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Abstract: As a result of an expanding number of connected devices and a greater demand for bandwidth, 

efficient radio spectrum management is more vital than ever. Spectrum sharing, especially in cognitive networks, 

offers a flexible technique that allows numerous users to use the same frequency bands at the same time, 

resulting in improved network performance.  This paper looks at how real-time traffic pattern detection utilizing 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks can enhance spectrum sharing in 

wireless communication systems. In this research, we look at the problems of integrating machine learning 

models for spectrum management, with a specific emphasis on improving LSTM and GRU networks for resource-

constrained contexts. By examining traffic patterns, it is demonstrated that these models can minimize packet 

loss and enhance resource allocation. The findings show that, while both LSTM and GRU successfully reduce 

error rates, the GRU model outperforms the former because of its quicker learning speed and lower error values, 

making it particularly helpful in dynamic network environments. These findings underscore the rising importance 

of machine learning in spectrum management, paving the way for more flexible and efficient communication 

systems, particularly in high-density locations where dependable connection is critical. 

Keywords: Spectrum sharing; Cognitive networks; Real-time traffic pattern recognition; Long Short-Term 

Memory (LSTM); Gated Recurrent Unit (GRU); Machine learning; Resource optimization; Internet of Things (IoT); 

5G wireless communication; Network performance 

1. Introduction 

Given the exponential development of connected 

devices and wireless services, effective radio 

spectrum management has become a critical issue. 

With the increase in bandwidth demand, spectrum 

sharing, particularly inside cognitive networks, 

appears to be an interesting option for optimizing 

radio resource utilization[1]. This dynamic technique 

lets numerous users utilize the same frequency bands 

at the same time, hence increasing network efficiency. 

However, present spectrum management approaches 

are frequently rigid and inactive, restricting their 

capacity to react to changing user requirements and 

quick technical advancements. It is therefore critical to 

investigate improved strategies that can better handle 

these difficulties[2]. 

Spectrum sharing in neural networks is based on 

improved real-time traffic pattern detection tools. 

This not only improves the utilization of resources but 

also allows allocation choices to be matched to 

evolving user demands[3]. However, integrating 

machine learning models, such as long short-term 

memory (LSTM) networks or gated recurrent units 

(GRU), poses difficulties in terms of model size and 

computational complexity [4]. Although more 

research has apparently established that these 

models may considerably increase system 

performance and precision, their implementation on 

resource-constrained devices remains challenging. 

Optimizing these models is thus critical to ensuring 

their usefulness in real-time scenarios[5]. 

The spectrum offering becomes essential in the 

context of the Internet of Things (IoT) and fifth 

generation (5G) wireless communication systems to 

provide stable and efficient connection [6]. However, 

difficulties such as packet loss, packet delay, and 
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interference demand creative solutions that use 

machine learning capabilities to evaluate and 

anticipate traffic patterns in real time [7]. Adapted 

techniques, such as the usage of machine learning 

models, can help maximize current assets and 

improve user experience in dynamic contexts. 

Integrating modern methodologies into bandwidth 

operations is thus important to solving those 

challenges. 

Previous research has shown that understanding 

traffic patterns is critical to optimizing spectrum 

management [8]. According to studies, new machine 

learning approaches not only recognize traffic trends, 

but they also dynamically change spectrum allocation 

in response to these trends. However, no approach 

currently fits all these requirements. This emphasizes 

the necessity of looking into creative methods that 

mix accuracy and velocity to efficiently minimize 

packet loss rate, an essential indicator for 

transmission productivity [9]. 

The present paper discusses the use of LSTM and GRU 

models to improve spectrum sharing via real-time 

traffic pattern recognition. Previous research has 

shown that machine learning can accurately predict 

traffic trends and dynamically change spectrum 

allocations depending on this information [10]. 

Despite advancements, an optimized spectrum 

management system remains ultimate, highlighting 

the need for innovative technologies that balance 

accuracy and speed to minimize packet loss rates. This 

paper examines existing approaches, offers the results, 

and discusses the future implications for improved 

spectrum management in wireless networks. The 

integration of deep learning with traffic pattern 

analysis aims to enhance resource allocation and 

ensure reliable connectivity in dynamic environments, 

thereby contributing to the development of efficient 

spectrum management systems that address the 

increasing demands of modern wireless 

communications, especially in high-density user 

networks [6]. 

