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Abstract

With increasing energy demand, forecasting electricity usage is essential to advance sustainability and reduce

environmental effects. This study presents a new method to predict future trends in energy consumption, offering

significant insights for individuals and organizations looking to improve energy efficiency. The research additionally

includes large language models (LLMs) to generate energy-efficient software code, facilitating the creation of solutions

that save energy. This initiative helps to reduce energy consumption by converting current codebases into improved

versions with built-in version control. The results of this study emphasize the ability of innovative technologies to

promote sustainable methods and reduce the environmental impact of the tech industry.

Keywords: Predictive Energy Consumption, Large Language Model (LLM), Code Generation, Version Control,

Sustainability.

1. Introduction

The global shift towards sustainable energy practices
has become one of the most pressing challenges of the
21st century. As energy consumption continues to rise,
especially in industrial and technological sectors, the
need for advanced solutions to predict, optimize, and
reduce energy consumption has never been more
urgent. This rising demand for energy, coupled with the
environmental impact of fossil fuel dependence,
underscores the importance of transitioning to greener
practices and leveraging innovative technologies to
achieve this goal.

The use of Artificial Intelligence (Al), especially in
predictive modeling and optimization, has greatly
increased and evolved. Today, many of these solutions
are driven by how predictive models are trained. With
increasing volumes of data being generated, patterns
that were previously unknown can be recognized, and
Al can help in formulating strategies for future demand
forecasts and trend analysis. Al can also suggest Al-
driven targeting tactics to increase efficiency. With
these capabilities, combined with energy efficiency, Al
is transforming into an essential asset in the industrial,

public, and non-governmental sectors, with a strong
aim to reach sustainability targets.

This paper examines two key areas where Al can
revolutionize energy use: future energy consumption
prediction and sustainable code optimization driven by
large-scale language models (LLMs). Data-driven future
energy forecasting, using historical and real-time data
to predict energy usage, is crucial for accurate planning
of energy resources. Accurate forecasts help reduce
waste and support the integration of renewable energy
sources into the grid. Al-powered models, such as
machine learning and deep learning algorithms, have
demonstrated remarkable precision in this area,
providing decision- makers with actionable insights to
effectively balance supply and demand.

In addition to forecasting, the paper highlights the
trans- formative role of LLMs in sustainable software
development. With the rapid expansion of digital
infrastructure, software systems contribute
significantly to energy consumption. LLMs offer a novel
approach to sustainable code optimization by analyzing
and refactoring existing code to improve energy

efficiency.

537



Journal of Harbin Engineering University
ISSN: 1006-7043

Al for Future Energy Consumption Forecasting

Accurate predictions of energy use are essential for grid
management, resource allocation, and reducing energy
loss efficiently. Traditional energy demand forecasting
methods, such as statistical regression models and time
series analysis, have limited ability to adapt to complex
non-linear relationships within the data. Moreover,
they have struggled with integrating external factors,
such as climate change and energy production from
renewable sources. Al-powered models, especially
machine learning (ML) and deep learning (DL)
algorithms, offer a promising alternative by leveraging
vast amounts of historical data to identify more
accurate patterns and predictions.

Al-based models have been shown to improve the
accuracy of energy forecasting in sectors such as power
generation and distribution [1]. Machine learning
techniques, including neural networks, support vector
machines, and decision trees, have been applied to
forecast electricity demand, optimize power grids, and
even predict the potential of renewable energy sources
like solar and wind [2]. Research has demonstrated that
Al can adapt to the dynamic nature of energy
consumption, especially with the increasing reliance on
renewable sources and the unpredictability of their
output [3]. Furthermore, these models enable smarter
decision-making and proactive planning, reducing costs
and carbon footprints by ensuring that energy is used
efficiently and distributed optimally [4].

LLM-Powered Sustainable Code Optimization

The rising energy consumption of software systems—
especially in the context of cloud computing, Al, and big
data—presents a significant challenge for achieving
global sustainability goals. Inefficiently written
software, which consumes unnecessary computational
resources, contributes to the ever-growing energy
demands of the tech industry. Recent research
highlights that traditional software development
practices often overlook the environmental cost of
computing, resulting in wasteful code that significantly
impacts both energy consumption and operating
expenses [5].

