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Abstract 

The integration of Security as a Service (SecaaS) with Multi-Access Edge Computing (MEC) infrastructure represents a 

transformative advancement in securing distributed systems, particularly in IoT and edge environments. This research 

focuses on leveraging MEC's low-latency and decentralized architecture to develop scalable and resilient security 

solutions. The necessity for this research arises from the growing proliferation of IoT devices and real-time applications, 

which are increasingly vulnerable to sophisticated cyber threats. MEC’s proximity-based computation offers unique 

advantages for implementing robust security measures tailored to resource-constrained environments. This study 

reviews methodologies such as adaptive resource orchestration, knowledge distillation, transfer learning, and machine 

learning-enhanced intrusion detection systems (NIDS). Additionally, advanced techniques like Attribute-Based 

Encryption (ABE) and layered security architectures are examined for their effectiveness in addressing latency-sensitive 

and privacy-related challenges in MEC contexts. Comparative analyses demonstrate improvements in anomaly 

detection, scalability, and real-time responsiveness achieved through these approaches. The findings underscore MEC's 

potential to enhance security scalability and responsiveness while mitigating evolving threats. However, gaps remain in 

integrating these methodologies into a unified SecaaS-MEC framework. Future directions emphasize incorporating AI-

driven analytics and advanced cryptographic techniques to optimize SecaaS for diverse edge computing applications. 
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1. Introduction 

Security as a Service (SecaaS) platforms with Multi-

Access Edge Computing (MEC) infrastructure 

represents a paradigm shift in addressing the complex 

cybersecurity challenges faced by distributed and 

resource-constrained networks. MEC, renowned for its 

low-latency, proximity-aware, and distributed 

computation capabilities, has fundamentally 

transformed network architectures by enabling data 

processing and computational tasks at the edge, closer 

to the end-users. This innovative approach is 

particularly advantageous for the Internet of Things 

(IoT) and real-time applications, which require secure, 

scalable, and efficient operations to meet their high-

performance demands. 

The convergence of SecaaS with MEC introduces a 

powerful framework designed to mitigate inherent 

security vulnerabilities within edge-cloud 

environments. As MEC adoption continues to grow 

across critical applications ranging from industrial 

automation to healthcare and smart cities it becomes 

increasingly vital to develop advanced security 

mechanisms capable of addressing dynamic, evolving, 

and multifaceted cyber threats. An integrated SecaaS-

MEC framework holds the potential to enhance system 

performance by optimizing latency, ensuring 

scalability, and enabling real-time threat detection, 

thus securing the integrity, confidentiality, and 

availability of edge ecosystems. 

Recent research underscores the necessity of adopting 

sophisticated methodologies to effectively leverage 

MEC's decentralized architecture for improved security 

measures and operational efficiencies. Key techniques 

explored include adaptive resource orchestration for 

dynamic threat response, machine learning-based 

anomaly detection to identify and mitigate 

sophisticated attacks, and advanced cryptographic 

protocols for secure data transmission and access 

control. Additionally, multi-layered security 

frameworks that combine distributed and centralized 
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security controls provide robust defenses against a 

wide range of cyber threats, ensuring system resilience 

even under adverse conditions. 

By synthesizing the strengths of these methodologies, 

this study aims to pave the way for a unified and 

scalable SecaaS-MEC framework capable of addressing 

contemporary and emerging cybersecurity challenges. 

Such a framework not only ensures robust protection 

against malicious actors but also empowers edge 

computing environments with the necessary tools to 

maintain operational efficiency, adaptability, and 

scalability in the face of evolving technological 

demands. This research sets the foundation for future 

advancements in creating comprehensive, AI-driven, 

and highly responsive SecaaS platforms tailored 

specifically for MEC-integrated networks. 

