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Abstract 

With increasing energy demand, forecasting electricity usage is essential to advance sustainability and reduce 

environmental effects. This study presents a new method to predict future trends in energy consumption, offering 

significant insights for individuals and organizations looking to improve energy efficiency. The research additionally 

includes large language models (LLMs) to generate energy-efficient software code, facilitating the creation of solutions 

that save energy. This initiative helps to reduce energy consumption by converting current codebases into improved 

versions with built-in version control. The results of this study emphasize the ability of innovative technologies to 

promote sustainable methods and reduce the environmental impact of the tech industry. 

 

Keywords: Predictive Energy Consumption, Large Language Model (LLM), Code Generation, Version Control, 

Sustainability. 

 

1. Introduction 

The global shift towards sustainable energy practices 

has become one of the most pressing challenges of the 

21st century. As energy consumption continues to rise, 

especially in industrial and technological sectors, the 

need for advanced solutions to predict, optimize, and 

reduce energy consumption has never been more 

urgent. This rising demand for energy, coupled with the 

environmental impact of fossil fuel dependence, 

underscores the importance of transitioning to greener 

practices and leveraging innovative technologies to 

achieve this goal. 

The use of Artificial Intelligence (AI), especially in 

predictive modeling and optimization, has greatly 

increased and evolved. Today, many of these solutions 

are driven by how predictive models are trained. With 

increasing volumes of data being generated, patterns 

that were previously unknown can be recognized, and 

AI can help in formulating strategies for future demand 

forecasts and trend analysis. AI can also suggest AI-

driven targeting tactics to increase efficiency. With 

these capabilities, combined with energy efficiency, AI 

is transforming into an essential asset in the industrial, 

public, and non-governmental sectors, with a strong 

aim to reach sustainability targets. 

This paper examines two key areas where AI can 

revolutionize energy use: future energy consumption 

prediction and sustainable code optimization driven by 

large-scale language models (LLMs). Data-driven future 

energy forecasting, using historical and real-time data 

to predict energy usage, is crucial for accurate planning 

of energy resources. Accurate forecasts help reduce 

waste and support the integration of renewable energy 

sources into the grid. AI-powered models, such as 

machine learning and deep learning algorithms, have 

demonstrated remarkable precision in this area, 

providing decision- makers with actionable insights to 

effectively balance supply and demand. 

In addition to forecasting, the paper highlights the 

trans- formative role of LLMs in sustainable software 

development. With the rapid expansion of digital 

infrastructure, software systems contribute 

significantly to energy consumption. LLMs offer a novel 

approach to sustainable code optimization by analyzing 

and refactoring existing code to improve energy 

efficiency. 
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AI for Future Energy Consumption Forecasting 

Accurate predictions of energy use are essential for grid 

management, resource allocation, and reducing energy 

loss efficiently. Traditional energy demand forecasting 

methods, such as statistical regression models and time 

series analysis, have limited ability to adapt to complex 

non-linear relationships within the data. Moreover, 

they have struggled with integrating external factors, 

such as climate change and energy production from 

renewable sources. AI-powered models, especially 

machine learning (ML) and deep learning (DL) 

algorithms, offer a promising alternative by leveraging 

vast amounts of historical data to identify more 

accurate patterns and predictions. 

AI-based models have been shown to improve the 

accuracy of energy forecasting in sectors such as power 

generation and distribution [1]. Machine learning 

techniques, including neural networks, support vector 

machines, and decision trees, have been applied to 

forecast electricity demand, optimize power grids, and 

even predict the potential of renewable energy sources 

like solar and wind [2]. Research has demonstrated that 

AI can adapt to the dynamic nature of energy 

consumption, especially with the increasing reliance on 

renewable sources and the unpredictability of their 

output [3]. Furthermore, these models enable smarter 

decision-making and proactive planning, reducing costs 

and carbon footprints by ensuring that energy is used 

efficiently and distributed optimally [4]. 

LLM-Powered Sustainable Code Optimization 

The rising energy consumption of software systems—

especially in the context of cloud computing, AI, and big 

data—presents a significant challenge for achieving 

global sustainability goals. Inefficiently written 

software, which consumes unnecessary computational 

resources, contributes to the ever-growing energy 

demands of the tech industry. Recent research 

highlights that traditional software development 

practices often overlook the environmental cost of 

computing, resulting in wasteful code that significantly 

impacts both energy consumption and operating 

expenses [5]. 

