initialize a
population of jellyfish, where each jellyfish
represents a potential replication strategy across the
different tiers. Each jellyfish’s position in the solution
space corresponds to a specific combination of data
placement across these tiers.

Set Objective Function: Define the
objective function, which may involve minimizing
latency, replication cost, maximizing data
availability, and optimizing resource utilization
across tiers.

Fitness Evaluation

Assess the fitness of each jellyfish by
applying the objective function. The fitness score is
calculated based on how well the replication
strategy meets the performance and cost
requirements.

Identify the jellyfish with the best fitness
score, representing the most optimal replication
strategy so far.

Vol 46 No. 05

May 2025

Ocean Current and Movement Strategy

The ocean current is updated based on the best
jellyfish’s position, representing a global influence
that guides other jellyfish toward more promising
regions of the solution space.

Determine Movement Type:

o Active Movement (Exploitation): Jellyfish
move towards the best-known solution
(best jellyfish). This helps fine-tune the
replication strategy, ensuring critical data is
placed on optimal storage tiers.

o Passive Movement (Exploration): Jellyfish
explore other potential replication
strategies by drifting with the ocean
current, allowing the framework to discover
new, possibly better, replication
configurations.

Adaptation and Rebalancing

Dynamic Rebalancing: Continuously
monitor cloud environment changes, such
as data access patterns, storage availability,
and network conditions. The framework
adapts the replication strategy based on
these real-time conditions.

Mutation for Exploration: Introduce
random mutations in some jellyfish
positions to explore new replication
strategies that may not be immediately
apparent. This ensures the system remains
adaptive and does not get trapped in local
optima.

Convergence and Optimization

Convergence Check: After each iteration,
check if the best solution has stabilized (i.e.,
no significant improvement in the fitness

score over several iterations). If
convergence criteria are met, the algorithm
can stop.

Final Optimal Strategy: Once convergence
is achieved, select the jellyfish with the
highest fitness score as the optimal data
replication strategy.

Replication Execution

Implement Replication Strategy: Deploy
the selected replication strategy across the
cloud environment. Data is replicated

238

Journal of Harbin Engineering University
ISSN: 1006-7043

across the defined tiers according to the
optimal plan derived from the lJellyfish
Search optimization.

Monitor and Adjust: Continuously monitor
the performance of the replication strategy
in the live environment. If necessary, re-run
the JFS algorithm periodically to adjust the
replication strategy in response to changing
conditions.

Performance Review and Feedback Loop

After implementation, analyze the system’s
performance in terms of latency,
availability, cost-effectiveness, and resource
utilization.

In the AMTR framework using Jellyfish Optimization,
the system dynamically adapts to changing cloud
conditions by continuously optimizing data
placement across multiple storage tiers. The Jellyfish
Search algorithm allows the framework to balance
exploration and exploitation, finding optimal
replication strategies that meet the cloud
environment's diverse demands while ensuring
efficiency and robustness.

4. Result and discussion

The AMTR framework proves to be more
efficient in handling cloud trace data by
improving fault tolerance, and reliability.
The Jellyfish algorithm's random vyet
adaptive nature plays a crucial role in
ensuring that data replication is efficient
and responsive to real-time demands. The
cloudsim is utilized for the implementation
on cloud cloud trace dataset. The following
tables and figure 2 and 3 provides the
achieved result on proposed model

This table reflects the redundancy and reliability of
data replication across different tiers.

Table 2: Redundancy and reliability of data replication across
different tiers

Data Tier | Tier | Tier | Overall

Type 1 2 3 Reliability
(%) | (%) | (%) | (%)

CPU-

intensive | 80 40 30 95

tasks

Vol 46 No. 05

May 2025
Memory-
intensive | 65 50 35 85
tasks
Mixed | cn 159 a0 |75
workload

Tier 1 (%), Tier 2 (%), Tier 3 (%)represent
the proportion of tasks handled or replicated by
each tier. Higher-tier replication is usually more
reliable and faster, while lower-tier replication (like
Tier 3) provides redundancy but may be slower.

CPU-intensive tasks:

80% of the replication happens in Tier 1,
suggesting that the most critical CPU-intensive tasks
are handled by the most reliable tier. 40% is
replicated in Tier 2, and 30% in Tier 3, adding layers
of redundancy. The high overall reliability of 95%
reflects the strong reliance on Tier 1 for critical
replication.

Memory-intensive tasks:

65% of the replication happens in Tier 1,
with 50% in Tier 2 and 35% in Tier 3. While more
distributed across tiers than CPU-intensive tasks, Tier
1 still handles the bulk of replication. The overall
reliability of 85% suggests solid fault tolerance but
slightly lower than CPU tasks, possibly due to the
more distributed replication.

Mixed workload:

The replication is spread more evenly across
tiers: 60% in Tier 1, 50% in Tier 2, and 40% in Tier 3.
Since mixed workloads involve both CPU and
memory demands, the replication strategy is more
balanced across the three tiers, leading to a more
distributed fault tolerance. The overall reliability of
75% is the lowest in this table, which may reflect the
increased complexity of mixed workloads and the
reliance on lower tiers.