2. Related Work 

Adaptive Risk-Aware Resource Orchestration for 5G 

Microservices introduces a framework that employs 

probabilistic risk assessment to optimize resource 

allocation within multi-tier edge-cloud systems. This 

approach is particularly relevant for MEC 

environments, where dynamic resource demands and 

security threats coexist. By addressing malicious 

applications and reducing resource inefficiencies, the 

framework significantly enhances system resilience, 

performance, and latency management. However, its 

scope is primarily limited to resource orchestration, 

leaving broader security considerations, such as 

authentication protocols and intrusion detection 

mechanisms, unexplored. This limitation suggests that 

while the framework effectively enhances operational 

efficiency, it does not provide a holistic solution to the 

complex security challenges prevalent in MEC 

ecosystems [1].The study on Attribute-Based 

Management for Secure Kubernetes Cloud Bursting by 

Femminella et al. introduces a novel framework that 

integrates Attribute-Based Encryption (ABE) into 

Kubernetes environments to enhance security and 

scalability. This approach enables fine-grained access 

control and dynamic resource allocation, ensuring 

compliance with privacy regulations while maintaining 

efficiency in distributed systems. The framework is 

particularly effective for secure orchestration in MEC 

contexts, addressing the challenges of resource 

management and privacy. However, its focus is 

primarily on access control mechanisms, with limited 

consideration of broader security requirements such as 

real-time threat detection, anomaly mitigation, and 

intrusion prevention, which are essential for a 

comprehensive security solution [2]. 

The study on Efficient Authentication in Cloud-Fog-

Device Frameworks presents a secure protocol 

designed to address authentication vulnerabilities in 

cloud-fog-device ecosystems. By leveraging elliptic 

curve cryptography and cryptographic hashing, the 

framework enhances security resilience against key-

revelation attacks while minimizing computational 

overhead, making it highly suitable for resource-

constrained environments. The approach effectively 

ensures robust entity authentication and strengthens 

the overall security posture of fog networks. However, 

its scope is limited to authentication processes, with 

little focus on broader security measures such as real-

time threat detection, anomaly management, or 

advanced encryption techniques, which are crucial for 

addressing the comprehensive security challenges 

present in MEC environments[3].The study on Efficient 

Anomaly Detection for Edge Clouds explores the use of 

knowledge distillation and transfer learning to develop 

lightweight models tailored for anomaly detection in 

resource-constrained edge environments. By 

transferring learned capabilities from larger models to 

smaller, efficient ones, this approach achieves high 

detection accuracy while significantly reducing 

computational demands. These techniques are 

particularly effective in addressing the limitations of 

MEC infrastructures, where resources are often 

restricted. Despite its strengths in improving scalability 

and detection efficiency, the study focuses primarily on 

anomaly detection and does not address other critical 

security aspects, such as encryption, authentication, or 

comprehensive threat mitigation, which are essential 

for a robust MEC security framework[4]. 

The study on Intrusion Detection in IoT Systems 

investigates the application of machine learning (ML) 

algorithms in Network Intrusion Detection Systems 

(NIDS) tailored for IoT environments within MEC 

contexts. By leveraging MEC’s low-latency and 

proximity-based infrastructure, the proposed 

frameworks enhance real-time detection accuracy and 

scalability, effectively addressing IoT-specific 

vulnerabilities. The integration of ML models enables 

the identification of complex threat patterns, making 

the approach suitable for dynamic and evolving IoT 

landscapes. However, the study primarily focuses on 

intrusion detection and does not delve into layered or 

centralized security strategies, which are essential for 
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comprehensive protection in MEC systems. This gap 

highlights the need for broader frameworks that 

integrate multiple security layers to address the diverse 

challenges of MEC-enabled IoT ecosystems[5]. 

 The review on MEC Architecture and Security provides 

an in-depth analysis of the vulnerabilities inherent in 

MEC systems and emphasizes the importance of 

layered security controls and centralized architectures 

to mitigate potential attacks. By proposing solutions 

such as distributed nodes and scalable access control 

mechanisms, the study highlights effective strategies to 

enhance data integrity and system resilience. The 

layered approach is particularly valuable for addressing 

diverse security threats in MEC environments. 