In response, Large Language Models (LLMs), such as 

GPT-3 and LLaMA, have emerged as powerful tools for 

code optimization. These AI models can generate or 

refactor code to enhance its efficiency, thereby 

reducing the computational resources required to 

execute it. LLM-powered code optimization can 

minimize energy consumption at the software level by 

reducing runtime, memory usage, and the number of 

operations [6]. Additionally, LLMs can identify and 

suggest improvements for legacy codebases, 

streamlining software performance without requiring 

significant manual intervention. This process aligns 

with the principles of green computing, which 

advocates for the development of energy efficient 

software, optimized hardware utilization, and 

sustainable computational practices [7]. 

Recent studies have also shown the potential of LLMs 

to revolutionize the approach to green software 

development. For instance, the integration of energy 

metrics such as runtime energy usage, memory 

consumption, and computational over- head into AI 

models can result in more energy-efficient soft- ware 

that aligns with sustainability goals [8]. These 

approaches contribute to minimizing the carbon 

footprint of software systems, which is becoming an 

essential consideration in the development of next-

generation technologies. 

2. Proposed Methodologies 

The methodology for this project is divided into two 

main components: AI-based Energy Consumption 

Forecasting and LLM-based Sustainable Code 

Generation. 

AI based Energy Consumption Forecasting 

This phase involves designing and training predictive 

models to forecast future energy consumption based 

on historical data. The following steps outline the 

methodology: 

Data Collection and Preprocessing 

• Data Sourcing: Historical energy consumption data 

is sourced from reliable sources such as smart 

meters, energy providers, or public datasets [1]. 

The data typically includes variables like CPU 

usage, memory consumption, power source type 

(e.g., battery or AC), duration of system activity, 

and other relevant parameters. Gathering diverse 

and accurate data is essential for the model’s 

predictive capabilities. 

• Data Cleaning: Anomalies, missing values, and 

outliers are addressed to ensure data consistency. 

This preprocessing step eliminates noise that 

could otherwise skew the model’s predictions [2]. 

• Feature Engineering: New features are created to 

capture trends in the data, such as peak 
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consumption hours, day-of-week patterns, and 

external influences like weather or economic 

activity. Feature engineering ensures the model 

can capture important patterns and improve its 

prediction accuracy [3]. 

• Normalization and Scaling For each raw feature X, 

we use min-max scaling: [21], [22] 

𝑋norm =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                 (1) 

or z-score normalization: [21], [22] 

𝑋norm =
𝑋−μ𝑋

σ𝑋
                                (2) 

where µX is the mean and σX the standard deviation. 

• Feature Extraction A new feature Fi can be defined 

as a function of raw inputs. For instance: [23] 

𝐹peak(𝑡) = 𝐼{𝑡 ∈ [𝑡start, 𝑡end]} ⋅ 𝑋(𝑡)                (3) 

where I is an indicator function. 

• Outlier Detection and Cleaning A data point X(t) is 

flagged as an outlier if: [24], [25] 

|X(t) − µt| > k · σt                 (4) 

with k as a threshold (typically 2 or 3). 

Model Selection and Training 

• Training the Model: The dataset is divided into 

training and validation sets. The model is trained 

on the training set, and hyperparameters are 

adjusted for optimal performance. Cross-

validation is employed to prevent overfitting and 

to ensure generalizability across different datasets 

[4]. 

• Hyperparameter Tuning: Hyperparameters are 

fine- tuned using techniques like grid search or 

random search to improve prediction accuracy. 

Proper tuning ensures the model is well-adjusted 

to different conditions and im- proves the 

precision of its energy consumption forecasts [5]. 

Model Evaluation 

• Performance Metrics: The model’s performance is 

evaluated using various metrics such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), 

and Root Mean Squared Error (RMSE). These 

metrics help determine how accurately the model 

can forecast energy consumption [6]. 

• Model Validation: The model is validated using 

unseen test data. Predictions are compared 

against actual consumption values, and back 

testing is conducted to assess the model’s long 

term performance [7]. 