2. Related work 

Research on spectrum sharing in cognitive networks 

has been active and produced several important 

findings. The authors of [11] examined methods for 

boosting cognitive radio networks' capacity, focusing 

on how resource usage might be maximized through 

spectrum sharing. Together, the examined works point 

out important implementation hurdles for this 

technology, such as regulatory concerns and 

interference management, and they also suggest 

creative ways to get beyond these barriers [12]. 

In [13], an enhanced Gated Recurrent Unit (GRU) 

model forecasts traffic at mobile communication base 

stations. With the growing data volume, accurate 

traffic prediction is vital for effective network 

management. The GRU model outperforms 

Convolutional Neural Network (CNN) and traditional 

models like Autoregressive (AR) and Autoregressive 

Integrated Moving Average (ARIMA) in capturing data 

patterns. Experimental results indicate that the GRU 

reduces the MAE (Mean Absolute Error) by 27.04% 

compared to AR, 37.89% compared to ARIMA, and 

9.12% compared to CNN. This study demonstrates the 

advantages of the GRU model for traffic prediction, 

improving user experience and optimizing network 

resources. 

Other important studies in [14] and [15] have 

proposed advanced approaches for optimizing 

spectrum sharing. The work in [14] demonstrates that 

employing spectrum sharing techniques significantly 

enhances IoT connectivity in 5G networks, increasing 

capacity and reducing latency. Additionally, the 

research in [15] provides an in-depth analysis of 

spectrum occupancy using machine learning 

algorithms, revealing that their novel spectrum 

sharing scheme utilizing dynamic long short-term 

memory effectively optimizes resource allocation and 

minimizes interference. 

Recent studies have significantly advanced our 

understanding of spectrum sharing through 

innovative methodologies. In [16], the authors 

introduced a spectrum sharing method leveraging 
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dynamic long-term memory models, which 

demonstrated enhanced network performance. 

Additionally, the work in [17] proposed a 

comprehensive framework that integrates intelligent 

techniques to optimize spectrum allocation. 

Furthermore, the survey in [18] examined various 

machine learning strategies aimed at enhancing the 

efficiency of spectrum sharing, shedding light on the 

potential of AI-driven approaches in this domain. 

The authors in [19] presented an optimizing 

communication networks for traffic prediction, which 

is a crucial aspect of spectrum sharing in intelligent 

transport systems. Additionally, the study in [20] 

explored improvements in long short-term memory 

(LSTM) models to enhance their effectiveness in traffic 

forecasting. Another significant contribution 

examined various machine learning strategies aimed 

at boosting the efficiency of spectrum sharing within 

the context of 5G [16], highlighting their potential for 

advancing network performance. 

This research work in [21] investigated various 

approaches to improve the prediction of signal-to-

interference-plus-noise ratio (SINR), a critical factor in 

effective spectrum management.  

Two studies in [22] and [23] highlighted the 

importance of cutting-edge technologies in optimizing 

spectrum utilization in modern networks. Respectively, 

one study presented a deep learning-based network 

for spectrum sharing, while the other integrated 

geospatial data for improved specifications in 3D 

spectrum utilization. Together, these studies 

demonstrate the potential of advanced technologies 

to enhance spectrum management. 

This research in [14] presented a comprehensive 

overview of various spectrum management 

techniques and technological advancements 

pertinent to 5G networks. Furthermore, studies such 

[24] and [25] are part of a broader research initiative 

focused on identifying best practices for optimizing 

spectrum usage in developing technologies. These 

efforts are crucial for enhancing the efficiency and 

performance of future wireless communication 

systems. 

The authors in [26] offered novel spectrum utilization 

techniques based on yield charts for hybrid sensors. 

This effort shows continuous technological 

developments in spectrum sharing. In line with earlier 

research on sharing technologies, this study adds to a 

larger framework targeted at increasing spectrum use, 

emphasizing the relevance of such advances in 

optimizing resource management and boosting 

overall system performance. 

3. Methodology and materials 

The methodology which was used in this research 

work is illustrated in figure 1. The numerous steps in 

the research process are shown in detail in this image, 

which also carefully highlights important elements 

and how they relate to one another.  Every step is 

intended to build on the one before it, guaranteeing a 

logical progression that improves the research's 

overall coherence.   