However, the review primarily focuses on architectural 

design and theoretical solutions, offering limited 

exploration of dynamic threat detection mechanisms or 

real-time security implementations. This limitation 

underscores the need for practical frameworks that 

integrate advanced threat detection and response 

capabilities alongside robust architectural 

safeguards[6]. The first study leverages knowledge 

distillation and transfer learning to develop lightweight, 

efficient anomaly detection models, enhancing 

scalability and detection accuracy in resource-

constrained MEC environments. The second paper 

focuses on machine learning-enhanced Network 

Intrusion Detection Systems (NIDS), utilizing MEC’s low-

latency infrastructure to achieve real-time detection of 

IoT-specific threats. Lastly, the survey provides a 

comprehensive analysis of MEC security and privacy 

frameworks, emphasizing layered architectures and 

privacy-preserving measures to mitigate attack vectors 

and ensure data integrity. While these studies offer 

valuable insights into improving MEC security, they 

highlight gaps such as the need for holistic frameworks 

that integrate anomaly detection, intrusion prevention, 

and robust encryption mechanisms to address the 

complex threat landscape comprehensively[7]. 

3. Methodologies 

3.1 Adaptive Risk-Aware Resource Orchestration for 

5G Microservices: 

The methodology presented in Adaptive Risk-Aware 

Resource Orchestration for 5G Microservices offers an 

innovative approach to managing resources in MEC 

environments. At its core, the framework employs 

probabilistic risk assessment to evaluate the potential 

threats and inefficiencies associated with resource 

allocation in real-time. This dynamic model ensures 

efficient resource distribution by prioritizing critical 

applications and mitigating the impact of malicious 

processes, thereby enhancing system resilience and 

reducing latency—a crucial factor for time-sensitive 

applications. The adaptive, real-time nature of the 

framework allows it to respond quickly to changes in 

the network environment, such as fluctuating resource 

demands or newly detected threats, ensuring 

optimized performance and scalability across multi-tier 

edge-cloud systems. Despite its strengths, the 

methodology focuses primarily on resource 

management and does not address broader security 

mechanisms. It lacks integration with advanced 

authentication protocols, real-time intrusion detection 

systems, or comprehensive data encryption methods, 

which are essential for a holistic MEC security 

framework. While the framework significantly 

improves resource utilization and system performance, 

future enhancements could incorporate additional 

layers of security to create a more robust and secure 

MEC solution. This methodology demonstrates a strong 

foundation for addressing resource allocation 

challenges but leaves room for further development to 

meet the full spectrum of MEC security needs[1]. 

 

Figure 1. Algorithm Implemented [1]. 

3.2 Attribute-Based Management for Secure 

Kubernetes Cloud Bursting 

The methodology proposed by Femminella et al. in 

Attribute-Based Management for Secure Kubernetes 

Cloud Bursting focuses on enhancing security for 

Kubernetes-based cloud bursting operations through 
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the integration of Attribute-Based Encryption (ABE). 

This innovative approach addresses the critical need for 

secure, scalable, and privacy-compliant resource 

management in distributed MEC environments. At the 

core of the methodology is the use of ABE, which 

provides fine-grained access control by granting 

permissions based on specific attributes such as user 

roles, resource requirements, or organizational 

policies. This ensures that access to resources is tightly 

controlled and restricted to authorized entities, 

significantly reducing the risk of unauthorized access or 

data breaches. Additionally, the framework enhances 

Kubernetes' labeling system, enabling dynamic security 

policies that can adapt in real-time to changes in 

workloads or user attributes. This flexibility makes it 

particularly well-suited for environments where 

resource demands and user access requirements are 

constantly evolving. The methodology ensures 

scalability, allowing security measures to expand 

alongside increasing workloads without compromising 

performance. Furthermore, it aligns with privacy 

regulations, making it ideal for scenarios where 

sensitive data must be securely managed during cloud 

bursting operations, which involve the transfer of 

workloads between private and public clouds. Despite 

these strengths, the methodology is limited in scope. 

While it effectively secures access control and resource 

allocation, it does not address broader security needs 

such as anomaly detection, real-time threat mitigation, 

or advanced encryption beyond access control. These 

gaps highlight the need for further integration with 

complementary security measures to create a holistic 

MEC security framework. In conclusion, this 

methodology provides a robust solution for secure 

resource orchestration in Kubernetes environments. Its 

focus on ABE and dynamic policy enforcement makes it 

highly effective for privacy-compliant and scalable 

operations. However, future research could enhance its 

applicability by incorporating broader security 

mechanisms, such as intrusion detection and real-time 

threat response, to address the full spectrum of 

security challenges in MEC ecosystems[2]. 

