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Abstract: As a result of an expanding number of connected devices and a greater demand for bandwidth,
efficient radio spectrum management is more vital than ever. Spectrum sharing, especially in cognitive networks,
offers a flexible technique that allows numerous users to use the same frequency bands at the same time,
resulting in improved network performance. This paper looks at how real-time traffic pattern detection utilizing
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks can enhance spectrum sharing in
wireless communication systems. In this research, we look at the problems of integrating machine learning
models for spectrum management, with a specific emphasis on improving LSTM and GRU networks for resource-
constrained contexts. By examining traffic patterns, it is demonstrated that these models can minimize packet
loss and enhance resource allocation. The findings show that, while both LSTM and GRU successfully reduce
error rates, the GRU model outperforms the former because of its quicker learning speed and lower error values,
making it particularly helpful in dynamic network environments. These findings underscore the rising importance
of machine learning in spectrum management, paving the way for more flexible and efficient communication
systems, particularly in high-density locations where dependable connection is critical.
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1. Introduction also allows allocation choices to be matched to

. . evolving user demands[3]. However, integratin
Given the exponential development of connected & (31 & &

. . . . . machine learning models, such as long short-term
devices and wireless services, effective radio

. . memory (LSTM) networks or gated recurrent units
spectrum management has become a critical issue.

With the increase in bandwidth demand, spectrum (GRU), poses difficulties in terms of model size and

. . o . computational complexit 4]. Although more
sharing, particularly inside cognitive networks, P P y 1l g

. . . L research has apparently established that these
appears to be an interesting option for optimizing PP ¥

. I . . . models ma considerabl increase  system
radio resource utilization[1]. This dynamic technique ¥ y ¥

. erformance and precision, their implementation on
lets numerous users utilize the same frequency bands P P ’ P

. . . - resource-constrained devices remains challenging.
at the same time, hence increasing network efficiency.

Optimizing these models is thus critical to ensuring
However, present spectrum management approaches

- . . . . their usefulness in real-time scenarios[5].
are frequently rigid and inactive, restricting their

capacity to react to changing user requirements and 1.4 spectrum offering becomes essential in the
quick technical advancements. It is therefore critical to
investigate improved strategies that can better handle ~ context of the Internet of Things (IoT) and fifth

these difficulties[2]. generation (5G) wireless communication systems to

Spectrum sharing in neural networks is based on provide stable and efficient connection [6]. However,
improved real-time traffic pattern detection tools.

This not only improves the utilization of resources but difficulties such as packet loss, packet delay, and
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interference demand creative solutions that use

machine learning capabilities to evaluate and

anticipate traffic patterns in real time [7]. Adapted
techniques, such as the usage of machine learning
models, can help maximize current assets and

improve user experience in dynamic contexts.

Integrating modern methodologies into bandwidth

operations is thus important to solving those

challenges.

Previous research has shown that understanding
traffic patterns is critical to optimizing spectrum
management [8]. According to studies, new machine
learning approaches not only recognize traffic trends,
but they also dynamically change spectrum allocation
in response to these trends. However, no approach
currently fits all these requirements. This emphasizes
the necessity of looking into creative methods that
mix accuracy and velocity to efficiently minimize
essential indicator for

packet loss rate, an

transmission productivity [9].

The present paper discusses the use of LSTM and GRU
models to improve spectrum sharing via real-time
traffic pattern recognition. Previous research has
shown that machine learning can accurately predict
traffic trends and dynamically change spectrum
[10].
spectrum

allocations depending on this information
Despite advancements, an optimized
management system remains ultimate, highlighting
the need for innovative technologies that balance
accuracy and speed to minimize packet loss rates. This
paper examines existing approaches, offers the results,
and discusses the future implications for improved
spectrum management in wireless networks. The
integration of deep learning with traffic pattern
analysis aims to enhance resource allocation and
ensure reliable connectivity in dynamic environments,
thereby contributing to the development of efficient
spectrum management systems that address the
modern wireless

increasing demands of

communications, especially in high-density user

networks [6].
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2. Related work

Research on spectrum sharing in cognitive networks
has been active and produced several important
findings. The authors of [11] examined methods for
boosting cognitive radio networks' capacity, focusing
on how resource usage might be maximized through
spectrum sharing. Together, the examined works point
implementation hurdles for this

out important

technology, such as regulatory concerns and

interference management, and they also suggest

creative ways to get beyond these barriers [12].