 

Figure 1.: Description of the methodology for the 

proposed research work 

 

3.1. Dataset collection  

The dataset that was used in this work was obtained 

from [27], comprises 31,583 rows (excluding the 

header) and 15 columns, including key features such 

as LTE/5G Category, Packet Delay, and Packet Loss Rate, 

which are essential for analysing network 

performance. This data was utilized to enhance 

spectrum sharing by recognizing traffic patterns in real 

Start 

Analyze the benchmark training results and select the 

top-performing algorithm for the custom dataset 

 

Utilizing the top-performing algorithm to predict 

packet loss in real-world scenarios 

 

End 

Data Collection: Acquiring data from Kaggle with a 

focus on Network Slicing in 5G 
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time, allowing for more efficient management of 

network resources and improved quality of service for 

users. 

Table 1: Display of the First 10 Rows of the Dataset 

  

An overview of the main variables and their starting 

values is provided by table 1, which shows the 

dataset's first ten rows. As the study progresses, 

researchers can spot trends and insights thanks to this 

overview, which is crucial for comprehending the 

data's structure and acts as a basis for more analysis. 

Table 2: The dataset content 

 

Advanced spectrum sharing optimization techniques 

are required for the development of LTE/5G networks, 

particularly given the variety and constantly shifting 

traffic demands. As seen in Table 2, these techniques 

must adapt to different usage scenarios to effectively 

manage and allocate resources. 

• Category: LTE/5G Deploying GRU models requires 

an understanding of the unique context of LTE or 5G 

services. These models enable optimal spectrum 

allocation by analyzing and forecasting traffic patterns 

specific to each category. 

• Time and Packet Delay: Improving network 

performance requires the ability to process and 

anticipate time-sensitive data. By proactively 

managing network resources to minimize delays and 

enhance overall service quality, GRUs can efficiently 

identify patterns in latency and packet delay. 

• Packet Loss Rate: By predicting congestion and 

redistributing spectrum resources appropriately, real-

time traffic pattern recognition via GRUs can reduce 

packet loss and increase data transmission 

reliability. 

• Industry 4.0 and the Internet of Things: As 

networks accommodate more IoT devices, LSTM can 

examine their traffic patterns, guaranteeing effective 

spectrum use in settings with a high density of 

connected devices. For Industry 4.0 applications that 

need seamless connectivity, this analysis is essential. 

• Augmented Reality (AR)/Virtual Reality 

(VR)/Gaming and Healthcare: Applications that need 

guaranteed performance, like telemedicine or gaming, 

can have their bandwidth prioritized by real-time 

traffic monitoring. In latency-sensitive applications, 

LSTMs can improve user experience by adaptively 

managing spectrum resources through continuous 

learning from historical traffic data. 

• Guaranteed Bit Rate (GBR) and Non-GBR: Network 

operators can use GRU networks to distinguish 

between different service types and dynamically 

modify the spectrum to accommodate both GBR and 

non- GBR services, guaranteeing the best possible 

quality of service based on traffic patterns in real time. 

• Smart City & Transportation: More efficient 

spectrum sharing plans may result from applications 
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in smart cities and transportation that identify traffic 

patterns. By anticipating traffic spikes and allocating 

resources to maintain vital communication, GRU 

models can improve urban connectivity. 

• Public Safety: By using GRUs for real-time traffic 

recognition, public safety communications can be 

prioritized more successfully. This guarantees that in 

times of crisis, emergency services will always have 

the bandwidth they require. 

• Slice Type: GRU's capacity to recognize unique 

traffic patterns is a key advantage of network slicing 

since it makes it possible to create customized slices 

that correspond to service needs and usage trends, 

thus optimizing spectrum efficiency. 

Use of IoT Devices and Smartphones: GRUs can spot 

trends in how IoT devices and smartphones are used, 

offering insights that help manage available 

spectrum resources more effectively. With the 

increasing number of connected devices, this is 

particularly crucial. 

3.2. Data Preprocessing  

The data was acquired through downloading, cleaning, 

and preparation, focusing on key variables like Packet 

Loss Rate, which impacts service quality. The research 

project used machine learning tools and cloud 

computing to train models, taking use of Google 

Colab's [23]capabilities. Initially, Python was used, 

with TensorFlow and Keras [28] helping to create 

neural networks for detecting real-time traffic 

patterns. 

Throughout model training, a thorough preprocessing 

phase was carried out. This includes cleaning the data 

to eliminate outliers and missing values, normalizing 

continuous variables to guarantee consistent scaling, 

and creating relevant variables to improve model 

performance. Relevant methods, such as basic 

component analysis, were used to minimize 

dimensionality while increasing computing efficiency 

and model correctness. 