 

Figure 2. High-level diagram that illustrates the 

primary stakeholders and their interconnections of 

our model[2]. 

3.3 Efficient Authentication in Cloud-Fog-Device 

Frameworks 

The methodology outlined in Efficient Authentication in 

Cloud-Fog-Device Frameworks presents a robust 

solution for addressing authentication challenges in 

resource-constrained cloud-fog-device ecosystems. By 

leveraging elliptic curve cryptography (ECC) and 

cryptographic hashing, the framework ensures secure, 

lightweight, and efficient authentication suitable for 

distributed environments like MEC. The use of ECC is 

central to this methodology, offering strong encryption 

with smaller key sizes compared to traditional methods 

such as RSA. This ensures high levels of security while 

reducing computational overhead, making it ideal for 

fog and IoT devices with limited processing power. 

Cryptographic hashing further strengthens the 

authentication process by maintaining data integrity 

and protecting against tampering or replay attacks. A 

key feature of this framework is its emphasis on key 

agreement and management protocols, which enable 

secure establishment, distribution, and renewal of 

cryptographic keys among cloud, fog, and device layers. 

These protocols address vulnerabilities such as key-

revelation attacks, ensuring that a single compromised 

key does not compromise the entire system. Despite its 

strengths, the methodology is focused exclusively on 

authentication and does not extend to other critical 

security measures. For instance, it lacks integration 

with intrusion detection systems for identifying 

unauthorized access or malicious activities. 

Additionally, while ECC is used for secure key exchange, 

the framework does not provide comprehensive data 

encryption solutions for securing data during storage or 

transmission. In conclusion, this methodology offers an 
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efficient and secure authentication mechanism that is 

particularly suited for environments with constrained 

resources. However, expanding its scope to include 

broader security measures, such as real-time threat 

detection and layered encryption, would significantly 

enhance its utility for comprehensive MEC ecosystem 

security[3]. 

3.3.1 Elliptic Curve Cryptography (ECC): 

This methodology leverages ECC for secure key 

generation and exchange. ECC provides strong 

encryption with smaller key sizes, ensuring robust 

security while minimizing computational costs. This 

makes it particularly suitable for resource-constrained 

environments such as fog and IoT devices, where 

processing power is limited. ECC is used throughout the 

framework to establish secure communication 

channels between devices, fog nodes, and cloud 

servers. 

3.3.2 Cryptographic Hash Functions: 

The framework incorporates cryptographic hash 

functions to enhance data integrity and ensure that 

transmitted data cannot be tampered with. Hashing is 

employed during key exchange and authentication to 

validate the freshness and integrity of messages, 

mitigating the risk of replay and forgery attacks. 

3.3.3 Key Agreement and Management: 

A significant focus of the methodology is on secure key 

agreement protocols that enable devices and servers to 

establish shared secret keys over insecure 

communication channels. The framework ensures that 

keys are securely generated, exchanged, and stored. 

Key management also includes periodic renewal to 

maintain security and resilience against attacks such as 

key-revelation. 

3.3.4 Mutual Authentication: 

The methodology ensures mutual authentication 

between all entities in the cloud-fog-device ecosystem, 

including users, devices, fog nodes, and cloud servers. 

By verifying the identities of all participants during 

communication, the framework reduces the risk of 

impersonation and unauthorized access. 

3.3.5 Lightweight Design: 

Designed to be computationally efficient, the 

methodology minimizes resource consumption while 

maintaining robust security. This lightweight design 

ensures compatibility with IoT devices and fog nodes 

that have limited processing power and energy 

constraints. 

3.3.6 Formal Security Verification: 

The framework undergoes rigorous security analysis 

using models such as the Real-Or-Random (ROR) model 

and Scyther tool to confirm its resilience against various 

attacks, including replay, man-in-the-middle, and key-

revelation attacks. This verification ensures that the 

methodology meets the security requirements of 

modern MEC ecosystems. 

