
 

 

243 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 05 

May 2025 

AI-Based Predictive Maintenance in Manufacturing Systems 

Aaryan1, Mehul Arora2, Ms Komal Malsa3 

1 UG - Computer Science Engineering, Lingaya’s Vidyapeeth, Faridabad, Haryana 

2 UG - Computer Science Engineering, Lingaya’s Vidyapeeth, Faridabad, Haryana 

3Assistant Professor,  Computer Science Engineering, Lingaya’s Vidyapeeth, Faridabad, Haryana 

Abstract 

Digital In order to guarantee the operational effectiveness and dependability of production systems, 

maintenance is essential. Reactive and preventative techniques, two traditional maintenance approaches, 

frequently lead to more downtime and needless expenses. With the development of Industry 4.0, predictive 

maintenance—a more intelligent solution—is made possible by the combination of artificial intelligence (AI) and 

predictive analytics. The usefulness of AI-driven methods for anticipating equipment failures before they happen 

is being investigated in the current study. These methods include machine learning algorithms, real-time sensor 

data processing, and anomaly detection models. In order to evaluate trends in machine health characteristics 

such as vibration, temperature, and pressure, the suggested system is modeled and simulated using Python-

based machine learning frameworks.Manufacturers can minimize downtime and maximize operational 

efficiency by using these information to guide appropriate maintenance activities. Performance, accuracy, and 

cost-effectiveness are assessed by comparing AI-based predictive systems with conventional maintenance 

techniques. Incorporating AI into predictive maintenance enhances asset lifespan and makes manufacturing a 

more intelligent, proactive setting. 
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1. INTRODUCTION  

Maintaining competitiveness and reducing 

operational disruptions in the dynamic world of 

modern production depends on the efficiency and 

dependability of equipment. Equipment health has 

traditionally been managed using conventional 

maintenance techniques including reactive 

maintenance, which fixes machines once they break 

down, and preventative maintenance, which involves 

planned servicing. Nevertheless, these approaches 

frequently lead to wasteful maintenance expenses, 

unscheduled downtime, and less-than-ideal resource 

utilization. 

In order to improve operational performance and 

decision-making, manufacturing systems are quickly 

incorporating digital technologies such as artificial 

intelligence (AI), machine learning (ML), and the 

Internet of Things (IoT) with the introduction of 

Industry 4.0. Predictive maintenance, a data-driven 

strategy that anticipates equipment breakdowns 

before they happen, is one of the most promising uses 

in this field. Predictive maintenance enables 

manufacturers to carry out maintenance only when  

 

necessary by utilizing real-time sensor data and 

sophisticated AI algorithms. This lowers downtime, 

increases asset lifespan, and boosts overall efficiency. 

Investigating and applying AI-based predictive 

maintenance strategies in manufacturing systems is 

the aim of this study. The study uses Python-based 

machine learning frameworks to analyze vital 

equipment metrics including temperature, pressure, 

and vibration. The suggested method seeks to 

improve operational decision-making and 

dependability by simulating system behavior and 

identifying abnormalities. 

The first step in the predictive maintenance workflow 

is usually gathering real-time data from a variety of 

sensors mounted on machinery. After preprocessing, 

this data—which pertains to variables like 

temperature, vibration, and pressure—is fed into 

machine learning models that are designed to identify 

irregularities or anticipate problems. Engineers can 

plan maintenance activities proactively rather than 

reactively by using the maintenance warnings that are 

produced based on the model's output. This clever 
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feedback loop makes sure that possible problems are 

fixed before they cause equipment failure. 

 

Figure 1 Predictive Maintenance Workflow  

The performance, accuracy, and cost-effectiveness of 

AI-driven predictive maintenance and conventional 

maintenance techniques are compared in this 

research. A move from reactive to proactive 

manufacturing is represented by the integration of 

intelligent maintenance systems, which has major 

advantages for sustainability and productivity. 

2. LITERATURE REVIEW 

Intelligent Maintenance framework based on AI and 

the Industrial Internet of Things (IIoT) was presented 

by Zheng et al. [1]. This platform combines continuous 

deployment of machine learning models, real-time 

data collecting via smart sensors, and probabilistic 

deep learning for dependability modeling. Using the 

Turbofan Engine Degradation Dataset, the authors 

illustrated the efficacy of this strategy and highlighted 

enhancements to maintenance decision-making 

procedures. 