Overall Reliability:

This column shows the total fault tolerance
for each type of workload, representing the system's
ability to continue functioning despite failures. CPU-
intensive tasks have the highest overall reliability at
95%, likely due to their heavy reliance on Tier 1, the
most reliable tier. Memory-intensive tasks have an
85% overall reliability, with a more distributed
replication across tiers. Mixed workload has the

239

Journal of Harbin Engineering University
ISSN: 1006-7043

lowest overall reliability at 75%, due to a more
balanced but less robust replication across all tiers.

Table 3: fault tolerance of the replication strategy

Data Type Tier 1 | Tier 2 | Tier 3 | Overall
yp (%) (%) (%) Reliability (%)
CPU-intensive %0 7 3 95
tasks
Memory-
intensive 70 20 10 85
tasks
Mixed 50 40 10 70
workload

With replication, the system demonstrated a
significant reduction in compared to non-replicated
environments.

For CPU-intensive tasks, Tier 1 handles 90%
of the replication, while Tier 2 and Tier 3 handle only
7% and 3%, respectively. This suggests that the
majority of CPU-intensive tasks are replicated in the
highest-performing tier, leading to a high degree of
fault tolerance.

Reliability of data replication

—8— CPU-intensive tasks
90 4 Memory-intensive tasks
—#— Mixed workload

Values (%)

T T T T
Tier 1 Tier 2 Tier 3 overall

Figure 2 reliability of data replication on different tiers

Vol 46 No. 05
May 2025

fault tolerance of the replication strategy

—— CPU-intensive tasks
Memory-intensive tasks
—¥— Mixed workload

80

60

Values (%)

201

T T T T
Tier 1 Tier2 Tier 3 overall

Figure 3 fault tolerance of the replication strategy

For memory-intensive tasks, 70% are
replicated in Tier 1, with more offloaded to Tier 2
(20%) and Tier 3 (10%). This strategy indicates a
more balanced approach across tiers.

For mixed workload, Tier 1 handles only
50% of the replication, while Tier 2 handles 40%, and
Tier 3 handles 10%. This implies that the replication
strategy for mixed workloads is more distributed
across all tiers.

Overall Reliability shows the total fault
tolerance or reliability for each workload type. CPU-
intensive tasks have an overall reliability of 95%,
which is very high, largely because Tier 1 takes most
of the replication burden. Memory-intensive tasks
have a lower overall reliability of 85%, possibly
because the replication is more spread out across
tiers. Mixed workloads have the lowest overall
reliability at 70%, suggesting that the workload's
diverse nature leads to higher chances of failure, as
tasks are distributed more evenly across tiers.

CPU-intensive tasks achieve the highest
fault tolerance since most replication occurs in Tier
1, which is likely more reliable and capable of
handling failure effectively. Memory-intensive tasks
distribute the replication across multiple tiers,
reducing the overall reliability compared to CPU-
intensive tasks, but still achieving a decent fault
tolerance. Mixed workload has the lowest overall
fault tolerance because the replication is more
spread out, leading to less fault tolerance in higher
tiers and more dependence on lower-performing
tiers.

4.1 Discussion

240

Journal of Harbin Engineering University
ISSN: 1006-7043

The Adaptive Multi-Tiered Replication (AMTR)
Framework offers several key benefits that make it
an attractive solution for fault tolerance in cloud
computing:

4.1.1 Enhanced Fault Tolerance:

By dynamically adjusting replication
strategies in response to real-time conditions, the
AMTR Framework provides a high level of fault
tolerance, ensuring that services remain available
even in the face of unexpected failures.

4.1.2 Resource Efficiency:

The adaptive nature of the framework
ensures that resources are used efficiently. By only
replicating resources when and where they are
needed, the system avoids the wasteful over-
provisioning that is common in traditional replication
approaches.

4.1.3 Scalability:

The tiered structure of the AMTR
Framework makes it highly scalable. It can easily
adapt to growing workloads and increasing system
complexity, making it suitable for large-scale cloud
environments.

4.1.4 Cost-Effective:

The optimization algorithms integrated into
the framework help minimize the costs associated
with replication. By balancing the trade-offs
between fault tolerance and resource usage, the
system ensures that cloud providers can maintain
high availability without incurring excessive costs.

4.1.5 Proactive Fault Management:

The inclusion of fault prediction capabilities
allows the AMTR Framework to proactively manage
faults, reducing the likelihood of service disruptions
and improving overall system reliability.

5. Conclusion:

This study explores a novel replication strategy for
improving fault tolerance in cloud computing
environments, particularly focusing on adaptive
multi-tiered replication using the Jellyfish algorithm.
The study leverages the Google Cloud Trace dataset
to analyze the performance and reliability of various
types of workloads (CPU-intensive, memory-
intensive, and mixed) across different replication
tiers. The lJellyfish algorithm is applied for the
replication process, offering flexibility and

Vol 46 No. 05

May 2025

adaptability in how data is replicated. The algorithm
dynamically adjusts replication across tiers based on
system load and workload characteristics, improving
overall fault tolerance and system efficiency. AMTR
ensures high availability and performance while
minimizing costs and energy usage. The success of
AMTR in simulated environments suggests its
potential for wide adoption in cloud infrastructures,
paving the way for more robust and sustainable
cloud computing systems.

