Vol 46 No. 05

Journal of Harbin Engineering University Mav 2005
ay

ISSN: 1006-7043

Quickli: A Serverless Cli And Web-Based Integrated Reminder
System Using Nodejs & Supabase
1Dr. Tapsi Nagpal , 2Ankit, 3Yug Upadhyay, *Vibha Sharma
Associate Professor
Department of Computer Science & Engineering
Lingaya’s Viydapeeth Faridabad,India
2Student Department of Computer Science
& Engineering Lingaya’s Viydapeeth Faridabad,India

3Student Department of computer science & engineering
Lingaya’s Viydapeeth Faridabad,India

4Student Department of Computer Science & Engineering

Lingaya’s Viydapeeth Faridabad,India

Abstract— In today's hybrid work environments, productivity tools must offer both accessibility and flexibility
across different platforms and user preferences. This paper introduces "Quickli," an innovative cross-platform
productivity management system featuring seamless integration between a Command Line Interface (CLI) and
a web application. Quickli enables users to efficiently manage tasks, reminders, and notes with real-time
synchronization between both interfaces. The CLI component, distributed as a global NPM package, provides
rapid task management directly from the terminal, while the web interface (available at quickli.snapstay.in)
offers comprehensive visual organization of productivity data. Built with React]S for the frontend and Supabase
[10] as the backend-asa-service solution, the system offers secure authentication, rowlevel security (RLS), and
comprehensive data management capabilities. Our experimental evaluation demonstrates high performance
with synchronization times under 250ms, strong data consistency across platforms, and positive user
engagement scores averaging 4.5/5 in beta testing. Unique to this implementation is the perfect parity between
CLI and web functionalities—users can seamlessly transition between interfaces while maintaining a consistent
view and management of their productivity data. This paper presents the system architecture, implementation
methodology, security considerations, and performance evaluation of Quickli as a viable open-source
alternative in the productivity tool landscape.

Keywords— Cross-platform applications, productivity tools, command line interface, web application, real-time
synchronization, task management, Supabase, ReactJS, row-level security, open-source software, NPM package.

I INTRODUCTION comprehensive visual organization of productivity

data, and a command-line interface distributed as an

The evolution of digital workspaces has created
distinct preferences among users regarding
interaction paradigms. While traditional knowledge
workers often gravitate toward graphical interfaces
with visual organization capabilities, technical
professionals frequently prefer command-line
environments for their efficiency and integration with
development workflows. This dichotomy has led to a
fragmented productivity tool landscape, where
solutions typically excel in one paradigm while
providing limited functionality in the other.

Quickli addresses this fundamental challenge by
creating a unified productivity ecosystem that
provides equal capabilities across both interface
paradigms with seamless data synchronization. The
system consists of two primary components: a web
application built with React)S [11] that offers

NPM package that enables rapid terminal-based
productivity management. These components share
a common backend infrastructure built on Supabase,
which provides authentication, database, storage,
and real-time synchronization capabilities.

The architectural design ensures perfect feature
parity between interfaces—any action performed in
one interface is immediately reflected in the other.
This approach enables users to leverage each
interface's strengths contextually: rapid command-
line interactions during development sessions and
comprehensive visual organization during planning or
review phases. The seamless transition eliminates
the context-switching penalties traditionally
associated with using multiple productivity tools.

251

Journal of Harbin Engineering University
ISSN: 1006-7043

This paper explores the implementation details,
architectural decisions, security considerations, and
performance optimizations that enable Quickli's
dual-interface approach. We present evaluation
results from both technical metrics and user
experience perspectives, demonstrating that the
system achieves its design goals of providing an
efficient, secure, and flexible productivity
management solution that adapts to diverse user
preferences without compromising functionality or
data consistency.

