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Abstract: The transportation problem is the optimization challenge where the goal is to minimize the expense 

of transporting products from multiple sources to diverse destinations while satisfying all supply and demand 

needs. In real-world problems, transportation costs are often uncertain due to factors such as fluctuating fuel 

prices, traffic conditions, and weather. This paper proposes a novel approach to solving the transportation 

problem (TP) under Type-2 Fuzzy Uncertainty, provides a more robust framework for handling complex and 

layered uncertainty. We introduce a systematic algorithm that involves defuzzification of Type-2 Fuzzy Numbers 

(T2FN), followed by the application of Vogel's Approximation Method (VAM) and the Modified Distribution 

Method (MODI) to find the optimal solution. Demonstrate the efficacy of the suggested approach, a numerical 

example has given. The results demonstrate that the Type-2 Fuzzy approach offers greater flexibility and 

accuracy in modeling real-world transportation problems compared to traditional fuzzy methods. This research 

contributes to the field of fuzzy optimization by providing a new tool for decision-makers to handle complex 

uncertainty in transportation and logistics.  

Keywords: Optimization Type-2 fuzzy set; Spherical fuzzy numbers; Supply chain; uncertainty. 

1. Introduction 

In the real-life of decision-making and optimization, 

uncertainty is an inherent challenge that 

complicates the process of finding optimal 

solutions. Traditional crisp models often fall short in 

capturing the vagueness and imprecision present in 

real-world problems, particularly in transportation 

logistics. To address this, fuzzy set theory, 

introduced by Zadeh (1965), has emerged as a 

powerful tool for modeling uncertainty. Over the 

years, fuzzy sets have evolved into more 

sophisticated frameworks, for instance, 

Pythagorean fuzzy sets (Yager, 2013), intuitionistic 

fuzzy sets (Atanassov, 1986), and spherical fuzzy 

sets (Kahraman & Gündoğdu, 2020), each offering 

unique advantages in handling different types of 

uncertainty. 

The transportation problem, a classic optimization 

challenge, involves satisfying supply and demand 

restrictions while reducing the cost of shipping 

items from various sources to various destinations. 

In real-world scenarios, transportation costs are 

often uncertain due to factors such as fluctuating 

fuel prices, unpredictable traffic conditions, and 

varying demand patterns. Traditional methods for 

solving transportation problems rely on crisp data, 

which may not adequately represent the inherent 

uncertainty. To overcome this limitation, 

researchers have turned to fuzzy optimization 

techniques, which allow for the incorporation of 

imprecise and uncertain data into the decision-

making process. A model of green supply chain 

(GSC) through effective supplier selection for 

electric vehicles enhance using a multi-criteria 

decision-making (MCDM) fuzzy approach (Singh 

and Beniwal, 2024). Olvera-Romero (2023) 

optimized Interval Type-2 Fuzzy Logic for process 

control using a genetic algorithm, improving model 

accuracy and stability in complex manufacturing 

processes compared to traditional methods. 

Hosseinpour (2024) identifies and prioritizes 

manufacturing risks in the food industry's health 

supply chain using fuzzy Delphi, BWM, and 

DEMATEL, highlighting biological risks as the most 

critical. Bind et al. (2024) introduced a novel model 

integrating normal type-2 uncertain variables to 

optimize cost, vehicle maintenance, and carbon 
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emissions in four-dimensional transportation 

problems. The proposed approach improves 

realism by incorporating vehicle and road-specific 

constants, enhancing decision-making through 

critical value-based reduction methods and 

generalized credibility programming. Further 

contributions in the field include Ghosh et al. 

(2023), who addressed perishable goods' 

transportation challenges using a type-2 zigzag 

uncertain model with time window constraints and 

preservation technology. Similarly, Choudhary and 

Yadav (2022) formulated an interval-valued 

intuitionistic fuzzy transportation model, offering 

an alternative method for handling uncertainty in 

transportation costs. Other notable studies, such as 

Kumar (2020, 2024) and Singh and Yadav (2016), 

provide additional frameworks for solving type-2 

fuzzy transportation problems through different 

optimization techniques, including intuitionistic 

fuzzy zero-point and modified distribution 

methods. Yadav, J. C (2022) optimized the fuzzy 

travelling salesman problem using various 

algorithms, finding Branch and Bound most suitable 

after comparative analysis and numerical validation 

with triangular fuzzy numbers and linear ranking 

functions. 