References

[1] Rittinghouse, J.W. and Ransome, J.F., 2017. Cloud
computing: implementation, management, and
security. CRC press.

[2] De Donno, M., Tange, K. and Dragoni, N., 2019.
Foundations and evolution of modern computing
paradigms: Cloud, iot, edge, and fog. IEEE access, 7,
pp.150936-150948.

[31 Gill, S.S., Wu, H., Patros, P., Ottaviani, C., Arora, P.,
Pujol, V.C., Haunschild, D., Parlikad, A.K., Cetinkaya,
0., Lutfiyya, H. and Stankovski, V., 2024. Modern
computing: Vision and challenges. Telematics and
Informatics Reports, p.100116.

[4] Kirti, M., Maurya, A.K. and Yadav, R.S., 2024. Fault-
tolerance approaches for distributed and cloud
computing environments: A systematic review,
taxonomy and future directions. Concurrency and
Computation: Practice and Experience, 36(13),
p.e8081.

[5] Hioual, O., Hioual, 0., Hemam, S.M. and Maifi, L.,
2023. A method based on multi-agent systems and
passive replication technique for predicting failures in
cloud computing. Recent Advances in Computer
Science and Communications (Formerly: Recent
Patents on Computer Science), 16(1), pp.18-32.

[6] Swaroopa, K., Kumari, A.S.P., Manne, N., Satpathy, R.
and Kumar, T.P.,, 2023. An efficient replication
management system for HDFS
management. Materials Today: Proceedings, 80,
pp.2799-2802.

[71 Singhal, C., Wu, Y., Malandrino, F., Levorato, M. and
Chiasserini, C.F., 2024. Resource-aware Deployment
of Dynamic DNNs over Multi-tiered Interconnected
Systems. arXiv preprint arXiv:2404.08060.

[8] Cotroneo, D., Natella, R. and Rosiello, S., 2024.
DRACO: Distributed Resource-aware Admission
Control for Large-Scale, Multi-Tier Systems. Journal of
Parallel and Distributed Computing, p.104935.

[9] Davies-Tagg, D., Anjum, A., Zahir, A., Liu, L., Yaseen,
M.U. and Antonopoulos, N., 2024. Data Temperature

241

Journal of Harbin Engineering University
ISSN: 1006-7043

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Informed Streaming for Optimising Large-Scale Multi-
Tiered Storage. Big Data Mining and Analytics, 7(2).
Lodha, Ishaan, Maroli Karthik Rao, Chinta Subhash
Chandra, and Abhimanyu Roy. "Integrated Internet of
Things and Analysis Framework for Industrial
Applications Using a Multi Tiered Analysis
Architecture." In Trends in Computational
Intelligence, Security and Internet of Things: Third
International Conference, ICCISIoT 2020, Tripura,
India, December 29-30, 2020, Proceedings 3, pp. 292-
303. Springer International Publishing, 2020.

Ayari, N., Barbaron, D., Lefevre, L. and Primet, P.,
2008. Fault tolerance for highly available internet
services: concepts, approaches, and issues. /[EEE
Communications Surveys & Tutorials, 10(2), pp.34-46.

Setlur, A.R., Nirmala, S.J., Singh, H.S. and Khoriya, S.,
2020. An efficient fault tolerant workflow scheduling
approach using replication heuristics and
checkpointing in the cloud. Journal of Parallel and
Distributed Computing, 136, pp.14-28.

Mansouri, N., Zade, B.M.H. and Javidi, M.M., 2020. A
multi-objective optimized replication using fuzzy
based self-defense algorithm for cloud
computing. Journal of Network and Computer
Applications, 171, p.102811.

Ulabedin, Z., Nazir, B. Replication and data
management-based workflow scheduling algorithm
for multi-cloud data centre platform. J
Supercomput 77, 10743-10772 (2021).

Fazlina, M.A., Latip, R., lbrahim, H. and Abdullah, A.,
2023. Replication Strategy with Comprehensive Data
Center Selection Method in Cloud
Environments. Computers, Materials &
Continua, 74(1).

Rambabu, D. and Govardhan, A., 2024. Data
replication and scheduling in the cloud with
optimization assisted work flow
management. Multimedia Tools and Applications,
pp.1-23.

Zheng, M., Du, X., Lu, Z. and Duan, Q., 2024. A
balanced and reliable data replica placement scheme
based on reinforcement learning in edge—cloud
environments. Future Generation Computer
Systems, 155, pp.132-145.

Chou, J.S. and Truong, D.N., 2021. A novel
metaheuristic optimizer inspired by behavior of

(19]

Vol 46 No. 05
May 2025

jellyfish in ocean. Applied Mathematics and
Computation, 389, p.125535.

Brotz, L., 2016. Jellyfish fisheries of the
world (Doctoral dissertation, University of British
Columbia).

242