A comprehensive architecture for cross-platform
productivity management with real-time data
synchronization

Implementation of a secure, user-isolated data model
using Supabase's Row-Level Security

Development and distribution of a CLI tool as a global
NPM package for terminal-based productivity

Web application implementation with
comprehensive dashboard for visual task
management

Feature parity between CLI and web interfaces with
bidirectional real-time updates

Performance evaluation and user experience
assessment across both interface modalities

An open-source reference implementation
demonstrating the viability of dual-interface
productivity systems

Il RELATED WORK

The productivity tool landscape has evolved
significantly in recent years, with various approaches
attempting to bridge the gap between different
interface paradigms. Understanding the strengths
and limitations of existing solutions provides context
for Quickli's design decisions and contributions.

A. Web-Based Productivity System

Web applications have dominated the mainstream
productivity space due to their accessibility and visual
interface capabilities. Systems like Trello [1],
Asanal2], and Todoist [3] have established
comprehensive ecosystems for task management,
project organization, and collaboration. These
platforms excel in providing intuitive visual
representations of work through kanban boards,
calendars, and interactive dashboards.

However, these web-centric approaches typically
offer limited integration with command-line
workflows, creating friction for technical users who
operate primarily in terminal environments. While
some provide APIs that enable custom CLI
integrations, these are generally afterthoughts rather
than first-class interfaces, resulting in feature
disparities and synchronization delays.

Vol 46 No. 05
May 2025

B. CLI-Based Productivity Tools

In contrast, command-line productivity tools like
TaskWarrior [4] , Todo.txt [5] , and various Git-
workflow [6] utilities offer text-based interfaces
optimized for keyboard-driven interaction. These
tools provide rapid task entry, efficient filtering, and
seamless integration with development
environments, making them popular among
technical professionals.

The primary limitation of these CLI-focused tools is
their accessibility barrier for non-technical users who
prefer visual organization and intuitive interaction
models. Additionally, many lack comprehensive
visualization capabilities for complex project
structures or temporal relationships between tasks,
limiting their effectiveness for planning and overview
purposes.

C. Cross-Plateform Approaches

Few solutions have successfully implemented true
cross-platform approaches with equal capabilities
across interfaces. GitHub [7] and GitLab [8] provide
both web and CLI interfaces for version control
workflows, but their productivity management
features remain secondary to their core development
functions. Microsoft's PowerToys [9] offers
productivity enhancements for Windows but lacks
cross-platform support and comprehensive web
integration.

Notion has attempted to bridge this gap through its
official APl and community-developed CLI tools, but
these implementations suffer from feature disparities
and synchronization challenges due to their
distributed development approach. This highlights
the difficulty in maintaining consistent functionality
across drastically different interface paradigms.

Quickli builds upon these foundations while
addressing their limitations through a unified
architecture that ensures feature parity, real-time
synchronization, and secure data management across
both CLI and web interfaces, creating a truly
integrated productivity ecosystem.

lll. METHODOLOGY

The development of Quickli followed a structured
methodology focused on creating a system with
perfect parity between interfaces while maintaining
security, performance, and usability. This section
details the architectural approach, development
process, database design, and security model
implementation.

A. System Overview

Quickli employs a modern architecture centered
around Supabase [10] as the backend-as-a-service
platform (Fig. 1). This architecture enables real-time
data synchronization between the CLI and web

252

Journal of Harbin Engineering University
ISSN: 1006-7043

interface while maintaining consistent security
policies and data structures.

CLI User ‘ Web User Supabase
L

Perforrm action
(e.g. add task)

API call wirth
changes

Process changes
and update database
e ———

Receive real-time

Update local
state

Update local
state

Reflect
changes

CLI User l Web User Supabase

Fig. 1. High-level architecture of the Quickli system
showing data flow between CLI, web interface, and
Supabase backend.