In response, Large Language Models (LLMs), such as
GPT-3 and LLaMA, have emerged as powerful tools for
code optimization. These Al models can generate or
refactor code to enhance its efficiency, thereby
reducing the computational resources required to
execute it. LLM-powered code optimization can
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minimize energy consumption at the software level by
reducing runtime, memory usage, and the number of
operations [6]. Additionally, LLMs can identify and
suggest improvements for legacy codebases,
streamlining software performance without requiring
significant manual intervention. This process aligns
with the principles of green computing, which
advocates for the development of energy efficient
software, optimized hardware utilization, and
sustainable computational practices [7].

Recent studies have also shown the potential of LLMs
to revolutionize the approach to green software
development. For instance, the integration of energy
metrics such as runtime energy usage, memory
consumption, and computational over- head into Al
models can result in more energy-efficient soft- ware
that aligns with sustainability goals [8]. These
approaches contribute to minimizing the carbon
footprint of software systems, which is becoming an
essential consideration in the development of next-
generation technologies.

2. Proposed Methodologies

The methodology for this project is divided into two
main components: Al-based Energy Consumption
Forecasting and LLM-based Sustainable Code
Generation.

Al based Energy Consumption Forecasting

This phase involves designing and training predictive
models to forecast future energy consumption based
on historical data. The following steps outline the
methodology:

Data Collection and Preprocessing

e Data Sourcing: Historical energy consumption data
is sourced from reliable sources such as smart
meters, energy providers, or public datasets [1].
The data typically includes variables like CPU
usage, memory consumption, power source type
(e.g., battery or AC), duration of system activity,
and other relevant parameters. Gathering diverse
and accurate data is essential for the model’s
predictive capabilities.

e Data Cleaning: Anomalies, missing values, and
outliers are addressed to ensure data consistency.
This preprocessing step eliminates noise that
could otherwise skew the model’s predictions [2].

e Feature Engineering: New features are created to
capture trends in the data, such as peak
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consumption hours, day-of-week patterns, and
external influences like weather or economic
activity. Feature engineering ensures the model
can capture important patterns and improve its
prediction accuracy [3].

e Normalization and Scaling For each raw feature X,
we use min-max scaling: [21], [22]

X—Xmin
Xnorm -

(1)

Xmax—Xmin

or z-score normalization: [21], [22]

X_
Xoom = —% (2)

ox

where px is the mean and ox the standard deviation.

e Feature Extraction A new feature Fi can be defined
as a function of raw inputs. For instance: [23]

Fpeak(t) = I{t € [tstart' tend]} ) X(t) (3)
where /is an indicator function.

e Qutlier Detection and Cleaning A data point X(t) is
flagged as an outlier if: [24], [25]
[X(t) - pt| >k - ot (4)
with k as a threshold (typically 2 or 3).
Model Selection and Training

e Training the Model: The dataset is divided into
training and validation sets. The model is trained
on the training set, and hyperparameters are
adjusted for optimal performance. Cross-
validation is employed to prevent overfitting and
to ensure generalizability across different datasets
[4].

e Hyperparameter Tuning: Hyperparameters are
fine- tuned using techniques like grid search or
random search to improve prediction accuracy.
Proper tuning ensures the model is well-adjusted
to different conditions and im- proves the
precision of its energy consumption forecasts [5].

Model Evaluation

e Performance Metrics: The model’s performance is
evaluated using various metrics such as Mean
Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE). These
metrics help determine how accurately the model
can forecast energy consumption [6].

e Model Validation: The model is validated using
unseen test data. Predictions are compared
against actual consumption values, and back
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testing is conducted to assess the model’s long
term performance [7].
e Loss Function (Mean Squared Error)

L(®) =~ M (v — F(x;:0))° (5)
[26] where f (xi; 8) is the model prediction.

e Gradient Descent Update Rule [27]
8D = 9 — V4L (8®) (6)
where n is the learning rate.

e Mean Absolute Error (MAE) [28]
MAE =311 ly; — f (x;; 0)) (7)

e Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE)

2
MSE = =3 (v — f (x:; 6)) (8)
RMSE = VMSE (9)
Deployment

e Model Deployment: After successful validation,
the model is deployed into a real-time
environment where it can provide continuous
energy consumption forecasts. This can be
integrated into energy management systems used
by organizations or individuals [8].

Workflow

e Historical energy data is collected, cleaned, and
enhanced through feature engineering. Predictive
models are then trained, fine-tuned, and
evaluated using metrics like MAE and RMSE to
ensure accuracy and robustness.

e The validated model is deployed in real-time
environments, providing continuous energy
forecasts to support proactive energy
management and sustainability efforts

LLM-Based Sustainable Code Optimization

This phase focuses on generating energy-efficient
software

code using large language models (LLMs). The following
steps outline the approach for this component:

Model Deployment

e Local Setup: A pretrained LLM is set up locally, al-
lowing the system to process code without relying
on cloud infrastructure. This local setup ensures
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seamless integration with version control systems
such as GitHub, making the process more efficient
and secure [10].