A neuroscience-inspired system for predictive 

maintenance utilizing Hierarchical Temporal Memory 

(HTM) was presented by Malawade et al. [2]. HTM is 

resilient to noise and able to detect anomalies in real 

time because, in contrast to typical ML models, it 

continuously learns and adjusts to new patterns. Their 

solution achieved an average score of 64.71 compared 

to 49.38 for deep learning techniques, outperforming 

state-of-the-art algorithms in detecting bearing 

failures and 3D printer irregularities. 

A thorough survey of different deep learning models 

for predictive maintenance was carried out by 

Serradilla et al. [3]. These models were grouped 

according to their uses in remaining usable life 

estimation, anomaly detection, and root cause 

investigation. The study underlined issues like data 

quality and model interpretability and underlined the 

necessity of choosing suitable architectures suited to 

particular industry objectives. 

Çınar et al. [4] investigated how machine learning may 

help achieve sustainable smart manufacturing in the 

context of Industry 4.0. Their study emphasized how 

crucial it is to combine machine learning algorithms 

with Internet of Things technology in order to enable 

predictive analytics and real-time condition 

monitoring. The difficulties posed by data 

heterogeneity and the requirement for consistent 

data pretreatment techniques also covered in the 

study. 

In their study of Industry 4.0's AI integration 

problems, Windmann et al. [5] paid special attention 

to applications involving predictive maintenance. 

They noted several major challenges, including the 

necessity for reliable AI systems, workforce 

adaptation, data-related problems, and the 

complexity of system integration. To help AI be 

adopted in industrial settings, the authors suggested 

solutions such as improved training programs and the 

creation of defined procedures. 

A overview of the literature on predictive 

maintenance in SCADA-based enterprises was 

presented by Suryadarma and Ai [6]. They emphasized 

how important it is to combine PdM techniques with 

Supervisory Control and Data Acquisition (SCADA) 

systems in order to improve maintenance scheduling 

and monitoring capabilities. The study also covered 

how AI and ML might enhance fault diagnosis and 

detection in these kinds of settings. 

A thorough analysis of the literature on predictive 

maintenance in Industry 4.0 was carried out by Zonta 

et al. [7], who focused on the shift to data-driven 

maintenance techniques. They talked about several 

machine learning (ML) methods used for prognostics 

and diagnostics, such as neural networks, decision 

trees, and support vector machines. Future research 

avenues were also indicated by the study, including 

the creation of hybrid models and the incorporation 

of domain expertise into machine learning algorithms. 

In intelligent manufacturing systems, Liu et al. [9] 

presented a revolutionary deep adversarial learning-

based predictive maintenance technique. Their 
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strategy centered on using adversarial training 

approaches to improve the accuracy and robustness 

of maintenance predictions. The study showed 

enhanced performance in tasks related to 

malfunction diagnosis and remaining useful life 

assessment. 

According to Lee, Kim, and Lee [9], manufacturing 

plants that used predictive maintenance techniques 

saw a 15% drop in maintenance expenses and a 20% 

decrease in unscheduled downtime. The preemptive 

detection of possible equipment breakdowns using 

real-time monitoring systems and advanced analytics 

was credited with these benefits. 

In a beverage manufacturing setting, Poland et al. [10] 

presented a Transformer-based predictive 

maintenance system that uses Transformer Quantile 

Regression Neural Networks (TQRNNs) to predict 

equipment failures in real-time. With a 1-hour lead 

time, their model showed 70.84% accuracy and 

increased product yield from 78.38% to 89.62%, 

demonstrating the value of sophisticated deep 

learning models in preventative maintenance plans. 

A thorough analysis of deep reinforcement learning 

(DRL) and reinforcement learning (RL) techniques for 

maintenance optimization was carried out by 

Ogunfowora and Najjaran [11]. In order to increase 

adaptability in Industry 4.0 contexts, their study 

highlighted how RL approaches may automatically 

create appropriate maintenance schedules that lower 

operating costs, prolong asset life, and guarantee 

plant safety. 

A comprehensive analysis of the literature on data-

driven multi-fault diagnostics in industrial rotating 

machinery was presented by Gawde et al. [12]. 

Techniques were grouped in the study according to 

machine learning models, signal processing, feature 

extraction, and sensor kinds. Their findings 

emphasized the need for more integrated systems 

that allow predictive maintenance and early defect 

detection in complicated industrial contexts, while 

also identifying gaps in existing research. 