The system consists of three primary components:

Web Interface: A React)S application hosted at
quickli.snapstay.in providing visual organization and
management of productivity data

CLI Tool: A Node.js [12] command-line application
distributed globally via NPM (npm install -g quickli)

Backend Services: Supabase providing
authentication, database, storage, and real-time
capabilities

The web interface component is developed using
ReactJS [11] with TailwindCSS for styling, providing a
responsive and visually comprehensive productivity
management environment. The interface
implements a component-based architecture with
reusable elements for task, reminder, and note
management. State management is handled through
React's Context APl combined with reducers, creating
predictable data flow throughout the application.

The CLI component is built with Node.js [12] and
structured as a global NPM package (installed via
npm install -g quickli). It implements the
Commander.js pattern for command parsing and
organization, allowing for intuitive command
structures that mirror the functionality available in
the web interface. The CLI [14] follows UNIX
philosophy principles with focused commands and
composable operations for efficient terminal-based
productivity.

The backend services are provided by Supabase,
which offers a comprehensive suite of tools including
PostgreSQL [15] database, authentication services,
storage capabilities, and real-time data
synchronization through PostgreSQl's logical
replication features. This infrastructure enables the
bidirectional real-time updates that form the core of
Quickli's synchronization capabilities.

Vol 46 No. 05
May 2025

The architecture ensures that all operations
performed through either interface interact with the
same database, maintaining perfect data consistency.
When a user performs an action in one interface (e.g.,
completing a task via CLl), the change is immediately
propagated to the backend and then reflected in real-
time on any open web interface sessions. This
bidirectional synchronization is achieved using
Supabase's real-time capabilities, which leverage
PostgreSQL's logical replication feature.

B. Development Methodology

Quickli was developed using an Agile methodology
with iterative sprints focusing on key components.
The development process began with extensive user
research to understand the different workflow
patterns and interface preferences among potential
users. This research informed the feature
prioritization and interface design decisions
throughout the development cycle.

The database schema and Supabase configuration
were established first, creating the foundation for all
subsequent development. This included designing
the data structures, relationships, and access
patterns that would support efficient querying and
real-time updates. Security policies were defined at
this stage to ensure data isolation between users
from the beginning.

The core web interface was developed next,
implementing the visual components and interaction
patterns for task, reminder, and note management.
The interface was designed with a mobile-first
approach, ensuring responsiveness across device
sizes while maintaining full functionality.
Authentication flows, dashboard layouts, and data
visualization components were prioritized to
establish the core user experience.

In parallel, the CLI tool development focused on
creating an intuitive command structure that would
provide equivalent functionality to the web interface
while adhering to command-line interaction patterns.
Special attention was paid to command naming,
parameter handling, and output formatting to create
a natural terminal experience that would feel familiar
to CLI power users.

The real-time synchronization layer was implemented
once both interfaces reached functional stability. This
involved configuring Supabase's real-time channels,
implementing event handlers in both interfaces, and
ensuring consistent data transformation between
backend and frontend representations. Extensive
testing was conducted to verify synchronization
behavior under various network conditions and
concurrency scenarios.

Performance optimization and user feedback
integration formed the final development phase. This
included identifying and resolving performance

253

Journal of Harbin Engineering University
ISSN: 1006-7043

bottlenecks, implementing caching strategies, and
refining the user experience based on feedback from
beta testers across technical and non-technical
backgrounds.

C. Database Schema Design

The database schema (Fig. 2) was designed to
support comprehensive productivity management

while enabling efficient queries and real-time
updates.

Tasks Reminders ’ | Notes

tid tid tid

user_id user_id user_id

title description content

description reminder_time category

status repeat tags

priority A A

due_date

User

Fig. 2. Database schema diagram showing
relationships between core entities and their
attributes.

The schema includes four primary tables:

Users: Stores user authentication information and
preferences

Tasks: Manages task data including title, status,
priority, and due dates

Reminders: Stores time-based notifications with
recurrence patterns

Notes: Contains textual information with

categorization and tagging

Additional indices were created to optimize common
query patterns, particularly for filtering and sorting
operations. The database design incorporates soft
deletion for all data types, maintaining record history
while allowing users to recover accidentally deleted
items.