The first examination in figure 2 indicates intriguing 

tendencies, such as spikes in Packet Loss Rate across 

specific categories, which indicate possible areas for 

network improvement. The new approach focuses on 

combining these preprocessing stages with advanced 

neural network architectures to provide reliable 

model performance in dynamic traffic scenarios. 

 

Figure 2: Correlation matrix of Packet Loss Rate with 

other variables 

This correlation graph highlights the relationships 

between packet loss rate and other variables in this 

dataset, such as packet delay, service type (such as 

healthcare and smart transportation), and LTE 

category. These significant interactions highlight how 

these factors influence the packet loss rate considered 

as the target, thus highlighting their importance in 

evaluating network performance. 

3.3. Considered Algorithms 

A three-layer architecture that aims to improve 

spectrum sharing through real-time traffic pattern 

recognition is proposed in this paper. The first layer 

involves generating data through various wireless 

communication devices, integrating technologies such 

as the Internet of Things (IoT) to capture dynamic 

traffic patterns. The second layer focuses on data 

integration, where the collected data is centralized for 

further analysis. The third layer is dedicated to data 

processing, which uses machine learning techniques 

to evaluate traffic patterns and improve spectrum 

distribution. Given that the dataset contains constant 
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variables, regression techniques appropriate for 

supervised machine learning are chosen. Based on 

past studies, we have a varied set of algorithms. Finally, 

we firmly choose Long Short-Term Memory (LSTM) 

networks and Gated Recurrent Units (GRU), as these 

approaches successfully handle the gradient 

difficulties inherent in standard Recurrent Neural 

Networks (RNN) [29]. The evaluated studies 

demonstrate that these networks can process data 

with minimal latency, often in milliseconds, allowing 

for quick analysis and optimization. 

3.3.1. LSTM (Long Short-Term Memory) 

Each cell in the Long Short-Term Memory (LSTM) [18] 

algorithm contains three gates: an input gate, a forget 

gate, and an output gate (figure. 3). 

Gates manage data flow within LSTM cells, enabling 

retention, forgetting, and generation of new 

information [18]. 

 

 

 

 

         

Figure 3: An LSTM Cell 

• The forget gate (σ) controls data removal from the 

cell state. Using the current input and previous hidden 

state, it generates an activation vector (0-1) for each 

cell state component. Values near 0 indicate forgetting, 

while values near 1 indicate retention. 

• The input gate (σ) controls how much new data is 

added to the LSTM cell state. Using the current input 

and previous hidden state, it generates an activation 

vector (0-1) for each cell state component. Values near 

0 indicate forgetting, while values near 1 indicate 

retention of significant data. 

• The output gate (tanh) controls the amount of 

information output from the LSTM. Based on the 

current input and previous hidden state, it generates 

an activation vector (0-1) for each cell state 

component. This vector is then multiplied by the cell's 

activation function output to obtain the final output. 

Table 3: LSTM model parameters 

 

This algorithmic setup in table 3 looks appropriate for 

a regression issue as it avoids overfitting with dropout 

layers while still providing efficient learning with the 

Adam optimizer [30] and an appropriate learning rate. 

The architecture is intended to handle sequential data, 

making it suitable for time series analysis and other 

comparable applications. 

3.3.2. GRU (Gated Recurrent Unit) 

To identify temporal relationships in data sequences, 

GRU neural networks are built. Their internal structure 

is more straightforward, with just two gates to 

regulate the information flow within the cells, but it is 

comparable to that of LSTMs [19]. 
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Figure 4: Diagram of a one unit Gated Recurrent 

Unit (GRU) 

  The Gated Recurrent Unit (GRU) is a simplified 

variant of LSTM that employs gating mechanisms to 

control information flow. Each GRU cell features two 

main gates: the update gate and the reset gate, as 

shown in its architecture (figure 4) in [20]. These gates 

allow the GRU to manage memory effectively, 

enabling it to retain, reset, or generate new 

information. 

• The Update Gate (z[t]) controls how much of the 

previous hidden state is carried to the current state. It 

uses the current input and the previous hidden state 

to generate an activation vector ranging from 0 to 1 

for each component. Values near zero indicate that 

previous information should be discarded, while 

values close to one suggest retention. This gate 

effectively manages the GRU's memory. 

• The Reset Gate (r[t]) determines how much past 

information to forget when updating the hidden state. 

It uses the current input and the previous hidden state 

to create an activation vector. Values near zero 

suggest forgetting past information, while values close 

to one indicate retention. This selective memory reset 

is beneficial when new information significantly differs 

from previous data. 