Spherical fuzzy sets (SFS), a recent generalization of 

fuzzy sets, have gained attention for their ability to 

model uncertainty using three parameters: 

membership, non-membership, and hesitation 

degrees (Kahraman & Gündoğdu, 2020). This 

framework provides a more thorough depiction of 

ambiguity in comparison to earlier fuzzy sets, 

making it particularly suitable for complex decision-

making problems. However, in situations where 

uncertainty is layered or hierarchical, Type-2 fuzzy 

sets (T2FS) offer a more robust alternative. 

Introduced by Mendel (2007), T2FS extends the 

concept of fuzzy sets by incorporating a secondary 

membership function, which captures additional 

layers of uncertainty. This makes T2FS particularly 

effective in modeling complex and nuanced 

uncertainty, as demonstrated in various 

applications (Mendel, 2017). 

Thomas, A. et. al (2023) proposes a novel algorithm 

for transportation problems using spherical fuzzy 

sets, an advanced generalization of traditional fuzzy 

sets, to better represent uncertainty. By expressing 

transportation costs as spherical fuzzy numbers, 

the algorithm provides both initial feasible and 

optimal solutions, demonstrated through a 

numerical example. 

Despite the advancements in fuzzy optimization, 

there is a lack of research comparing the 

effectiveness of spherical fuzzy sets and Type-2 

fuzzy sets in solving transportation problems. While 

spherical fuzzy sets provide a simpler and more 

intuitive framework for handling uncertainty, Type-

2 fuzzy sets offer greater flexibility and robustness 

in modeling complex uncertainty. This research 

aims to bridge this gap by exploring the application 

of both frameworks to the transportation problem 

and comparing their results. 

The main goal of this study is to suggest a new 

method for resolving the transportation problem 

under a Type-2 fuzzy environment. We develop a 

mathematical model and an algorithm that 

leverages the flexibility of Type-2 fuzzy sets to 

handle layered uncertainty in transportation costs. 

Additionally, we compare the results obtained 

using Type-2 fuzzy sets with those from spherical 

fuzzy sets to highlight the advantages and 

limitations of each approach. Through a numerical 

example, we show that suggested approach is 

effective to finding optimal solutions under 

uncertain conditions. 

This research contributes to growing the body of 

literature on fuzzy optimization by providing a 

comprehensive framework for solving 

transportation problems under complex 

uncertainty. By comparing the results of Type-2 

fuzzy sets and spherical fuzzy sets, we offer insights 

into the suitability of each framework for different 

types of uncertainty. The results of this 

investigation have applications for decision-makers 

in coordination and supply chain management, 

enabling them to make more informed and robust 

decisions in the face of uncertainty. 

2. Mathematical model of type-2 fuzzy 

transportation problem 

To solve the transportation problem using Type-2 

Fuzzy Sets (T2FS), we need to follow a systematic 

approach. The problem involves 3 sources 

(𝑃1, 𝑃2, 𝑃3) and 4 destinations (𝑀1, 𝑀2, 𝑀3, 𝑀4), with 

given supplies and demands. The transportation 
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costs are represented as Type-2 Fuzzy Numbers. 

Spherical fuzzy numbers consist of three 

components: membership (𝜇), non-membership 

(𝜈), and hesitation (𝜋). To convert these into Type-

2 Fuzzy Numbers, we need to define the primary 

membership function and the secondary 

membership function for each cost. 

 

Figure 1. Flow chart of transportation problems 

using Type-2 Fuzzy Numbers 

 

Step 1: Understanding Spherical Fuzzy Numbers 

A spherical fuzzy number is represented as 

equation (1): 

𝐶
∼

𝑖𝑗 = (𝜇𝑖𝑗 , 𝜈𝑖𝑗 , 𝜋𝑖𝑗)                               …(1) 

where: 

• 𝜇𝑖𝑗: Membership degree 

• 𝜈𝑖𝑗 : Non-membership degree 

• 𝜋𝑖𝑗 : Hesitation degree 

These values satisfy the conditions: 

𝜇𝑖𝑗
2 + 𝜈𝑖𝑗

2 + 𝜋𝑖𝑗
2 ≤ 1                                      …(2) 

Step 2: Defining Type-2 Fuzzy Numbers 

A Type-2 Fuzzy Number is characterized by a 

primary membership function and a secondary 

membership function. For simplicity, we can define 

the primary membership function as a triangular or 

trapezoidal fuzzy number, and the secondary 

membership function can be derived from the 

hesitation degree (𝜋𝑖𝑗). 