In [13], an enhanced Gated Recurrent Unit (GRU)
model forecasts traffic at mobile communication base
stations. With the growing data volume, accurate
is vital for effective network
GRU
Convolutional Neural Network (CNN) and traditional

traffic prediction
management. The model outperforms
models like Autoregressive (AR) and Autoregressive
Integrated Moving Average (ARIMA) in capturing data
patterns. Experimental results indicate that the GRU
reduces the MAE (Mean Absolute Error) by 27.04%
compared to AR, 37.89% compared to ARIMA, and
9.12% compared to CNN. This study demonstrates the
advantages of the GRU model for traffic prediction,
improving user experience and optimizing network
resources.

Other important studies in [14] and [15] have

proposed advanced approaches for optimizing
spectrum sharing. The work in [14] demonstrates that
employing spectrum sharing techniques significantly
enhances loT connectivity in 5G networks, increasing
capacity and reducing latency. Additionally, the
research in [15] provides an in-depth analysis of
spectrum  occupancy

using machine learning

algorithms, revealing that their novel spectrum
sharing scheme utilizing dynamic long short-term
memory effectively optimizes resource allocation and

minimizes interference.

Recent studies have significantly advanced our

understanding of spectrum sharing
[16],

introduced a spectrum sharing method leveraging

through

innovative methodologies. In the authors
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dynamic long-term  memory models, which
demonstrated enhanced network performance.
Additionally, the work in [17] proposed a
comprehensive framework that integrates intelligent
techniques to optimize spectrum allocation.
Furthermore, the survey in [18] examined various
machine learning strategies aimed at enhancing the
efficiency of spectrum sharing, shedding light on the

potential of Al-driven approaches in this domain.

The authors in [19]
communication networks for traffic prediction, which

presented an optimizing

is a crucial aspect of spectrum sharing in intelligent
transport systems. Additionally, the study in [20]
explored improvements in long short-term memory
(LSTM) models to enhance their effectiveness in traffic
Another
examined various machine learning strategies aimed

forecasting. significant  contribution
at boosting the efficiency of spectrum sharing within
the context of 5G [16], highlighting their potential for

advancing network performance.

This research work in [21] investigated various
approaches to improve the prediction of signal-to-
interference-plus-noise ratio (SINR), a critical factor in

effective spectrum management.

Two studies in [22] and [23] highlighted the
importance of cutting-edge technologies in optimizing
spectrum utilization in modern networks. Respectively,
one study presented a deep learning-based network
for spectrum sharing, while the other integrated
geospatial data for improved specifications in 3D
spectrum utilization. Together, these studies
demonstrate the potential of advanced technologies

to enhance spectrum management.

This research in [14] presented a comprehensive

overview of various spectrum management

techniques and  technological advancements
pertinent to 5G networks. Furthermore, studies such
[24] and [25] are part of a broader research initiative
focused on identifying best practices for optimizing
spectrum usage in developing technologies. These
efforts are crucial for enhancing the efficiency and
performance of future wireless communication

systems.

The authors in [26] offered novel spectrum utilization
techniques based on yield charts for hybrid sensors.
This  effort
developments in spectrum sharing. In line with earlier

shows continuous technological
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research on sharing technologies, this study adds to a
larger framework targeted at increasing spectrum use,
emphasizing the relevance of such advances in
optimizing resource management and boosting
overall system performance.