3.4 Efficient Anomaly Detection for Edge Clouds 

The methodology outlined in the paper focuses on 

addressing the dual challenges of resource constraints 

and limited labeled data in edge cloud environments. It 

employs transfer learning and knowledge distillation to 

develop lightweight, efficient anomaly detection 

models. Below is a categorized summary: 

3.4.1  Transfer Learning: 

Transfer learning is used to leverage knowledge from a 

pre-trained model trained on a large dataset from a 

related domain. 

• Pre-Trained Model Utilization: A pre-trained model 

is trained on a larger dataset (e.g., intrusion 

detection datasets) to learn general patterns. 

• Domain Adaptation: The knowledge from the pre-

trained model is fine-tuned to smaller, edge cloud-

specific datasets with limited labeled data. This 

reduces the need for extensive data collection and 

training on edge datasets while retaining high 

detection accuracy. 

• Applicability to Model Types: Transfer learning is 

applied to both sequential (e.g., LSTM, GRU) and 

non-sequential models (e.g., ANN) to enhance 

performance across varying types of data[4]. 

3.4.2  Knowledge Distillation: 

Knowledge distillation compresses the knowledge of a 

larger, complex "teacher model" into a smaller, more 

efficient "student model." 

• Teacher-Student Framework: The teacher model, 

trained on a larger dataset, provides soft labels or 

probabilistic outputs to guide the student model's 

training. 

• Lightweight Student Model: The student model is 

designed to mimic the teacher model's capabilities 
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while being computationally efficient, making it 

suitable for resource-constrained edge 

environments. 

• Efficiency Gains: The distillation process reduces 

detection time and computational overhead while 

maintaining a high level of anomaly detection 

accuracy.[4] 

3.4.3  Hybrid Architecture Support: 

The methodology supports both sequential and non-

sequential model architectures. 

• Non-Sequential Models (ANN): Ideal for feature-

based anomaly detection tasks without temporal 

dependencies. 

• Sequential Models (LSTM, GRU): Suitable for 

detecting anomalies in time-series data by 

capturing temporal dependencies.[4] 

3.4.4 Model Optimization and Training: 

• Training Process: Models are trained initially on 

large datasets and fine-tuned for edge-specific 

datasets. 

• Layer Freezing: In non-sequential models, the initial 

layers are frozen during fine-tuning to retain 

learned features while adapting higher layers for 

domain-specific tasks. 

• Distillation Loss: Knowledge distillation 

incorporates a loss function, typically Kullback-

Leibler divergence, to align the student model’s 

predictions with the teacher’s outputs[4]. 

 

 

The methodology outlined in Efficient Anomaly 

Detection for Edge Clouds provides an innovative 

approach to addressing anomaly detection challenges 

in resource-constrained MEC environments. It employs 

knowledge distillation and transfer learning to create 

lightweight yet effective models that maintain high 

accuracy while optimizing computational efficiency. 

Knowledge distillation is a core component of this 

approach. In this technique, a large, complex "teacher" 

model is trained to achieve high anomaly detection 

accuracy. The knowledge and insights learned by this 

teacher model are then transferred to a smaller, more 

efficient "student" model. This transfer process ensures 

that the student model retains the detection 

capabilities of the teacher while being lightweight 

enough to operate on devices with limited 

computational resources, such as IoT devices or edge 

nodes. Transfer learning complements this by reducing 

the dependency on extensive training datasets. It 

leverages pre-trained models from similar tasks or 

datasets, allowing the anomaly detection system to 

adapt to new environments or evolving threats with 

minimal retraining. This makes the methodology 

particularly scalable and suitable for dynamic MEC 

systems, where data availability and computational 

capacity vary. The combined use of these techniques 

results in models that are computationally efficient, 

scalable, and capable of achieving high detection 

accuracy in distributed edge environments. These 

lightweight models are ideal for MEC infrastructures 

where limited processing power, memory, and network 

bandwidth are common constraints. However, the 
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methodology is focused solely on anomaly detection 

and does not incorporate broader security measures, 

such as encryption for data protection, intrusion 

detection for comprehensive threat management, or 

real-time response mechanisms. Expanding the scope 

to include these elements would enhance the 

methodology's applicability to holistic MEC security 

frameworks. In summary, this methodology effectively 

balances performance and resource efficiency, making 

it a valuable tool for anomaly detection in MEC systems. 