Primary Membership Function: 

The primary membership function can be defined 

as equation (3) a triangular fuzzy number: 

𝜇
𝐶
∼

𝑖𝑗
(𝑥) =

{
 

 
𝑥−𝑎𝑖𝑗

𝑏𝑖𝑗−𝑎𝑖𝑗
if 𝑎𝑖𝑗 ≤ 𝑥 ≤ 𝑏𝑖𝑗

𝑐𝑖𝑗−𝑥

𝑐𝑖𝑗−𝑏𝑖𝑗
if 𝑏𝑖𝑗 ≤ 𝑥 ≤ 𝑐𝑖𝑗

0 otherwise

                   …(3) 

where: 

• 𝑎𝑖𝑗 = 𝜇𝑖𝑗 − 𝜋𝑖𝑗  

• 𝑏𝑖𝑗 = 𝜇𝑖𝑗  

• 𝑐𝑖𝑗 = 𝜇𝑖𝑗 + 𝜋𝑖𝑗  

Secondary Membership Function: 

The secondary membership function can be defined 

as a constant value derived from the hesitation 

degree equation (4): 

𝜈
𝐶
∼

𝑖𝑗
(𝑥) = 𝜋𝑖𝑗                                                   …(4) 

Step 2.1: Conversion Process 

To convert the spherical fuzzy transportation matrix 

into a Type-2 Fuzzy transportation matrix, follow 

these steps: 

• For each spherical fuzzy cost 𝐶
∼

𝑖𝑗 =

(𝜇𝑖𝑗 , 𝜈𝑖𝑗 , 𝜋𝑖𝑗), define the primary membership 

function as a triangular fuzzy number using the 

parameters as equation (5): 
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𝑎𝑖𝑗 = 𝜇𝑖𝑗 − 𝜋𝑖𝑗 , 𝑏𝑖𝑗 = 𝜇𝑖𝑗 , 𝑐𝑖𝑗 = 𝜇𝑖𝑗 + 𝜋𝑖𝑗      

...(5) 

• Define the secondary membership 

function as a constant value equal to the hesitation 

degree 𝜋𝑖𝑗 . 

Step 2.2: Conversion to Type-2 Fuzzy Numbers: 

For each 𝐶
∼

𝑖𝑗 = (𝜇𝑖𝑗 , 𝜈𝑖𝑗 , 𝜋𝑖𝑗), we define the Type-2 

Fuzzy Number as follows: 

• Primary Membership Function: 

𝑎𝑖𝑗 = 𝜇𝑖𝑗 − 𝜋𝑖𝑗 , 𝑏𝑖𝑗 = 𝜇𝑖𝑗 , 𝑐𝑖𝑗 = 𝜇𝑖𝑗 + 𝜋𝑖𝑗     

…(6) 

• Secondary Membership Function: 

              𝜈
𝐶
∼

𝑖𝑗
(𝑥) = 𝜋𝑖𝑗                                             …(7) 

Type-2 Fuzzy Transportation Costs (𝑪
∼

𝒊𝒋) 

The transportation costs are given as Type-2 Fuzzy 

Numbers. For simplicity, we assume the following 

Spherical Fuzzy Transportation Cost Matrix Model 

[Table 1],and model of Converted Type-2 Fuzzy 

Transportation Matrix in [Table 2]: 

Table 1. Spherical Fuzzy Transportation Cost 

Matrix Model 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

𝑷𝟏 𝐶
∼

11 𝐶
∼

12 𝐶
∼

13 𝐶
∼

14 

𝑷𝟐 𝐶
∼

21 𝐶
∼

22 𝐶
∼

23 𝐶
∼

24 

𝑷𝟑 𝐶
∼

31 𝐶
∼

32 𝐶
∼

33 𝐶
∼

34 

 

Table 2. Converted Type-2 Fuzzy Transportation Matrix model 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

𝑷𝟏 𝐶
∼

11

= (𝑎11, 𝑏11, 𝑐11; 𝜋11) 

𝐶
∼

12

= (𝑎12, 𝑏12, 𝑐12; 𝜋12) 

𝐶
∼

13

= (𝑎13, 𝑏13, 𝑐13; 𝜋13) 

𝐶
∼

14

= (𝑎14, 𝑏14, 𝑐14; 𝜋14) 

𝑷𝟐 𝐶
∼

21

= (𝑎21, 𝑏21, 𝑐21; 𝜋21) 

𝐶
∼

22

= (𝑎22, 𝑏22, 𝑐22; 𝜋22) 

𝐶
∼

23

= (𝑎23, 𝑏23, 𝑐23; 𝜋23) 

𝐶
∼

24

= (𝑎24, 𝑏24, 𝑐24; 𝜋24) 