3. Methodology and materials

The methodology which was used in this research
work is illustrated in figure 1. The numerous steps in
the research process are shown in detail in this image,
which also carefully highlights important elements
and how they relate to one another. Every step is
intended to build on the one before it, guaranteeing a
logical progression that improves the research's

overall coherence.

4

Data Collection: Acquiring data from Kaggle with a

focus on Network Slicing in 5G
2

Data Preprocessing: Understanding the parameters of
the dataset and adapting them to the case study
v

Benchmark training of LSTM and GRU models using

the custom dataset
v

Analyze the benchmark training results and select the

top-performing algorithm for the custom dataset

Utilizing the top-performing algorithm to predict

packet loss in real-world scenarios

Figure 1.: Description of the methodology for the

proposed research work

3.1. Dataset collection

The dataset that was used in this work was obtained
from [27], comprises 31,583 rows (excluding the
header) and 15 columns, including key features such
as LTE/5G Category, Packet Delay, and Packet Loss Rate,
which are essential for analysing network
performance. This data was utilized to enhance

spectrum sharing by recognizing traffic patterns in real
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time, allowing for more efficient management of
network resources and improved quality of service for
users.

Table 1: Display of the First 10 Rows of the Dataset
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An overview of the main variables and their starting
values is provided by table 1, which shows the
dataset's first ten rows. As the study progresses,
researchers can spot trends and insights thanks to this
overview, which is crucial for comprehending the
data's structure and acts as a basis for more analysis.

Table 2: The dataset content

Variable Explanation
LTE/5G Category Category of LTE/SG services
| Time | Time, likely in milliseconds
Packet Loss Rate | Rate of packet loss, expressed as a percentage or in exponential notation
Packet Delay Delay in packet transmission, expressed in milliseconds
ToT Indicator for IoT devices

LTE'SG Indicator for LTE/SG services

GBR Indicator for Guaranteed Bit Rate services

Non-GBR Indicator for Non-Guaranteed Bit Rate services

AR/VR/Gaming Indicator for augmented reality, virtual reality, and gaming applications
Healthcare Indicator for healthcare applications

Industry 4.0 Indicator for advanced industrial applications

Number or indicator of IoT devices
Public Safety Indicator for public safety services
Smart City & Home Indicator for public safety services
Smart Transportation Indicator for smart transportation applications

Smartphone Indicator for smartphone usage
Slice Type | Type of slicing, indicating different network configurations

10T Devices

Advanced spectrum sharing optimization techniques
are required for the development of LTE/5G networks,
particularly given the variety and constantly shifting
traffic demands. As seen in Table 2, these techniques
must adapt to different usage scenarios to effectively

manage and allocate resources.

e Category: LTE/5G Deploying GRU models requires
an understanding of the unique context of LTE or 5G
services. These models enable optimal spectrum

allocation by analyzing and forecasting traffic patterns

specific to each category.

e Time and Packet Delay: Improving network
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performance requires the ability to process and

anticipate time-sensitive data. By proactively
managing network resources to minimize delays and
enhance overall service quality, GRUs can efficiently

identify patterns in latency and packet delay.

e Packet Loss Rate: By predicting congestion and
redistributing spectrum resources appropriately, real-
time traffic pattern recognition via GRUs can reduce
data transmission

packet loss and increase

reliability.

e Industry 4.0 and the Internet of Things: As
networks accommodate more loT devices, LSTM can
examine their traffic patterns, guaranteeing effective
spectrum use in settings with a high density of
connected devices. For Industry 4.0 applications that

need seamless connectivity, this analysis is essential.

e Augmented Reality (AR)/Virtual Reality
(VR)/Gaming and Healthcare: Applications that need
guaranteed performance, like telemedicine or gaming,
can have their bandwidth prioritized by real-time
traffic monitoring. In latency-sensitive applications,
LSTMs can improve user experience by adaptively
managing spectrum resources through continuous

learning from historical traffic data.