Its use of knowledge distillation and transfer learning 

ensures scalability and adaptability, but integrating 

additional security measures would make it more 

robust and comprehensive.[4] 

 

Figure 3. The schema of the proposed approach[4]. 

3.5 Intrusion Detection in IoT Systems 

The methodology outlined in Intrusion Detection in IoT 

Systems integrates machine learning (ML) algorithms 

with MEC-enabled Network Intrusion Detection 

Systems (NIDS) to address IoT-specific security 

challenges. This approach leverages MEC's low-latency, 

proximity-aware architecture to provide real-time and 

scalable intrusion detection, making it particularly 

effective in dynamic and distributed IoT environments. 

The system utilizes advanced ML algorithms, such as 

decision trees and neural networks, to analyze network 

traffic and detect suspicious activity. These algorithms 

are capable of identifying complex and evolving threat 

patterns, including those specific to IoT devices, such as 

DDoS attacks or malware propagation. By training on 

historical data and adapting to new attack vectors, the 

ML-based NIDS ensures high detection accuracy and 

adaptability to emerging threats. The integration with 

MEC infrastructure enables the NIDS to process data at 

the network edge, significantly reducing latency 

compared to centralized cloud-based solutions. This 

proximity-based analysis ensures faster threat 

detection and response, enhancing the overall security 

posture of IoT ecosystems. Additionally, the system is 

designed to scale efficiently, accommodating the 

increasing number of IoT devices and their associated 

data flows. Despite its strengths, the methodology 

focuses narrowly on intrusion detection and lacks 

broader security measures. It does not incorporate 

layered security strategies, such as combining intrusion 

detection with encryption or privacy-preserving 

techniques, which are essential for comprehensive 

protection. Additionally, the absence of real-time 

threat response mechanisms limits its ability to 

mitigate detected intrusions automatically. In 

summary, this methodology provides an efficient and 

scalable solution for IoT-specific intrusion detection by 

combining ML with MEC's low-latency capabilities. 

While it excels in real-time threat analysis, expanding 

its scope to include multi-layered defenses, encryption, 

and automated response mechanisms would 

significantly enhance its effectiveness as a holistic 

security framework for MEC-enabled IoT systems[5]. 

3.6 MEC Architecture and Security 

The methodology described in MEC Architecture and 

Security emphasizes a layered security architecture to 

address the unique vulnerabilities of MEC 

environments. This approach combines distributed 

nodes and centralized control mechanisms to create a 

robust framework that ensures data integrity and 

defends against unauthorized access and potential 

breaches. A key component of this methodology is the 

use of scalable access control policies, which allow the 

system to dynamically adjust permissions based on user 

roles, device attributes, or network conditions. This 

scalability ensures that security remains effective even 

as the number of connected devices and data flows in 

MEC environments continues to grow. The layered 

architecture divides the security responsibilities across 

multiple tiers, reducing the impact of a single point of 

failure and making the overall system more resilient. 

The distributed node architecture plays a vital role in 

decentralizing computational tasks, improving fault 

tolerance, and enhancing data confidentiality by 

keeping sensitive information closer to the edge. At the 

same time, centralized control mechanisms provide 

overarching management and coordination, ensuring 

that security policies are consistently applied across the 

network. While the layered approach strengthens the 

overall security posture and enhances system 

resilience, the methodology primarily focuses on 

theoretical guidelines. It does not integrate dynamic 

threat detection mechanisms or real-time response 

systems, which are crucial for identifying and mitigating 

evolving cyber threats. This limitation reduces its 
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practical applicability in environments where real-time 

security measures are essential[6]. 

 

Figure 4. Centralized Security Architecture for MEC[6] 

The methodology employs a layered security 

framework to address MEC vulnerabilities by 

distributing responsibilities across multiple tiers, 

reducing single points of failure. It includes: 

• Scalable Access Control: Dynamic policies based on 

user roles, device attributes, or network conditions 

to manage permissions effectively as device 

numbers grow. 

• Distributed Node Architecture: Decentralized 

computation to enhance fault tolerance and keep 

sensitive data closer to the edge, reducing 

transmission risks. 