𝑷𝟑 𝐶
∼

31

= (𝑎31, 𝑏31, 𝑐31; 𝜋31) 

𝐶
∼

32

= (𝑎32, 𝑏32, 𝑐32; 𝜋32) 

𝐶
∼

33

= (𝑎33, 𝑏33, 𝑐33; 𝜋33) 

𝐶
∼

34

= (𝑎34, 𝑏34, 𝑐34; 𝜋34) 

Defuzzify the Type-2 Fuzzy Numbers 

Since Type-2 Fuzzy Numbers are complex, we first 

defuzzify them into crisp values using the centroid 

method. The centroid of a Type-2 Fuzzy Number 𝐶
∼

𝑖𝑗  

is calculated as equation (8): 

𝐶𝑖𝑗 =
∫ 𝑥𝑥 ⋅𝜇

𝐶
∼

𝑖𝑗

(𝑥) 𝑑𝑥

∫ 𝜇
𝐶
∼

𝑖𝑗
𝑥

(𝑥) 𝑑𝑥
                                          … (8) 

Step 3: Find Initial Basic Feasible Solution (IBFS) 

We determine the first basic feasible solution using 

Vogel's Approximation Method (VAM) 

Step 3.1: Compute Penalties 

a) Row Penalties: variation between the two 

lowest costs in each row 

b) Column Penalties: variation between the 

two lowest costs in each column 

Step 3.2: Allocate Units 

a) As much of the row or column 

having largest penalty should go to cell with the 

lowest cost. 

b) Adjust the supply and demand and repeat 

until all supplies and demands are satisfied. 

Step 4: Optimality Test Using MODI Method 

Step 4.1: Calculate Dual Variables (𝒖𝒊 and 𝒗𝒋) 

a) For occupied cells, 𝑢𝑖 + 𝑣𝑗 = 𝐶𝑖𝑗. 

b) Assume 𝑢1 = 0, then solve for other 

variables. 

Step 4.2: Calculate Opportunity Costs 

a) For unoccupied cells, compute 𝑂𝑖𝑗 = 𝐶𝑖𝑗 −

(𝑢𝑖 + 𝑣𝑗). 

b) If all 𝑂𝑖𝑗 ≥ 0, the solution is optimal. 



  
   
 

291 

Vol 46 No. 05 

May 2025 

 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

c) If any 𝑂𝑖𝑗 < 0, the solution can be 

improved. 

Step 4.3: Improve the Solution 

Identify the cell with the most negative opportunity 

cost and reallocate units to improve the solution. 

Step 5: Final Optimal Solution 

After iterating through the MODI method, the 

optimal solution. 

Numerical problem: 

A company operates three supply centres 𝑃1, 𝑃2, 

and 𝑃3, which have supplies of 17, 20, and 43 units 

respectively. These supplies need to be transported 

to four market destinations: 𝑀1, 𝑀2, 𝑀3, and 𝑀4, 

which require 26, 23, 24, and 7 units respectively. 

Formulate a transportation model to minimize the 

total transportation cost. 

Sources and Supplies: 

𝑃1: Supply = 17 

𝑃2: Supply = 20 

𝑃3: Supply = 43 

Destinations and Demands: 

𝑀1: Demand = 26 

𝑀2: Demand = 23 

𝑀3: Demand = 24 

𝑀4: Demand = 7 

Step-1 

Let’s convert the given spherical fuzzy 

transportation matrix into a Type-2 Fuzzy 

transportation matrix. The original spherical fuzzy 

transportation matrix is [Table 3]: 

Table 3. spherical fuzzy transportation cost matrix 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

𝑷𝟏 (0.1, 0.8, 

0.2) 

(0.6, 

0.3, 0.3) 

(0.4, 0.2, 

0.5) 

(0.1, 

0.7, 0.2) 

𝑷𝟐 (0.01, 

0.7, 0.3) 

(0.2, 

0.8, 0.5) 

(0.9, 

0.01, 

0.03) 

(0.8, 

0.6, 

0.05) 

𝑷𝟑 (0.8, 0.5, 

0.01) 

(0.7, 

0.01, 

(0.5, 

0.05, 

(0.3, 

0.5, 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

0.2) 0.3) 0.01) 

 Calculation for 𝑪
∼

𝟏𝟏: 

𝐶
∼

11 = (0.1,0.8,0.2) 

𝑎11 = 0.1 − 0.2 = −0.1 

𝑏11 = 0.1 

𝑐11 = 0.1 + 0.2 = 0.3 

𝜈
𝐶
∼

11
(𝑥) = 0.2 

Thus, the Type-2 Fuzzy Number for 𝐶
∼

11 is: 

𝐶
∼

11 = (−0.1,0.1,0.3; 0.2) 

Step-2  Now put the Converted cost Type-2 Fuzzy 

Transportation shown in [Table 4] 

Table 4. Final Type-2 Fuzzy Transportation cost 

Matrix: 

 

Step 2.1: For simplicity, we assume the following 

defuzzified crisp costs [Table 5]. 