The use of federated learning (FL) in visual quality 

inspection and predictive maintenance was 

investigated by Pruckovskaja et al. [13]. Particularly 

for multi-site industrial data, the study suggested FL 

as a privacy-preserving substitute for centralized 

machine learning. Their empirical assessments, 

backed by a real-world dataset, demonstrated that FL 

preserved data secrecy while achieving performance 

on par with centralized approaches. 

With an emphasis on predictive maintenance, 

Plathottam et al. [14] offered a thorough analysis of 

machine learning and artificial intelligence 

applications in industrial processes. The study 

described how artificial intelligence (AI) facilitates 

data-driven decision-making by evaluating vast 

amounts of sensor data, identifying irregularities, and 

cutting down on unscheduled downtime, all of which 

eventually improve productivity and quality control in 

smart manufacturing systems. 

3. NOTABLE SECURITY BREACHES IN AI BASED 

PREDICTIVE MAINTAINANCE SYSTEM  

Manufacturing systems are more vulnerable to 

different cybersecurity risks as they use AI-driven 

predictive maintenance more frequently. These flaws 

have the potential to jeopardize system integrity, 

resulting in data leaks and operational interruptions. 

Here are some recorded instances that illustrate these 

difficulties: 

3.1 Adversarial Attack on Predictive Maintenance 

Models (2023) 

In their work "RobustPdM," Siddique et al. (2023) 

examined how vulnerable AI-based predictive 

maintenance systems are to hostile attacks. Their 

study showed that Remaining Useful Life (RUL) 

forecasts might be severely distorted by hostile 

inputs, with inaccuracies rising by up to 11 times. They 

highlighted the necessity of safe AI model training in 

maintenance systems by putting forth an adversarial 

training technique that increased model robustness 

by up to 54 times. 

3.2 Cyber Risk Amplified by AI Integration(2024) 

The The increasing cyber threats in manufacturing as 

a result of AI integration were emphasized in a 

PureCyber (2024) research. The study noted that 

although artificial intelligence (AI) improves 

operational efficiency, it also creates new risks, like 

larger attack surfaces due to networked systems and 

gadgets. The research stressed how crucial it is to use 

AI while simultaneously putting strong cybersecurity 

measures in place. 

3.3 Vulnerabilities in Predictive Maintenance 

Sensors (2025) 
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Comparitech (2025) talked about possible 

weaknesses in the sensors and predictive 

maintenance tools. If these elements are not 

sufficiently protected, they may be tampered with, 

which could result in incorrect data gathering and 

processing. The essay emphasized that in order to 

preserve system integrity, the entire pipeline for data 

gathering and processing must be secured. 

3.4 CHALLANGES IN IMPLEMENTING SECURE 

PREDICTIVE MAINTENANCE (2024) 

Sensemore (2024) noted that predictive 

maintenanceimplementation presents certain 

difficulties, especially with regard to data security. 

Unauthorized access and possible data leakage are 

two new dangers that may arise from the integration 

of such technologies. To reduce these risks, the paper 

suggested thorough security evaluations and the 

implementation of best practices. 

 

4. ATTACKS AND SECURITY THREATS IN AI BASED 

PREDICTIVE MAINTENANCE SYSTEMS 

Potential cyberthreats are drawn to AI-based 

predictive maintenance systems as they become an 

essential part of smart manufacturing settings. These 

threats take use of flaws in network infrastructures, 

machine learning models, and data gathering 

pipelines. A comparison chart is shown below, along 

with some typical attack and threat types that are 

pertinent to predictive maintenance systems (see 

Table 1). 

4.1 Data Poisoning Attacks 

Experimental Data poisoning is the practice of 

tampering with training data to taint machine learning 

models' learning process. Attackers may insert 

inaccurate or deceptive sensor data into predictive 

maintenance systems during the model training stage. 

This may result in inaccurate forecasts that either fail 

to identify important flaws or necessitate needless 

maintenance. To reduce such threats, anomaly 

filtering methods and data pipeline security are 

crucial. 

 

Threat Type Defination How it Works Impact on the System 

Data 

Poisoning 

During training, introducing 

inaccurate or deceptive 

data 

 

In order to reduce model 

performance, attackers alter 

sensor datasets. 

 

Causes overlooked failures, 

needless maintenance, and 

erroneous forecasts. 

 

Model 

Inversion 

Using a trained machine 

learning model to 

reconstruct sensitive data 

 

Uses the model's query 

access to infer private sensor 

or process data. 