• The Hidden State (tanh) of the GRU is obtained 

from the update and reset gates. When the reset gate 

is applied to the previous hidden state, it determines 

how much of that state to forget. The updated hidden 

state combines the retained information, and any new 

information derived from the current input. 

 

 

 

 

 

Table 4: GRU model parameters 

 

 

 

 

 

 

This setup is intended for a regression task that utilizes 

GRU networks, prioritizing regularization through 

dropout layers and efficient learning through Adam 

optimization. The architecture is designed to handle 

sequential data, making it ideal for tasks like time 

series analysis and similar applications. The use of 

loss-based MAE indicates the need to reduce absolute 

errors in predictions, which is frequently beneficial in 

many real-world scenarios. 

4. Results and discussion 

The analysis of the Mean Squared Error (MSE) as a 

function of the number of epochs executed by the 

LSTM and GRU algorithms reveals a consistent 

downward trend in the loss curves throughout both 

the training and testing phases as illustrated in figure 

5. This gradual reduction in error indicates that both 

models effectively minimize loss over successive 

epochs, ultimately stabilizing at a low value by the 

conclusion of the training iterations. The graph 

indicates the loss of training (blue curve) and 

validation (orange curve) of the LSTM model, which 

both show a substantial decline and stabilize 

around 0,0025 after around 12 epochs. 

This quick convergence indicates effective learning 

and strong generalization abilities. The proximity of 

the two curves suggests that the LSTM model 
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adapts adequately to training data without 

requiring additional learning. In general, these low 

loss values reflect the model's robustness on 

unknown data, highlighting its effectiveness. 

The illustration in figure 6 shows the model's training 

loss and validation loss of the GRU model, both of 

which exhibit a dramatic reduction until stabilizing 

around 0.000193 after about 8 epochs. This quick 

convergence suggests effective learning and good 

generalization ability. The tight alignment of the two 

curves indicates that the model responds well to the 

training data without overfitting. Overall, the minimal 

loss numbers demonstrate the model's durability on 

previously encountered data, indicating its efficacy. 

 

Figure 5: Obtained loss functions of LSTM algorithm 

 

Figure 6: Obtained loss functions of GRU algorithm 

Regardless of the training or testing phase (Figures 5 

and 6), the loss curves for both models show a 

consistent downward trend, rapidly decreasing until 

stabilization at a minimum by the end of the epoch. 

For the LSTM model, the loss curve stabilizes around 

0.0025 after approximately 12 epochs, indicating 

effective learning and strong generalization abilities. 

The reduced noise in the test phase further supports 

the model's ability to adapt to new data. 

In contrast, the GRU algorithm converges significantly 

more quickly, stabilizing around 0.000193 after about 

8 epochs, despite starting with a higher initial error. 

This rapid convergence highlights the GRU's effective 

learning and strong adaptation capabilities. While the 

GRU stabilizes with a slightly higher error than LSTM, 

both models demonstrate robust performance. 

Modeling with our dataset's two techniques is 

effective if there are no overfitting or underfitting 

issues found by loss curve analysis. 
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4.1. Results in terms of loss functions 

Loss functions give information about learning 

capacity (underfitting/overfitting) and convergence 

speed (processing time). To monitor the model's 

progress and identify potential issues with overfitting 

or underfitting, loss curves were generated after each 

algorithm deployment, using the mean square error 

(MSE) as a function of the number of epochs 

performed by the LSTM and GRU algorithms. 

To thoroughly assess our machine learning model, 

various evaluation metrics can be employed to gauge 

its effectiveness. The selection of these metrics is 

contingent upon the specific nature of the problem at 

hand. Evaluation metrics offer a quantitative measure 

of a model's performance. It is advisable to utilize 

multiple metrics for a more comprehensive 

understanding of performance and to align the 

metrics with the problem type. 

The Gated Recurrent Unit (GRU) model significantly 

outperforms previous studies, achieving over a 37% 

reduction in prediction error with a Mean Absolute 

Error (MAE) of 0.0000584556 and a Mean Squared 

Error (MSE) of 0.0000000545. In comparison, the 

LSTM stabilizes at a MAE of 0.0000539443 and an MSE 

of 0.0000000539 in [16]. The GRU converges faster, 

stabilizing at 0.000193 after 8 epochs, while the LSTM 

reaches 0.0025 after 12 epochs, demonstrating the 

GRU's superior effectiveness in spectrum 

management in high-density environments. 