D. Security Model and Data Isolation

Quickli implements a comprehensive authentication
system using Supabase Auth, which provides secure
user management capabilities. The system supports
email/password authentication (traditional
credentials-based login), third-party OAuth (support
for Google, GitHub, and other OAuth providers),
magic link authentication (passwordless email-based
authentication), and multi-factor authentication
(additional security layer for sensitive accounts).

The authentication flow is consistent across both
interfaces: the user provides credentials via web form
or CLI command; credentials are securely transmitted
to Supabase Auth; upon successful validation, a JWT

Vol 46 No. 05
May 2025

token is issued; the token is securely stored (browser
storage for web, system keychain for CLI); and
subsequent requests include the token for
authorization

A critical feature of Quickli is its strong data isolation
between users. This is achieved through PostgreSQL's
Row-Level Security (RLS) policies configured in
Supabase. The RLS policies enforce security
constraints ensuring users can only read their own
data, users can only write/modify their own data,
system administrators have configurable access to
audit logs, and deleted data is soft-deleted with
retention policies.

This implementation ensures that even if API
endpoints are compromised, the database layer
provides strong isolation between user data. The
policies are automatically enforced for all database
operations, regardless of whether they originate
from the web interface or the CLI.

The CLI tool implements secure token management
to maintain authentication state between sessions.
Authentication tokens are stored in the system
keychain using the keytar library, which leverages
platform-specific secure storage mechanisms:
Windows Credential Manager (Windows), Keychain
(mac0S), and libsecret (Linux). The CLI automatically
refreshes tokens when they expire and detects and
handles revoked tokens appropriately when a token
is revoked (e.g., after logout from web interface),
when a password is changed, or when explicit logout
is performed.

The system supports multiple authenticated devices
per user with each device maintaining its own secure
token storage, login state managed independently
across devices, and session revocation targeted to
specific devices when needed. This comprehensive
token management ensures a seamless
authentication experience for CLI users while
maintaining strong security practices.

Iv. IMPLEMENTATION

The implementation of Quickli focused on creating a
seamless user experience across both web and CLI
interfaces while maintaining consistency, security,
and performance. This section details the specific
implementation approaches for each interface and
the synchronization mechanism that connects them.

A. Web Application Interface

The Quickli web application (Fig. 4) provides a
comprehensive visual interface for productivity
management. Developed using React)S with
TailwindCSS for styling, the web interface follows a
responsive design philosophy that adapts to different
screen sizes and devices.

254

Journal of Harbin Engineering University
ISSN: 1006-7043

Welcome Back Create your account
Join Quick CLI Notes and start organizing your ideas
Signin to access your notes and reminders

Email Address *
Email Address *
& Username *
Password *
Password *
[=]

) remene e Forgt passa?

Don't have an account? Sign up

Confirm Password *

2+ Create Account

Fig. 4. Quickli web interface showing (a) login/signup
screen, (b) dashboard with recent activities

1) Authentication Flow

The web application implements a secure user
authentication flow:

Landing page with login/signup options
Email/password authentication

Social login options (Google, GitHub)
Password reset functionality

Session persistence using secure cookies

After successful authentication, users are redirected
to the dashboard, which serves as the central hub for
all productivity activities.