• Loss Function (Mean Squared Error) 

𝐿(θ) =
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖; θ))

2𝑁
𝑖=1               (5) 

[26] where f (xi; θ) is the model prediction. 

• Gradient Descent Update Rule [27] 

θ(𝑡+1) = θ(𝑡) − η∇θ𝐿(θ
(𝑡))               (6) 

where η is the learning rate. 

• Mean Absolute Error (MAE) [28] 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑓(𝑥𝑖 ; θ)|
𝑁
𝑖=1                (7) 

• Mean Squared Error (MSE) and Root Mean 

Squared Error (RMSE) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖 ; θ))

2𝑁
𝑖=1               (8) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                (9) 

Deployment 

• Model Deployment: After successful validation, 

the model is deployed into a real-time 

environment where it can provide continuous 

energy consumption forecasts. This can be 

integrated into energy management systems used 

by organizations or individuals [8]. 

Workflow 

• Historical energy data is collected, cleaned, and 

enhanced through feature engineering. Predictive 

models are then trained, fine-tuned, and 

evaluated using metrics like MAE and RMSE to 

ensure accuracy and robustness. 

• The validated model is deployed in real-time 

environments, providing continuous energy 

forecasts to support proactive energy 

management and sustainability efforts 

LLM-Based Sustainable Code Optimization 

This phase focuses on generating energy-efficient 

software 

code using large language models (LLMs). The following 

steps outline the approach for this component: 

Model Deployment 

• Local Setup: A pretrained LLM is set up locally, al- 

lowing the system to process code without relying 

on cloud infrastructure. This local setup ensures 
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seamless integration with version control systems 

such as GitHub, making the process more efficient 

and secure [10]. 

An energy or efficiency score S can be defined as: 

S = α T + β M + γ O            (10) 

where: 

• S is the energy or efficiency score. 

• T is the runtime of the code. 

• M is the memory consumption of the code. 

• O is the operational cost (e.g., CPU usage, power 

consumption). 

• α, β, γ are weighting factors for runtime, memory, 

and operational cost. 

Automated Code Processing 

• Code Analysis: When a developer pushes new 

code to GitHub, the LLM automatically analyzes 

the changes. The model identifies potential 

inefficiencies, focusing on areas where energy 

consumption can be reduced, such as optimizing 

algorithms, data structures, or operations [11]. By 

automating this step, the model helps developers 

enhance code efficiency with minimal manual 

effort. 

Efficiency Improvement Ratio [11] 

Δ𝑇 =
𝑇old−𝑇new

𝑇old
              (11) 

Δ𝑀 =
𝑀old−𝑀new

𝑀old
               (12) 

where: 

• ∆T is the improvement ratio in runtime. 

• Told is the runtime before optimization. 

• Tnew is the runtime after optimization. 

• ∆M is the improvement ratio in memory 

consumption. 

• Mold is the memory consumption before 

optimization. 

• Mnew is the memory consumption after 

optimization. 

3) Optimized Code Generation 

• Optimization: The LLM processes the existing code 

and generates an optimized version that 

maintains the same functionality but reduces 

resource usage. This involves refactoring the code 

to use more efficient algorithms, improve memory 

management, and reduce runtime, ultimately 

making the software more energy-efficient [12]. 

Optimization Score = λ ∆T + (1 − λ) ∆M            (13) 

where: 

• Optimization Score indicates the overall efficiency 

improvement. 

• λ is the trade-off parameter (determines 

importance of runtime vs memory). 

• 1 - λ is the complementary trade-off parameter for 

memory consumption. 

• 0 ≤ λ ≤ 1 balances runtime and memory trade-offs. 

Version Control 

• Commit and Review: The optimized code is 

automatically committed as a new version in the 

GitHub repository. Developers can review the 

changes, compare the original code with the 

optimized version, and decide whether to merge 

or modify the changes further. This ensures that 

developers maintain control over the quality and 

energy efficiency of the code [13]. 

Change Ratio =
𝐿old−𝐿new

𝐿old
              (14) 

where: 

• Change Ratio represents the ratio of reduced lines 

of code after optimization. A higher Change Ratio 

indicates greater code efficiency improvements, 

leading to reduced computational overhead and 

improved maintainability. 

• Lold is the number of lines of code before 

optimization, representing the original, 

unoptimized implementation. 