 

 

 

Table 5: Performance metrics obtained 

 LSTM GRU 

 Training Testing Training Testing 

R2 0.997148

6521 

0.997129112

3 

0.99711385

32 

0.997313

2827 

MAE 0.000053

949 

0.000053944

3 

0.00005845

56 

0.000054

5467 

MSE 0.000000

053 

0.000000053

9 

0.00000005

45 

0.000000

0507 

RMSE 0.000232

1157 

0.000232106

5 

0.00023336

06 

0.000225

1964 

Given that we are dealing with a regression problem, 

the following metrics are most appropriate for 

evaluating model performance: 

• Coefficient of Determination (R-squared): This 

metric (equation 1) indicates the proportion of 

variance in the target variable explained by the model, 

helping to determine how well the model fits the data 

[31].  

• Mean Absolute Error (MAE): This metric 

(equation 2)  represents the average of the absolute 

differences between the actual and predicted values 

[31]. 

• Mean Squared Error (MSE): This metric 

(equation 3) calculates the average of the squared 

differences between the actual values and the 

predicted values.  

• Root Mean Squared Error (RMSE): This metric 

(equation 4) is used to evaluate the accuracy of a 

prediction model. It calculates the square root of the 
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average of the squared differences between predicted 

values and actual values [31]. 

The mathematical representations of these metrics 

are defined as follows [20]: 

 

 

 

 

The usage of two methods in the data set’s case study 

was practical since they both consider identifying 

long-term reliance in sequential data. 

Upon examining the outcomes shown in Table 5, the 

GRU network performs better than the LSTM network 

in terms of R2, MAE, MSE, and RMSE for both the 

training and testing stages. In particular, the GRU 

model exhibits decreased error values and increased 

predicted accuracy, which is consistent with the 

findings from the algorithms' implementation. 

As proof of all this, it is important to point out that 

during the testing phase, the GRU model stabilizes at 

around the 8th epoch with less noise in the loss curve, 

demonstrating efficient learning and strong 

generalization to recent data.  This is important 

because lower error rates indicate that the GRU is 

more robust in different situations, making it a better 

option for tasks requiring flexibility. 

Compared to the GRU, the LSTM model stabilizes at a 

greater error rate even while it exhibits promising 

learning efficiency, with error convergence by the 

20th epoch. This disparity is reflected in the 

performance metrics in Table 5, which support the 

finding that although each model has advantages, 

applications requiring reliable performance on new 

datasets are better suited for the GRU design. 

In the final analysis, Table 5's performance 

measurements support the conclusions mentioned, 

showing that the GRU model is more effective in 

generalizing solutions to unexpected data in addition 

to having superior performance metrics. This supports 

the idea that the GRU is the better option for 

improving spectrum sharing by identifying traffic 

patterns in real time. 

5. Conclusion 

This study underscores the critical role of real-time 

traffic pattern recognition in enhancing spectrum 

sharing through the application of Gated Recurrent 

Unit (GRU) networks. The findings demonstrate that 

GRU networks not only significantly reduce error rates 

but also offer faster convergence, making them 

particularly advantageous for adapting to the dynamic 

nature of wireless communication environments. As 

the demand for efficient and reliable communication 

continues to escalate, integrating machine learning 

techniques like GRU into spectrum management 

becomes imperative for optimizing resource 

allocation and alleviating network congestion. 

By leveraging advanced deep learning methodologies, 

this research paves the way for more adaptive and 

intelligent spectrum management systems. The 

capability to accurately predict traffic patterns in real 

(1) 

(2) 

(3) 

(4) 
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time empowers make informed, data-driven 

decisions, dynamically adjusting spectrum allocation 

to meet evolving demands. This is especially crucial in 

the context of modern wireless networks, where the 

surge of connected devices and high-bandwidth 

applications intensifies the pressure on available 

spectrum resources. 

Furthermore, this study lays a foundation for future 

research aimed at refining machine learning models 

for spectrum management, considering additional 

factors such as interference mitigation, energy 

efficiency, and multi-agent decision-making. 

Addressing these challenges will enhance cognitive 

radio networks, ensuring more efficient spectrum 

utilization and improved connectivity, even in 

spectrum-constrained environments. Ultimately, the 

integration of GRU networks into spectrum 

management strategies represents a significant 

advancement toward developing robust, adaptive, 

and intelligent communication systems capable of 

meeting the ever-growing demands of wireless 

technologies. 
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