2) Dashboard Interface

The dashboard provides a comprehensive overview
of the user's productivity data:

Recent tasks with status indicators

Upcoming reminders with timing information
Latest notes with category tags

Quick-action buttons for common operations

Activity summary with completion metrics

3) Task Management Interface

The task management section enables
comprehensive CRUD operations:

Task creation with title, description, priority, and due
date

List view with filtering and sorting options
Kanban board view for visual task organization
Batch operations for efficient task management
Detailed task view with progress tracking

4) Reminder System

The reminder interface provides time-based
notification management:

Reminder creation with flexible recurrence patterns

Vol 46 No. 05
May 2025

Calendar view for temporal organization
Notification preferences and delivery methods
Integration with external calendar systems
Time zone awareness for global users

5) Notes Interface
The notes section offers robust information
management:
Rich text editor with formatting options
Category and tag management
Search functionality with relevance sorting
Export options in various formats

Attachment support for comprehensive
documentation

6) Import/Export Functionality

The web interface includes comprehensive data
portability features:

Export of all data types (tasks, reminders, notes)
Multiple format options (JSON, CSV, PDF)

Import functionality with validation and conflict
resolution

Backup scheduling for data protection

B. CLI Tool Implementaion

The Command Line Interface component of Quickli
provides efficient terminal-based productivity
management following UNIX design principles.
Implemented as a global NPM package using Node.js
and the Commander.js library, the CLI offers
equivalent functionality to the web interface through
a text-based interaction model optimized for
keyboard efficiency.

The CLI structure follows a command-subcommand
pattern with consistent naming conventions:

quickli tasks - Task management commands

quickli reminders - Reminder management
commands

quickli notes - Note management commands
quickli auth - Authentication commands

The implementation uses structured command
parsing with type validation and intelligent defaults
to minimize required typing while maintaining
precision. Date parsing uses the Chrono.js library to
support natural language date inputs like
"tomorrow," "next Monday 2pm," or "in 3 days,"
which are converted to precise timestamps for
storage.

Output formatting receives special attention with
table-based displays for list operations, color coding
for status and priority indicators, and configurable

255

Journal of Harbin Engineering University
ISSN: 1006-7043

verbosity levels. The implementation uses the Chalk
library for ANSI color support and the CLI-Table3
library for structured data presentation, with graceful
fallbacks for terminals without color capabilities.

Authentication in the CLI follows the same security
model as the web interface but adapted for terminal
interaction. The login command prompts for
credentials if not provided as arguments, with
password input masked for security. Authentication
tokens are securely stored in the system keychain
using platform-specific mechanisms, enabling
persistent authentication across terminal sessions
without compromising security.

The CLI implementation includes interactive modes
for complex operations, using the Inquirer.js library to
provide form-like interfaces when appropriate. For
example, the quickli tasks add --interactive command
presents a series of prompts for task details, while
maintaining the option for single-command
operation when desired.

Performance optimization in the CLI focuses on
startup time and command responsiveness. The
implementation uses lazy loading for dependencies
and connection pooling for database operations to
minimize latency. Command execution follows an
asynchronous pattern with appropriate error
handling and helpful error messages when
operations fail.

C. Real-Time Synronization

A key innovation in Quickli is the seamless real-time
synchronization between the CLI and web interface
(Fig. 6). This was implemented using Supabase's real-
time capabilities based on PostgreSQL's [15] logical
replication feature.

Supabase

Data Data
request esponns
Responses

:
CLI Web
Interface

Fig. 6. Sequence diagram showing real-time data
synchronization between CLI, web interface, and
Supabase backend.

The synchronization process follows these steps:

User performs an action in either interface (CLI or
web)

The respective interface sends the change to
Supabase via API

Vol 46 No. 05
May 2025

Supabase processes the change and applies it to the
PostgreSQL database

Logical replication triggers a real-time event

Both interfaces receive the event and update their
local state

The user sees the change reflected across all active
interfaces

This bidirectional synchronization ensures that users
can seamlessly switch between interfaces based on
their current context and workflow needs. For
example, a user might quickly add tasks via the CLI
while coding, then organize them into projects using
the web interface's drag-and-drop capabilities later in
the day.

VI. RESULT & DISCUSSION

Extensive testing and evaluation were conducted to
assess Quickli's performance, scalability, and user
experience. This section presents the results of these
evaluations and their implications for real-world
usage scenarios.