An energy or efficiency score S can be defined as:
S=aT+BM+yO (10)

where:

S is the energy or efficiency score.
T is the runtime of the code.

M is the memory consumption of the code.

O is the operational cost (e.g., CPU usage, power
consumption).

e q, B, y are weighting factors for runtime, memory,
and operational cost.

Automated Code Processing

e Code Analysis: When a developer pushes new
code to GitHub, the LLM automatically analyzes
the changes. The model identifies potential
inefficiencies, focusing on areas where energy
consumption can be reduced, such as optimizing
algorithms, data structures, or operations [11]. By
automating this step, the model helps developers
enhance code efficiency with minimal manual
effort.

Efficiency Improvement Ratio [11]

AT — Told—Thew (11)
Told

AM — MoIcIJW_OII‘:new (12)

where:

e AT is the improvement ratio in runtime.

e Tod is the runtime before optimization.

® Thew is the runtime after optimization.

e AM is the improvement ratio in memory
consumption.

e Mog is the memory consumption before
optimization.

® Mnew is the memory consumption after
optimization.

3) Optimized Code Generation

e Optimization: The LLM processes the existing code
and generates an optimized version that
maintains the same functionality but reduces
resource usage. This involves refactoring the code
to use more efficient algorithms, improve memory
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management, and reduce runtime, ultimately
making the software more energy-efficient [12].

Optimization Score =A AT + (1 - A) AM (13)
where:

e Optimization Score indicates the overall efficiency
improvement.

e A is the trade-off parameter (determines
importance of runtime vs memory).

e 1-Aisthe complementary trade-off parameter for

memory consumption.
e 0<A<1balances runtime and memory trade-offs.
Version Control

e Commit and Review: The optimized code is
automatically committed as a new version in the
GitHub repository. Developers can review the
changes, compare the original code with the
optimized version, and decide whether to merge
or modify the changes further. This ensures that
developers maintain control over the quality and
energy efficiency of the code [13].

Change Ratio = L"""L_ﬂ (14)
old

where:

e Change Ratio represents the ratio of reduced lines
of code after optimization. A higher Change Ratio
indicates greater code efficiency improvements,
leading to reduced computational overhead and
improved maintainability.

® Lo is the number of lines of code before
optimization, representing the original,
unoptimized implementation.

® Lnew is the number of lines of code after
optimization, reflecting the improved version with
reduced redundancy and enhanced efficiency.

e A higher Change Ratio suggests that significant
improvements have been made, such as removing
redundant computations, simplifying logic, or
adopting more efficient algorithms.

Workflow

e A pretrained LLM is set up locally for seamless
integration with version control systems, enabling
efficient and secure code analysis without relying
on cloud infrastructure.

e The LLM automatically analyzes code pushed to
GitHub, identifying inefficiencies, and generating
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optimized versions that reduce energy
consumption while maintaining functionality.

e The optimized code is committed as a new version
in the repository, allowing developers to review,
compare, and merge changes, ensuring quality
and energy efficiency.

3. System Architecture

Like everything else in a technology-driven industry,
energy consumption prediction and sustainable code
optimization strategies aim to save resources and
improve sustainability. Their structures are illustrated
in Figure 1 and Figure 2, respectively. Both modules
utilize machine learning technologies and optimally
trained large language models to achieve higher
accuracy and optimization, ensuring enhanced energy
efficiency and software sustainability.

The energy consumption prediction component helps
reduce resource consumption by forecasting energy
usage patterns, allowing organizations to implement
effective energy-saving strategies. Meanwhile, the
code optimization component minimizes redundant
computations, reducing execution time and overall
system load. The integration of these two components
enables the system to make intelligent decisions,
optimizing the performance of the infrastructure while
enhancing the efficiency of the software. With these Al-
based techniques, organizations can achieve a balanced
trade-off between efficiency and sustainability.
Through predictive insights into energy usage,
companies can dynamically allocate resources

Energy Consumption Prediction

As seen in Figure 1, the system leverages historical
energy consumption data to predict future usage
patterns. The system starts with a tabular database of
energy-related parameters collected from data canters,
network devices, and computing systems. The raw data
is pre-processed to eliminate inconsistencies, handle
missing values, and normalize features to enhance
model accuracy.