e Guaranteed Bit Rate (GBR) and Non-GBR: Network
operators can use GRU networks to distinguish
between different service types and dynamically
modify the spectrum to accommodate both GBR and
non- GBR services, guaranteeing the best possible

quality of service based on traffic patternsin real time.

e Smart City & Transportation: More efficient
spectrum sharing plans may result from applications
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in smart cities and transportation that identify traffic
patterns. By anticipating traffic spikes and allocating
resources to maintain vital communication, GRU

models can improve urban connectivity.

e Public Safety: By using GRUs for real-time traffic
recognition, public safety communications can be
prioritized more successfully. This guarantees that in
times of crisis, emergency services will always have

the bandwidth they require.

e Slice Type: GRU's capacity to recognize unique
traffic patterns is a key advantage of network slicing
since it makes it possible to create customized slices
that correspond to service needs and usage trends,

thus optimizing spectrum efficiency.

Use of loT Devices and Smartphones: GRUs can spot
trends in how loT devices and smartphones are used,

offering insights that help manage available

spectrum resources more effectively. With the

increasing number of connected devices, this is

particularly crucial.

3.2. Data Preprocessing

The data was acquired through downloading, cleaning,
and preparation, focusing on key variables like Packet
Loss Rate, which impacts service quality. The research
project used machine learning tools and cloud
computing to train models, taking use of Google
Colab's [23]capabilities. Initially, Python was used,
with TensorFlow and Keras [28] helping to create
networks for real-time traffic

neural detecting

patterns.

Throughout model training, a thorough preprocessing
phase was carried out. This includes cleaning the data
to eliminate outliers and missing values, normalizing
continuous variables to guarantee consistent scaling,
and creating relevant variables to improve model
such as basic

performance. Relevant methods,

component analysis, were used to minimize

Vol 46 No. 05
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dimensionality while increasing computing efficiency
and model correctness.

The first examination in figure 2 indicates intriguing
tendencies, such as spikes in Packet Loss Rate across
specific categories, which indicate possible areas for
network improvement. The new approach focuses on
combining these preprocessing stages with advanced
neural network architectures to provide reliable

model performance in dynamic traffic scenarios.

Corel

Incading's

Figure 2: Correlation matrix of Packet Loss Rate with
other variables

This correlation graph highlights the relationships
between packet loss rate and other variables in this
dataset, such as packet delay, service type (such as
and LTE
category. These significant interactions highlight how

healthcare and smart transportation),

these factors influence the packet loss rate considered
as the target, thus highlighting their importance in
evaluating network performance.

3.3. Considered Algorithms

A three-layer architecture that aims to improve
spectrum sharing through real-time traffic pattern
recognition is proposed in this paper. The first layer
involves generating data through various wireless
communication devices, integrating technologies such
as the Internet of Things (loT) to capture dynamic
traffic patterns. The second layer focuses on data
integration, where the collected data is centralized for
further analysis. The third layer is dedicated to data
processing, which uses machine learning techniques
to evaluate traffic patterns and improve spectrum
distribution. Given that the dataset contains constant
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variables, regression techniques appropriate for
supervised machine learning are chosen. Based on
past studies, we have a varied set of algorithms. Finally,
we firmly choose Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRU), as these
approaches successfully handle the gradient
difficulties inherent in standard Recurrent Neural
(RNN) [29].

demonstrate that these networks can process data

Networks The evaluated studies

with minimal latency, often in milliseconds, allowing
for quick analysis and optimization.

3.3.1.LSTM (Long Short-Term Memory)

Each cell in the Long Short-Term Memory (LSTM) [18]
algorithm contains three gates: an input gate, a forget

gate, and an output gate (figure. 3).