A. Performance Metrics

Performance testing was conducted across various
operation types and network conditions to ensure
responsive behavior in both interfaces. Each
operation was tested 100 times under controlled
network conditions (5Mbps bandwidth, 50ms
latency) to obtain reliable averages.

TABLE I: Performance Metrics for Key Operations

Operation Web Interface |CLI (ms) |Sync Delay
Type (ms) (ms)

Task Creation (187 213 247

Task Update 156 203 233

Task Listing 142 119 N/A

Reminder 201 238 251

Creation

Note Creation (233 265 278
Authentication |378 402 N/A

The results demonstrate that both interfaces provide
responsive performance, with the CLI showing slight
advantages in listing operations due to its simpler
rendering requirements. Web interface operations
typically completed within 150-250ms, while CLI
operations ranged from 120-270ms depending on
the complexity. Synchronization delays remained
consistently under 300ms, which is imperceptible to
users in typical productivity workflows.

256

Journal of Harbin Engineering University
ISSN: 1006-7043

B. Scalability Testing

To evaluate system scalability, we conducted load
testing with simulated user accounts and data
volumes (Fig. 8). The testing used a progressive
approach, starting with 10 concurrent users and
scaling up to 2,000 users, with each user performing
a standardized sequence of operations.

400

w
o
=3

w
=]
S

Average Response Time {ms)
- e
1 g
g =

@
k=

100 200 400 600 800 1000 1200 1400
Concurrent Users
Fig. 8. System performance under increasing load
showing response time versus concurrent users.

The system maintained linear scaling up to 1,000
concurrent users with proper database indexing and
connection pooling. Response times increased by
approximately 15% when scaling from 100 to 1,000
users, which remains within acceptable performance
parameters. Beyond 1,000 users, response time
degradation became more pronounced, indicating
the need for horizontal scaling or additional
optimization for very large deployments.

Database query performance remained consistent
throughout scaling tests, with properly indexed
queries showing minimal degradation even at higher
user counts. The implementation of row-level
security policies added approximately 5-8% overhead
to query times, which was deemed an acceptable
tradeoff for the security benefits provided.

These results indicate that Quickli's architecture can
support small to medium-sized organizations without
significant performance concerns, while larger
deployments would benefit from horizontal scaling
strategies.

C. User Feedback and Usability

We conducted a beta testing program with 15
participants of varying technical backgrounds.
Participants used Quickli for a four-week period and
provided feedback through structured surveys and
interviews. Key findings include:

Overall satisfaction rating: 4.5/5
Web interface usability rating: 4.7/5

CLI usability rating: 4.2/5 (4.8/5 among technical
users)

Vol 46 No. 05
May 2025

93% of participants reported that the dual-interface
approach improved their productivity

87% indicated they would continue using the system
after the study

VIl. CONCLUSION

This paper presented Quickli, a novel cross-platform
productivity system that bridges the gap between
commandline and web interfaces. By providing
seamless real-time synchronization, comprehensive
security, and intuitive interfaces across both
paradigms, Quickli demonstrates the viability of dual-
interface productivity tools for modern workflows.

The performance evaluation and user feedback
confirm that the system achieves its design goals of
providing efficient, secure, and flexible productivity
management across interface preferences. The open-
source implementation provides a foundation for
future research and development in cross-platform
productivity systems.

The integration of Supabase as a backend-as-a-
service platform with comprehensive security
features demonstrates how modern serverless
architectures can support sophisticated applications
with complex synchronization requirements. The
row-level security implementation provides strong
data isolation without compromising performance,
addressing a critical concern in multi-user
productivity systems. This security model, combined
with comprehensive token management across
platforms, establishes a foundation for trust that is
essential in productivity tools handling potentially
sensitive information

As work environments continue to evolve toward
hybrid models, tools that accommodate diverse user
preferences and workflows will become increasingly
important. Quickli represents a step toward more
inclusive productivity systems that respect user
autonomy while maintaining consistency and
security.