Table 5. Defuzzified crisp costs 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

𝑷𝟏 0.1 0.6 0.4 0.1 

𝑷𝟐 0.01 0.2 0.9 0.8 

𝑷𝟑 0.8 0.7 0.5 0.3 

 

Step 2.2: Check for Balance 

Total Supply = 17 + 20 + 43 = 80 

Total Demand = 26 + 23 + 24 + 7 = 80 

The problem is balanced since Total Supply = Total 

Demand. 

 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 

𝑷𝟏 (
−0.1,0.1,
0.3; 0.2

) (
0.3,0.6,
0.9; 0.3

) (
−0.1,0.4,
0.9; 0.5

) (
−0.1,0.1,
0.3; 0.2

) 

𝑷𝟐 (
−0.29,0.01,
0.31; 0.3

) (
−0.3,0.2,
0.7; 0.5

) (
0.87,0.9,
0.93; 0.03

) (
0.75,0.8,
0.85; 0.05

) 

𝑷𝟑 (
0.79,0.8,
0.81; 0.01

) (
0.5,0.7,
0.9; 0.2

) (
0.2,0.5,
0.8; 0.3

) (
0.29,0.3,
0.31; 0.01

) 
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Step 3: Find Initial Basic Feasible Solution (IBFS) 

[Table 6] 

Table 6. Initial Basic feasible allocation matrix 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 Supply 

𝑷𝟏 0.1 

[17] 

0.6 0.4 0.1 17 

𝑷𝟐 0.01 0.2 0.9 

[20] 

0.8 20 

𝑷𝟑 0.8 

[9] 

0.7 

[23] 

0.5 

[24] 

0.3 

[7] 

43 

Demand 26 23 24 7 80 

 

Step 4: Optimality Test Using MODI Method 

Checking For the optimality in the problem use 

MODI method and then move to next step. 

Step 5: Final Optimal Solution 

After iterating through the MODI method, the 

optimal solution is [Table 7]: 

Table 7. Optimal solution 

 𝑴𝟏 𝑴𝟐 𝑴𝟑 𝑴𝟒 Supply 

𝑷𝟏 0.1 

[17] 

0.6 0.4 0.1 17 

𝑷𝟐 0.01 0.2 0.9 

[20] 

0.8 20 

𝑷𝟑 0.8 

[9] 

0.7 

[23] 

0.5 

[24] 

0.3 

[7] 

43 

Demand 26 23 24 7 80 

 

Total Transportation Cost: 

Total Cost = (17 × 0.1) + (20 × 0.9) + (9 × 0.8)

+ (23 × 0.7) + (24 × 0.5)

+ (7 × 0.3) = 38.8 

Result Analysis:  

In this study, we applied the proposed Type-2 Fuzzy 

approach to a transportation problem and obtained 

an optimal total transportation cost of 38.8. The 

methodology involved the defuzzification of Type-2 

Fuzzy Numbers (T2FN), followed by the 

implementation of Modified Distribution Method 

(MODI) and Vogel's Approximation Method (VAM). 

The results validate the effectiveness of the 

proposed approach in handling uncertainty within 

transportation cost optimization. 

3. Conclusion 

This paper presents an approach to solving the 

transportation problem under Type-2 Fuzzy 

Uncertainty, where transportation costs are 

modelled using Type-2 Fuzzy Numbers (T2FN) to 

better handle complex and layered uncertainty. A 

novel algorithm is introduced that integrates 

defuzzification of T2FNs with classical optimization 

methods like Modified Distribution Method (MODI) 

and Vogel's Approximation Method (VAM), 

ensuring both optimality and effective uncertainty 

management. The method enhances flexibility and 

accuracy in decision-making compared to 

traditional fuzzy approaches. A practical example 

illustrates its effectiveness in minimizing costs while 

satisfying supply and demand constraints. 

Comparative analysis with existing methods 

demonstrates its robustness. The paper also 

outlines future research directions, including 

extending the approach to other optimization 

problems and developing hybrid models, 

contributing to the advancement of fuzzy 

optimization in transportation and logistics. 
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