Gates manage data flow within LSTM cells, enabling

retention, forgetting, and generation of new

information [18].
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Figure 3: An LSTM Cell

e The forget gate (o) controls data removal from the
cell state. Using the current input and previous hidden
state, it generates an activation vector (0-1) for each
cell state component. Values near 0 indicate forgetting,

while values near 1 indicate retention.

e The input gate (o) controls how much new data is
added to the LSTM cell state. Using the current input
and previous hidden state, it generates an activation
vector (0-1) for each cell state component. Values near
0 indicate forgetting, while values near 1 indicate

retention of significant data.
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e The output gate (tanh) controls the amount of
information output from the LSTM. Based on the
current input and previous hidden state, it generates
an activation vector (0-1) for each cell state
component. This vector is then multiplied by the cell's

activation function output to obtain the final output.

Table 3: LSTM model parameters

Optimal Parameters | Values
Input size 1
Hidden layers 2
Hidden units 50
Batch size 8
Qutput size 1

o LSTM layer (100 units, tanh activation, return sequences=True)
¢ Dropout layer (0.2)
Model architecture o LSTM layer (100 units, ReLU activation, return sequences=False)
*  Dropout layer (0.2)

o Denselayer (1-unit, sigmoid activation)

Epochs 50
Optimizer Adam
Learning rate 0.001

Dropout 0.2 (used in both Dropout layers)

Loss function Mean Absolute Error (mean_absolute_error)
o LSTM layer 1: tanh
Astivation fifictions o LSTM layer 2: ReLU

o Dense layer: sigmoid

This algorithmic setup in table 3 looks appropriate for
a regression issue as it avoids overfitting with dropout
layers while still providing efficient learning with the
Adam optimizer [30] and an appropriate learning rate.
The architecture is intended to handle sequential data,
making it suitable for time series analysis and other

comparable applications.

3.3.2.GRU (Gated Recurrent Unit)

To identify temporal relationships in data sequences,
GRU neural networks are built. Their internal structure
is more straightforward, with just two gates to
regulate the information flow within the cells, but it is

comparable to that of LSTMs [19].
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Figure 4: Diagram of a one unit Gated Recurrent
Unit (GRU)
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The Gated Recurrent Unit (GRU) is a simplified
variant of LSTM that employs gating mechanisms to
control information flow. Each GRU cell features two
main gates: the update gate and the reset gate, as
shown in its architecture (figure 4) in [20]. These gates
allow the GRU to manage memory effectively,
it to
information.

enabling retain, reset, or generate new

. The Update Gate (z[t]) controls how much of the
previous hidden state is carried to the current state. It
uses the current input and the previous hidden state
to generate an activation vector ranging from 0 to 1
for each component. Values near zero indicate that
previous information should be discarded, while
values close to one suggest retention. This gate
effectively manages the GRU's memory.

. The Reset Gate (r[t]) determines how much past
information to forget when updating the hidden state.
It uses the current input and the previous hidden state
to create an activation vector. Values near zero
suggest forgetting past information, while values close
to one indicate retention. This selective memory reset
is beneficial when new information significantly differs
from previous data.

. The Hidden State (tanh) of the GRU is obtained
from the update and reset gates. When the reset gate
is applied to the previous hidden state, it determines
how much of that state to forget. The updated hidden
state combines the retained information, and any new
information derived from the current input.

Vol 46 No. 05
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Table 4: GRU model parameters

Optimal Parameters Values
Input size 1
Hidden layers D
Hidden units 50
Batch size 8
Output size it
*  GRU layer (100 units, tanh activation, return sequences=True)
. «  Dropout layer (0.2)
Milel Arelit e «  Dense layer (100 units, ReLU activation)
«  Dropout layer (0.2)
»  Dense output layer (1-unit, sigmoid activation)
Epochs 50
Optimizer Adam
Learning rate 0.001
Dropout 0.2 (used in both Dropout layers)
Loss function Mean Absolute Error (MAE)

This setup is intended for a regression task that utilizes
GRU networks, prioritizing regularization through
dropout layers and efficient learning through Adam
optimization. The architecture is designed to handle
sequential data, making it ideal for tasks like time
series analysis and similar applications. The use of
loss-based MAE indicates the need to reduce absolute
errors in predictions, which is frequently beneficial in

many real-world scenarios.