 

Could lead to the disclosure of 

private operational 

information or industrial 

espionage. 

 

Adversarial 

Input 

Input that is maliciously 

changed to mislead AI 

predictions 

 

Minimal adjustments to 

sensor data designed to trick 

AI models 

 

Generates erroneous 

warnings or hinders fault 

detection 

 



 

 

247 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 05 

May 2025 

Replay 

Attacks 

Spoofing the current 

equipment state by reusing 

legitimate previous data 

packets 

 

To hide flaws, attackers 

monitor and replay historical 

sensor data. 

 

Delays necessary 

maintenance, which could 

lead to equipment failure. 

 

 Table 1 Comparison Chart of Predictive Maintenance System Security Threat 

 

4.2 Model Inversion Attacks 

In order to reconstitute critical information about the 

training data, model inversion attacks take advantage 

of access to predictive maintenance models. This may 

result in the disclosure of confidential operational 

information or industrial espionage. To reduce such 

dangers, strategies like model encryption and 

differential privacy might be used. 

4.3 Adversarial Input Attacks 

Figures Without observable changes to the input data, 

these attacks create minute variations in sensor input 

that trick machine learning models into producing 

inaccurate predictions. Attacks like this could stop 

timely alerting or set off false alarms. These 

weaknesses are lessened with the use of adversarial 

testing methods and strong training. 

4.4 Network Interception and Replay Attacks 

Industrial networks are frequently used to transport 

sensor data used in predictive maintenance. Attackers 

can intercept and replay historical data if 

communication links are not encrypted, fooling the 

system into thinking the equipment is operating 

normally. Such attacks can be avoided by putting 

secure communication methods like TLS and network 

segmentation into practice. 

5. ENHANCING AI BASED PREDICTIVE MAINTENANCE 

SYSTEMS SECURITY 

Predictive maintenance systems must be secured in 

contemporary industrial settings where new 

vulnerabilities are introduced by the combination of 

AI, IoT sensors, and cloud services. Predictive 

maintenance systems use data from equipment to 

predict breakdowns before they happen, but they are 

vulnerable to data manipulation, cyberattacks, and 

operational disruption if they are not properly 

secured. Key tactics for improving the security of such 

systems are listed below: 

5.1 Secure Sensor Data Collection 

Predictive maintenance is based on IoT sensors that 

gather data from machinery in real time. It is essential 

to guarantee the integrity and authenticity of this 

data. Man-in-the-middle attacks and data 

manipulation during transmission are avoided by 

putting secure communication protocols like MQTT 

with authentication and TLS (Transport Layer Security) 

into practice. 

5.2 Implement Data Encryption 

Data that is encrypted both in transit and at rest is 

guaranteed to remain incomprehensible even in the 

event of illegal access. AES-256 encryption should be 

used for sensor data saved on modern predictive 

maintenance systems, and SSL/TLS encryption should 

be used for data exchange between devices, edge 

nodes, and cloud platforms. 

5.3 Enable Secure Model Training and Updates 

Predictive maintenance systems' AI models need to 

be trained on updated datasets on a regular basis. 

Establishing secure pipelines is necessary to stop data 

poisoning attacks during training. Only reliable, 

certified AI models are put into production thanks to 

signed model updates and model provenance, which 

tracks the origin of data. 

5.4 Harden Edge Devices and Gateways 

Devices used for edge computing that locally process 

sensor data need to be safeguarded. Among the 

actions include turning off unused ports, updating 

firmware, and turning on firewall rules. Even within 

the network, edge nodes should validate all access 

requests using a zero-trust approach. 

5.5 Multi-Factor Authentication and Access Controls  

Unauthorized access to analytics systems, cloud 

interfaces, or maintenance dashboards might result in 

disastrous misuse. By putting role-based access 

control (RBAC) and multi-factor authentication (MFA) 
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into place, it is made sure that only authorized 

individuals can access analytics tools and vital system 

components. 

5.6 Secure Firmware and Software Updates  

Firmware or software updates are frequently 

necessary for predictive maintenance equipment. To 

guarantee that updates originate from reliable 

sources and haven't been tampered with during 

transit, a secure update system should incorporate 

cryptographic verification, such as digital signatures. 

5.7 Anomaly Detection for Cyber Threats 

Unusual data patterns that can point to system 

malfunctions or cyber breaches can be found by 

integrating real-time anomaly detection technologies. 

By identifying anomalous system behavior brought on 

by security breaches, machine learning-based threat 

detection techniques can be utilized in conjunction 

with predictive maintenance algorithms. 