• Centralized Control Mechanisms: Uniform 

management and enforcement of security policies 

for consistency and resource optimization. 

• Data Integrity Measures: Use of cryptographic 

hashing and secure protocols to prevent 

unauthorized data modifications.[6] 

 

Figure 5. MEC Security Network Architecture[6]. 

3.7 Machine Learning-Based Intrusion Detection 

Systems (NIDS): 

The Machine Learning-Based Intrusion Detection 

Systems (NIDS) methodology integrates advanced 

machine learning (ML) algorithms into MEC-enabled 

NIDS frameworks to bolster security in IoT networks. 

This approach utilizes ML techniques such as decision 

trees and neural networks to analyze network traffic 

and identify intrusion patterns effectively. These 

algorithms enable the system to detect both known 

and emerging threats, making it highly adaptable to 

evolving attack landscapes. By leveraging the low-

latency, proximity-aware infrastructure of MEC, this 

methodology ensures real-time threat detection and 

rapid response, a critical feature for dynamic and time-

sensitive IoT environments where security breaches 

need immediate attention. The ML-based NIDS is 

particularly effective against complex attack vectors, 

including Distributed Denial of Service (DDoS) attacks 

and malware propagation. The system’s ability to learn 

from historical data and adapt to new threats enhances 

its detection accuracy and reliability. Furthermore, its 

scalable design allows it to accommodate the ever-

growing number of IoT devices and their associated 

data flows, ensuring robust performance in large-scale 

deployments. Despite its strengths, this methodology 

focuses narrowly on intrusion detection and lacks 

broader security measures. It does not incorporate 

multi-layered defenses or encryption mechanisms to 

safeguard data during transmission and storage. These 

gaps leave certain vulnerabilities unaddressed, 

particularly in scenarios requiring comprehensive 

protection. Expanding the framework to include 

automated threat response systems, layered security 

architectures, and advanced data encryption could 

provide a more holistic security solution for MEC 

environments. Such enhancements would ensure that 

the methodology not only detects intrusions effectively 

but also mitigates risks and protects sensitive data 

against a wide range of cyber threats. 

4. Results 

The combined analysis, highlights the transformative 

potential of integrating Security as a Service (SecaaS) 

with Multi-Access Edge Computing (MEC) 

infrastructure to address modern cybersecurity 

challenges. MEC's decentralized, low-latency, and 

proximity-aware design provides a robust platform for 

securing distributed systems, particularly IoT networks 

and real-time applications. The reviewed studies 

emphasize the adoption of advanced methodologies 

such as knowledge distillation, transfer learning, 

machine learning-based intrusion detection systems 

(NIDS), and layered security architectures. Knowledge 

distillation and transfer learning are instrumental in 

creating lightweight anomaly detection models that 
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optimize resource-constrained environments, while 

ML-enhanced NIDS frameworks significantly improve 

detection rates and accuracy for IoT-specific threats[5]. 

Additionally, layered security architectures integrate 

distributed and centralized controls to strengthen 

defenses against data breaches while maintaining 

system scalability. A comparative analysis reveals that 

MEC's architecture enhances security scalability and 

responsiveness, addressing issues like resource 

constraints and dynamic threat vectors[7]. Adaptive 

resource orchestration and encryption mechanisms 

provide additional layers of security, while advanced 

authentication protocols safeguard edge-cloud-device 

frameworks against vulnerabilities such as key-

revelation attacks. The findings underscore the need 

for a unified SecaaS-MEC framework that combines 

adaptive resource allocation, AI-driven analytics, and 

robust encryption to deliver comprehensive security 

solutions for edge environments. This integration not 

only mitigates evolving cyber threats but also ensures 

operational efficiencies, low latency, and enhanced 

real-time responsiveness. Future research should focus 

on further leveraging AI and advanced cryptographic 

techniques to refine SecaaS platforms for diverse MEC 

applications[1]. 