• Lnew is the number of lines of code after 

optimization, reflecting the improved version with 

reduced redundancy and enhanced efficiency. 

• A higher Change Ratio suggests that significant 

improvements have been made, such as removing 

redundant computations, simplifying logic, or 

adopting more efficient algorithms. 

Workflow 

• A pretrained LLM is set up locally for seamless 

integration with version control systems, enabling 

efficient and secure code analysis without relying 

on cloud infrastructure. 

• The LLM automatically analyzes code pushed to 

GitHub, identifying inefficiencies, and generating 
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optimized versions that reduce energy 

consumption while maintaining functionality. 

• The optimized code is committed as a new version 

in the repository, allowing developers to review, 

compare, and merge changes, ensuring quality 

and energy efficiency. 

3. System Architecture 

Like everything else in a technology-driven industry, 

energy consumption prediction and sustainable code 

optimization strategies aim to save resources and 

improve sustainability. Their structures are illustrated 

in Figure 1 and Figure 2, respectively. Both modules 

utilize machine learning technologies and optimally 

trained large language models to achieve higher 

accuracy and optimization, ensuring enhanced energy 

efficiency and software sustainability. 

The energy consumption prediction component helps 

reduce resource consumption by forecasting energy 

usage patterns, allowing organizations to implement 

effective energy-saving strategies. Meanwhile, the 

code optimization component minimizes redundant 

computations, reducing execution time and overall 

system load. The integration of these two components 

enables the system to make intelligent decisions, 

optimizing the performance of the infrastructure while 

enhancing the efficiency of the software. With these AI-

based techniques, organizations can achieve a balanced 

trade-off between efficiency and sustainability. 

Through predictive insights into energy usage, 

companies can dynamically allocate resources 

Energy Consumption Prediction 

As seen in Figure 1, the system leverages historical 

energy consumption data to predict future usage 

patterns. The system starts with a tabular database of 

energy-related parameters collected from data canters, 

network devices, and computing systems. The raw data 

is pre-processed to eliminate inconsistencies, handle 

missing values, and normalize features to enhance 

model accuracy. 

The model derives insightful features from past energy 

consumption data, which are provided as inputs to a 

machine learning program. By detecting patterns and 

associations, the model forecasts future energy 

demand, helping organizations maximize resource 

utilization, minimize operational expenses, and 

implement environmentally friendly computing 

practices. The predictive system also assists data-driven 

decision making, allowing companies to regulate peak 

energy usage in advance and reduce their carbon 

impact. Additionally, the system continuously makes 

predictions, including new data over time. This 

adaptive approach ensures that predictions re- main 

accurate even when energy consumption patterns 

evolve. By leveraging real-time insights, organizations 

can actively coordinate their strategies to further 

optimize efficiency and sustainability. 

Sustainable Code Optimization 

Figure 2 shows how the system optimizes code to 

increase its efficiency without changing its 

functionality. The process begins when the developer 

presents their source code and its modular verification 

tests. The system extracts this version from a version 

control system, such as GitHub, and submits it to an 

automated pipeline for optimization. 

The system first scans the code, analyses its structure, 

and finds inefficiencies such as over-computation, 

unnecessary loops, slow logic, and more. Additionally, 

a pre-trained large language model (LLM) optimizes the 

code, simplifies complex logic, eliminates redundancy, 

and intelligently accelerates execution while 

maintaining its initial functionality. 

After optimization, the system creates an intermediate 

version of the code to make it even clearer. The 

improved code is then run against the initial modular 

tests to ensure that it works properly and executes 

more efficiently. 

If everything goes well, the system transfers the 

optimized code to a new version control branch, 

allowing developers to view and merge changes with 

what they have prepared. 

This automated process not only improves code 

execution but also conserves computing power. By 

minimizing redundant operations, it reduces energy 

consumption and makes software development more 

streamlined, efficient, sustainable, and reliable. 

 

Figure 1: Energy Consumption Prediction 
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Figure 2: Sustainable Code Optimize 

4. Results 

This section discusses the results of our experiments on 

energy consumption prediction and code optimization. 