5.8 Privacy-Aware Federated Learning 

Federated learning enables AI model training across 

devices without exchanging raw data for businesses 

running different industrial sites. This maintains high 

model accuracy and security while protecting data 

privacy and lowering vulnerability to data breaches. 

5.9 Secure Boot and Hardware Trust Anchors 

Secure boot procedures should be used by predictive 

maintenance edge devices and controllers to confirm 

firmware integrity at startup. Furthermore, device 

passwords and encryption keys can be safely stored in 

Hardware Security Modules (HSMs) or Trusted 

Platform Modules (TPMs). 

6. RESULT 

Significant security issues that need to be resolved to 

guarantee dependable and secure industrial 

operations were found during a thorough research of 

predictive maintenance systems. The study pointed 

up a number of weaknesses, such as weak 

authentication procedures, the possibility of data 

manipulation, unsafe IoT connection protocols, and 

the danger of hostile assaults on machine learning 

models. The confidentiality, availability, and integrity 

of maintenance data as well as system operations are 

seriously jeopardized by these flaws. 

The study also highlighted how predictive 

maintenance systems are becoming more and more 

appealing targets for cyberattacks due to the growing 

dependence on networked IoT devices and AI-based 

analytics. A single corrupted sensor or an unconfirmed 

firmware upgrade can result in costly downtime, 

erroneous predictions, or even physical damage to 

machines in industrial settings. 

The growing need to explicitly integrate security 

measures into the planning and implementation of 

predictive maintenance infrastructures is further 

supported by this study. Organizations can strengthen 

their defenses against known and unknown threats by 

combining data encryption, anomaly detection, 

secure sensor data collecting, and strong 

authentication techniques. 

The results offer practical recommendations for 

improving predictive maintenance systems' security 

posture. These include adopting secure machine 

learning pipelines, enforcing stringent access rules, 

securing edge devices, implementing encrypted 

communication, and using real-time anomaly 

detection. The danger of data leakage and cyber 

intrusion can also be reduced by using federated 

learning and secure boot procedures. 

In the end, this study emphasizes how crucial 

proactive security measures are to predictive 

maintenance. Maintaining the integrity and security 

of maintenance data and procedures is not only 

advantageous but also necessary for operational 

resilience, safety, and long-term efficiency as 

industrial systems become more automated and 

digitalized. 

7. CONCLUSION 

This study has examined how predictive maintenance 

is developing and how important it is to incorporate 

security into every aspect of its design. The security of 

the underlying systems becomes a major concern as 

industries depend more and more on data-driven 

insights and machine learning models to predict 

equipment failures. When cloud platforms, IoT 

devices, and AI-based analytics are combined, new 

vulnerabilities are introduced that, if ignored, could 

jeopardize data integrity, safety, and operational 

effectiveness. 

The paper emphasizes the critical necessity for a 

comprehensive security approach by analyzing 

common vulnerabilities, including data manipulation, 

illegal access, adversarial machine learning attacks, 
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and insecure communication protocols. Building 

robust predictive maintenance systems requires the 

implementation of multi-layered protections, such as 

secure model training, real-time anomaly detection, 

secure authentication, and encrypted data 

transmission. 

This study also highlights the significance of frequent 

upgrades and ongoing security monitoring to stay 

ahead of new threats. To maintain predictive 

maintenance's efficacy and security, organizations 

need to take a proactive approach and encourage 

cooperation between data scientists, cybersecurity 

specialists, and industrial engineers. 

To sum up, improving the security of predictive 

maintenance systems is a strategic priority rather 

than just a technical requirement. In an increasingly 

interconnected world, enterprises can fully utilize 

predictive maintenance while protecting their assets, 

data, and reputation by putting security first. 

8. FUTURE SCOPE 

In order to improve openness and trust, future studies 

could examine the safe logging of maintenance 

information, equipment history, and sensor readings 

using decentralized and impenetrable blockchain 

ledgers. 

Adopting post-quantum encryption techniques will 

become crucial as quantum computing develops in 

order to protect predictive maintenance data from 

upcoming quantum-enabled attacks. 

Industry-wide guidelines and cybersecurity 

regulations that are especially suited for industrial 

settings and predictive maintenance applications are 

required. 

In order to guarantee secure usage and lessen human-

related risks in maintenance workflows, future 

systems should also concentrate on enhancing user 

awareness and training. 
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