VIil. FUTURE SCOPE

While Quickli provides significant advancements in
cross-platform productivity management, there
remain several promising areas for future
development. One key direction is the
implementation of an offline-first architecture using
Conflict-Free Replicated Data Types (CRDTs) to ensure
seamless data synchronization even without network
connectivity. This would enable users to maintain
productivity in disconnected environments, with
changes synchronizing automatically when
connectivity is restored.

Additionally, the development of native mobile
applications for Android and iOS would enhance
accessibility and user engagement, allowing users to

257

Journal of Harbin Engineering University
ISSN: 1006-7043

interact with the system on the go. Mobile interfaces
could leverage platform-specific capabilities while
maintaining data consistency with existing web and
CLl interfaces.

The integration of machine learning models could
further elevate productivity by enabling intelligent
task prioritization and automated scheduling based
on user behavior. By analyzing patterns in task
completion, deadline adherence, and work habits,
the system could offer personalized
recommendations to optimize workflow efficiency.

Quickli could also evolve into a collaborative platform
by introducing team workspaces, with support for
role-based access and granular permission controls.
This would extend the productivity benefits to team
environments while maintaining the flexibility of
interface choice for individual team members.

Lastly, building a modular extensibility framework
would allow third-party developers to contribute
plugins and integrations, significantly expanding the
system's capabilities and adaptability to diverse
workflows. Through an open APl and extension
marketplace, Quickli could grow into a
comprehensive productivity ecosystem that adapts
to specialized needs across various professional
domains.

ACKNOWLEDGMENT

The authors would like to thank the beta testing
participants for their valuable feedback and the
open-source community for their contributions to
the technologies that made this work possible.

REFERENCE

1. Atlassian, "Trello," [Online].
https://trello.com, Accessed: 2024.

2. Asana, "Asana: Work management platform for
teams," [Online]. Available: https://asana.com,
Accessed: 2024.

3. Doist, "Todoist: The to-do list to organize work &
life," [Online]. Available: https://todoist.com,
Accessed: 2024.

4. TaskWarrior, "Taskwarrior: Free and open source
software that manages your TODO list," [Online].

Available:

Available: https://taskwarrior.org, Accessed:
2024.
5. G. Baddeley, "Todo.txt: Future-proof task

tracking in a file you control," [Online]. Available:
http://todotxt.org, Accessed: 2024.

6. S.Yang, "Notion-CLI: Command line interface for
Notion," GitHub repository, 2022.

7. GitLab, "GitLab: DevOps platform," [Online].
Available: https://gitlab.com, Accessed: 2024.

8. GitHub, "GitHub: Where the world builds
software," [Online]. Available:
https://github.com, Accessed: 2024.

10.

11.
12.

13.

14.

15.

Vol 46 No. 05
May 2025

Microsoft, "PowerToys: Windows system

utilities," [Online]. Available:

https://github.com/microsoft/PowerToys,

Accessed: 2024.

Supabase, "Supabase Documentation,"
[Online]. Available:

https://supabase.com/docs, Accessed: 2024.

Reactl)S, "React - A JavaScript library for building

user interfaces," [Online]. Available:
https://reactjs.org, Accessed: 2024.
Node.js Foundation, "Node.js," [Online].

Available: https://nodejs.org, Accessed: 2024.

J. Nielsen, "Usability Engineering," Morgan
Kaufmann Publishers Inc., San Francisco, CA,
1993.

Cockburn, "Using Both an Integrated
Development Environment and Command Line
Interface for Development," International
Conference on Software Engineering, pp. 52-61,
2020.

PostgreSQL Global Development Group,
"PostgreSQL: The world's most advanced open
source database," [Online]. Available:
https://postgresql.org, Accessed: 2024.

258

https://reactjs.org/
https://nodejs.org/
https://postgresql.org/