4, Results and discussion

The analysis of the Mean Squared Error (MSE) as a
function of the number of epochs executed by the
LSTM and GRU algorithms reveals a consistent
downward trend in the loss curves throughout both
the training and testing phases as illustrated in figure
5. This gradual reduction in error indicates that both
models effectively minimize loss over successive
epochs, ultimately stabilizing at a low value by the
conclusion of the training iterations. The graph
indicates the loss of training (blue curve) and
which

validation (orange curve) of the LSTM model,

both show a substantial decline and stabilize

around 0,0025 after around 12 epochs.

This quick convergence indicates effective learning
and strong generalization abilities. The proximity of

the two curves suggests that the LSTM model
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adapts adequately to training data without
requiring additional learning. In general, these low
loss values reflect the model's robustness on

unknown data, highlighting its effectiveness.

The illustration in figure 6 shows the model's training
loss and validation loss of the GRU model, both of
which exhibit a dramatic reduction until stabilizing
around 0.000193 after about 8 epochs. This quick
convergence suggests effective learning and good
generalization ability. The tight alignment of the two
curves indicates that the model responds well to the
training data without overfitting. Overall, the minimal
loss numbers demonstrate the model's durability on

previously encountered data, indicating its efficacy.

Loss Function Curve
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Figure 5: Obtained loss functions of LSTM algorithm
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Figure 6: Obtained loss functions of GRU algorithm

Regardless of the training or testing phase (Figures 5
and 6), the loss curves for both models show a
consistent downward trend, rapidly decreasing until
stabilization at a minimum by the end of the epoch.
For the LSTM model, the loss curve stabilizes around
0.0025 after approximately 12 epochs, indicating
effective learning and strong generalization abilities.
The reduced noise in the test phase further supports

the model's ability to adapt to new data.

In contrast, the GRU algorithm converges significantly
more quickly, stabilizing around 0.000193 after about
8 epochs, despite starting with a higher initial error.
This rapid convergence highlights the GRU's effective
learning and strong adaptation capabilities. While the
GRU stabilizes with a slightly higher error than LSTM,

both models demonstrate robust performance.

Modeling with our dataset's two techniques is
effective if there are no overfitting or underfitting

issues found by loss curve analysis.
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4.1. Results in terms of loss functions

Loss functions give information about learning
capacity (underfitting/overfitting) and convergence
speed (processing time). To monitor the model's
progress and identify potential issues with overfitting
or underfitting, loss curves were generated after each
algorithm deployment, using the mean square error

(MSE) as a function of the number of epochs

performed by the LSTM and GRU algorithms.

To thoroughly assess our machine learning model,
various evaluation metrics can be employed to gauge
its effectiveness. The selection of these metrics is
contingent upon the specific nature of the problem at
hand. Evaluation metrics offer a quantitative measure
of a model's performance. It is advisable to utilize
multiple metrics for a more comprehensive
understanding of performance and to align the

metrics with the problem type.

The Gated Recurrent Unit (GRU) model significantly
outperforms previous studies, achieving over a 37%
reduction in prediction error with a Mean Absolute
Error (MAE) of 0.0000584556 and a Mean Squared
Error (MSE) of 0.0000000545. In comparison, the
LSTM stabilizes at a MAE of 0.0000539443 and an MSE
of 0.0000000539 in [16]. The GRU converges faster,
stabilizing at 0.000193 after 8 epochs, while the LSTM
reaches 0.0025 after 12 epochs, demonstrating the
GRU's effectiveness  in

superior spectrum

management in high-density environments.

Vol 46 No. 05
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Table 5: Performance metrics obtained

LSTM GRU

Training [Testing [Training Testing

R2 0.997148 |0.997129112|0.99711385 (0.997313

6521 3 32 2827

MAE |0.000053 |0.0000539440.00005845 [0.000054

949 3 56 5467

MSE |0.000000 [0.000000053|0.00000005 |0.000000

053 9 45 0507

RMSE [0.000232 0.000232106|0.00023336 [0.000225

1157 5 06 1964

Given that we are dealing with a regression problem,
the following metrics are most appropriate for

evaluating model performance:

. Coefficient of Determination (R-squared): This
metric (equation 1) indicates the proportion of
variance in the target variable explained by the model,
helping to determine how well the model fits the data

[31].