The models were compared in terms of their accuracy, 

performance, and efficiency in their respective tasks 

Energy Consumption Prediction 

Precise future energy demand forecasting is essential 

for efficient energy management. Conventional 

forecasting techniques have difficulty keeping up with 

the intricate and dynamic determinants of 

consumption, resulting in wasteful resource allocation 

and difficulty in incorporating renewable energy 

sources. To overcome these challenges, we created an 

artificial intelligence-based methodology based on 

Long Short- Term Memory (LSTM) networks to process 

past data, identify patterns, and produce accurate 

energy consumption forecasts. The outcomes, as 

shown in Figure 3, represent a comparison of actual 

versus forecasted CPU usage over time. The model 

accurately captures cyclic variations, thereby proving 

its efficacy in monitoring patterns. 

 

Figure 3: Comparison of actual and predicted CPU 

usage using LSTM. The actual values are represented 

in blue, while the predicted values are in red. 

Future work will investigate other models like Gated 

Re- current Units (GRU) and Transformer-based models 

for enhancing predictive precision. We will also 

incorporate real- time data streams for adaptive 

forecasting and utilize ensemble learning methods for 

reliable energy demand estimation. 

Sustainable Code Optimization 

The increasing energy demand in the technology 

industry is further worsened by inefficient software 

that takes up a lot of computational resources. To 

address this, we introduced an optimization framework 

based on Large Language Model (LLM) that scans and 

rewrites code to reduce runtime and memory 

consumption without sacrificing functionality. 

A comparative analysis between the Main Branch 

(original code) and the Optimized Branch (refactored 

version) is presented in Figures 4 and 5, respectively. 

The optimized code illustrates notable advancements 

over the initial implementation. Inefficient loops and 

redundant operations were eliminated, creating a more 

compact and effective implementation. Execution 

speed was improved through the use of native Python 

functions like set() and list comprehensions, and 

memory usage was minimized. In addition, the 

optimized code aligns with best coding conventions, 

and it is simpler to maintain and extend. 

The optimization procedure is incorporated into GitHub 

workflows with ease, facilitating the automatic 

improvement of code when submitted to a repository. 

This process checks the code for inefficiencies, 

restructures it for improved efficiency, and generates a 

new branch with the optimized code automatically. 

This methodology provides efficient version control 

while allowing developers to view and integrate 

improvements whenever necessary. 

Furthermore, we aspire to optimize the process further 

with the fine-tuning of an LLM particularly for software 

performance optimization and in researching 

reinforcement learning methods for adaptable code 

optimization. 

 

Figure 4: Code implementation from the Main Branch 

(original unoptimized version). 
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Figure 5: Code implementation from the Optimized 

Branch (refactored version). 

5. Conclusion and Future Scope 

This paper proposes a comprehensive method of 

improving the energy sustainability in the software 

industry, with help of AI-driven energy consumption 

prediction and sustainable code optimisation. 

Predictive AI models provide predictions of accurate 

energy consumption, so that tech companies and 

consumers can make informed decisions that maximize 

efficiency and promote green energy adoption. In 

addition, LLMs help create energy-efficient codes by 

reducing computational overheads by maintaining 

functionality, which reduces the environmental impact 

of computational hardware. 

Despite its effectiveness, this approach has numerous 

limits. The accuracy of energy consumption estimates 

is heavily reliant on the quality and precision of 

preceding data, which is not always accurate, reliable, 

and accessible. Code optimisation is challenging in 

many programming paradigms due to independent 

architecture and a lack of performance constraints 

making it difficult to optimize. Furthermore, large- scale 

implementation presents obstacles such as scalability, 

industry-specific constraints, and interaction with 

existing infrastructure. 

Future research will focus on expanding LLM 

integration for large-scale code optimisation across 

several programming languages, making sustainable 

coding practices more widely available. Automating the 

code refinement process in CI/CD pipelines and GitHub 

procedures will increase development efficiency by 

allowing for continuous integration and optimisation 

with minimal manual intervention. Furthermore, real-

time energy monitoring and adaptive feedback loops 

will enable prediction models to dynamically adjust 

optimisation strategies, matching code changes to 

actual energy consumption trends. Addressing these 

difficulties would aid in the development of 

autonomous, scalable, and sustainable software 

solutions, hence reducing computational waste and 

enhancing overall energy efficiency. 
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