The results of the reviewed methodologies highlight 

significant advancements in performance, security, and 

reliability within SecaaS-MEC frameworks. In terms of 

performance and scalability, transfer learning emerges 

as a pivotal technique, effectively reducing dependency 

on extensive training data and enabling the 

development of lightweight models suitable for 

resource-constrained environments. Adaptive 

orchestration models further optimize resource 

utilization, enhancing system responsiveness and 

ensuring efficient operations in dynamic edge-cloud 

scenarios. From a security perspective, Attribute-Based 

Encryption (ABE) and centralized security architectures 

provide robust mechanisms to safeguard data 

confidentiality and ensure compliance with privacy 

regulations[2]. Additionally, machine learning-based 

intrusion detection systems (IDS) demonstrate notable 

improvements in detecting and mitigating threats in 

real-time applications, particularly in IoT ecosystems. 

Lastly, advanced authentication schemes exhibit high 

reliability, showcasing resilience to evolving threats and 

effectively addressing resource constraints in edge 

networks. These results collectively underscore the 

potential of integrating MEC with SecaaS to achieve 

scalable, secure, and adaptive cybersecurity solutions. 

Table 1: Comparative Analysis of Results 

Aspect 
Adaptive Resource 

Orchestration[1], [2], [3] 

Knowledge Distillation & 

Transfer Learning [4],[5],[6] 
Layered Security Architectures[7] 

Focus 
Integration of SecaaS with 

MEC for scalable security 

SecaaS leveraging MEC for 

IoT and anomaly detection 

SecaaS for IoT security and privacy 

in MEC environments 

Key 

Methodologies 

Adaptive resource 

orchestration 
Knowledge distillation Knowledge distillation 

 Attribute-Based 

Encryption (ABE) 
Transfer learning Transfer learning 

 Advanced authentication 

protocols 
Hybrid NIDS frameworks Layered security architectures 

Target 

Challenges 

Latency-sensitive security, 

scalable authentication 

IoT-specific anomaly 

detection, resource 

constraints 

Threat vectors in MEC, IoT anomaly 

detection, privacy frameworks 

Performance 

Metrics 

Improved resource 

utilization 

Reduced training data 

dependency 
Enhanced threat detection accuracy 

 Enhanced latency 
Improved anomaly detection 

rates 

Scalability and privacy in MEC 

architectures 

 Scalable authentication   
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Aspect 
Adaptive Resource 

Orchestration[1], [2], [3] 

Knowledge Distillation & 

Transfer Learning [4],[5],[6] 
Layered Security Architectures[7] 

Results 
Enhanced MEC resilience 

with dynamic allocation 

Lightweight models effective 

for edge anomaly detection 

Superior NIDS performance in 

detecting IoT-specific threats 

 Robust encryption and 

authentication 

Higher detection accuracy in 

IoT systems 

Centralized and distributed controls 

for scalability 

Strengths 

Comprehensive 

integration of SecaaS with 

MEC 

Efficient anomaly detection 

for resource-limited 

environments 

Decentralized design for low 

latency 

 Real-time adaptability Strong IoT focus 
Effective mitigation of MEC-specific 

vulnerabilities 

Limitations 
Lacks holistic integration 

across methodologies 

Focused primarily on IoT 

scenarios 

Centralized control may limit some 

MEC decentralization benefits 

Future 

Directions 

Unified SecaaS-MEC 

framework with AI-driven 

analytics 

AI-enhanced analytics for 

broader SecaaS-MEC 

applications 

Advanced cryptographic techniques 

and AI for secure MEC 

environments 

 

5. Conclusion 

This infrastructure presents a transformative solution 

to modern cybersecurity challenges, particularly in IoT 

and edge network environments. Leveraging MEC's 

distributed, low-latency architecture enables enhanced 

security scalability, real-time responsiveness, and 

optimized resource utilization. However, existing 

frameworks lack a holistic approach to integrating 

adaptive orchestration, robust encryption, and secure 

authentication. Future advancements should focus on 

developing unified SecaaS-MEC models that 

incorporate AI-driven analytics and advanced 

cryptographic techniques to address evolving threat 

vectors. This integration will not only enhance security 

resilience but also ensure compliance with privacy 

regulations and support the scalability needed for 

dynamic edge-cloud ecosystems. Additionally, the 

future scope includes exploring lightweight AI models 

and privacy-preserving mechanisms to further optimize 

SecaaS for resource-constrained environments and 

next-generation network applications. 
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