. Mean Absolute Error (MAE): This metric

(equation 2) represents the average of the absolute
differences between the actual and predicted values

[31].

. Mean Squared Error (MSE): This metric
(equation 3) calculates the average of the squared
differences between the actual values and the

predicted values.

. Root Mean Squared Error (RMSE): This metric
(equation 4) is used to evaluate the accuracy of a
prediction model. It calculates the square root of the
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average of the squared differences between predicted
values and actual values [31].

The mathematical representations of these metrics

are defined as follows [20]:

2 _ 1 _ L= 092
RE=1-3r vrr W
1 ~
MAE = =¥i-1|yi = 3 2)
MSE = < ¥,y - 9)? @)

1 P
RMSE = [ASL,0i-92 @

The usage of two methods in the data set’s case study
was practical since they both consider identifying

long-term reliance in sequential data.

Upon examining the outcomes shown in Table 5, the
GRU network performs better than the LSTM network
in terms of R%, MAE, MSE, and RMSE for both the
training and testing stages. In particular, the GRU
model exhibits decreased error values and increased
predicted accuracy, which is consistent with the

findings from the algorithms' implementation.

As proof of all this, it is important to point out that
during the testing phase, the GRU model stabilizes at
around the 8th epoch with less noise in the loss curve,
efficient learning and

demonstrating strong

generalization to recent data. This is important
because lower error rates indicate that the GRU is

more robust in different situations, making it a better

option for tasks requiring flexibility.

Compared to the GRU, the LSTM model stabilizes at a

greater error rate even while it exhibits promising

Vol 46 No. 05
May 2025

learning efficiency, with error convergence by the

20th epoch. This disparity is reflected in the
performance metrics in Table 5, which support the
finding that although each model has advantages,
applications requiring reliable performance on new

datasets are better suited for the GRU design.

In the final analysis, Table 5's performance
measurements support the conclusions mentioned,
showing that the GRU model is more effective in
generalizing solutions to unexpected data in addition
to having superior performance metrics. This supports
the idea that the GRU is the better option for
improving spectrum sharing by identifying traffic
patterns in real time.

5. Conclusion

This study underscores the critical role of real-time
traffic pattern recognition in enhancing spectrum
sharing through the application of Gated Recurrent
Unit (GRU) networks. The findings demonstrate that
GRU networks not only significantly reduce error rates
but also offer faster convergence, making them
particularly advantageous for adapting to the dynamic
nature of wireless communication environments. As
the demand for efficient and reliable communication
continues to escalate, integrating machine learning
techniques like GRU into spectrum management
becomes imperative for

optimizing resource

allocation and alleviating network congestion.

By leveraging advanced deep learning methodologies,
this research paves the way for more adaptive and
intelligent spectrum management systems. The

capability to accurately predict traffic patterns in real
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time empowers make informed, data-driven
decisions, dynamically adjusting spectrum allocation
to meet evolving demands. This is especially crucial in
the context of modern wireless networks, where the
surge of connected devices and high-bandwidth
applications intensifies the pressure on available

spectrum resources.

Furthermore, this study lays a foundation for future
research aimed at refining machine learning models
for spectrum management, considering additional
factors such as

interference mitigation, energy

efficiency, and  multi-agent  decision-making.
Addressing these challenges will enhance cognitive
radio networks, ensuring more efficient spectrum
utilization and improved connectivity, even in
spectrum-constrained environments. Ultimately, the
of GRU networks into

integration spectrum

management strategies represents a significant
advancement toward developing robust, adaptive,
and intelligent communication systems capable of
meeting the ever-growing demands of wireless
technologies.
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