The model derives insightful features from past energy
consumption data, which are provided as inputs to a
machine learning program. By detecting patterns and
associations, the model forecasts future energy
demand, helping organizations maximize resource
utilization, minimize operational expenses, and
implement environmentally friendly computing
practices. The predictive system also assists data-driven
decision making, allowing companies to regulate peak
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energy usage in advance and reduce their carbon
impact. Additionally, the system continuously makes
predictions, including new data over time. This
adaptive approach ensures that predictions re- main
accurate even when energy consumption patterns
evolve. By leveraging real-time insights, organizations
can actively coordinate their strategies to further
optimize efficiency and sustainability.

Sustainable Code Optimization

Figure 2 shows how the system optimizes code to
increase its efficiency without changing its
functionality. The process begins when the developer
presents their source code and its modular verification
tests. The system extracts this version from a version
control system, such as GitHub, and submits it to an
automated pipeline for optimization.

The system first scans the code, analyses its structure,
and finds inefficiencies such as over-computation,
unnecessary loops, slow logic, and more. Additionally,
a pre-trained large language model (LLM) optimizes the
code, simplifies complex logic, eliminates redundancy,
and intelligently accelerates execution while
maintaining its initial functionality.

After optimization, the system creates an intermediate
version of the code to make it even clearer. The
improved code is then run against the initial modular
tests to ensure that it works properly and executes
more efficiently.

If everything goes well, the system transfers the
optimized code to a new version control branch,
allowing developers to view and merge changes with
what they have prepared.

This automated process not only improves code
execution but also conserves computing power. By
minimizing redundant operations, it reduces energy
consumption and makes software development more
streamlined, efficient, sustainable, and reliable.
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Figure 1: Energy Consumption Prediction
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Figure 2: Sustainable Code Optimize

4. Results

This section discusses the results of our experiments on
energy consumption prediction and code optimization.
The models were compared in terms of their accuracy,
performance, and efficiency in their respective tasks

Energy Consumption Prediction

Precise future energy demand forecasting is essential
for efficient energy management. Conventional
forecasting techniques have difficulty keeping up with
the intricate and dynamic determinants of
consumption, resulting in wasteful resource allocation
and difficulty in incorporating renewable energy
sources. To overcome these challenges, we created an
artificial intelligence-based methodology based on
Long Short- Term Memory (LSTM) networks to process
past data, identify patterns, and produce accurate
energy consumption forecasts. The outcomes, as
shown in Figure 3, represent a comparison of actual
versus forecasted CPU usage over time. The model
accurately captures cyclic variations, thereby proving
its efficacy in monitoring patterns.

1e6

— Actual Avg CPU
—— Predicted Avg CPU

CPU Usage

$
P

Data Samples

o
&
>

Figure 3: Comparison of actual and predicted CPU
usage using LSTM. The actual values are represented
in blue, while the predicted values are in red.

Future work will investigate other models like Gated
Re- current Units (GRU) and Transformer-based models
for enhancing predictive precision. We will also
incorporate real- time data streams for adaptive
forecasting and utilize ensemble learning methods for
reliable energy demand estimation.
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Sustainable Code Optimization

The increasing energy demand in the technology
industry is further worsened by inefficient software
that takes up a lot of computational resources. To
address this, we introduced an optimization framework
based on Large Language Model (LLM) that scans and
rewrites code to reduce runtime and memory
consumption without sacrificing functionality.

A comparative analysis between the Main Branch
(original code) and the Optimized Branch (refactored
version) is presented in Figures 4 and 5, respectively.

The optimized code illustrates notable advancements
over the initial implementation. Inefficient loops and
redundant operations were eliminated, creating a more
compact and effective implementation. Execution
speed was improved through the use of native Python
functions like set() and list comprehensions, and
memory usage was minimized. In addition, the
optimized code aligns with best coding conventions,
and it is simpler to maintain and extend.

The optimization procedure is incorporated into GitHub
workflows with ease, facilitating the automatic
improvement of code when submitted to a repository.
This process checks the code for inefficiencies,
restructures it for improved efficiency, and generates a
new branch with the optimized code automatically.
This methodology provides efficient version control
while allowing developers to view and integrate
improvements whenever necessary.

Furthermore, we aspire to optimize the process further
with the fine-tuning of an LLM particularly for software
performance optimization and in researching
reinforcement learning methods for adaptable code
optimization.

def process_data(data):
unique_data = []
for item in data:
if item not in unique_data:
unique_data.append(item)
unique_data.sort(reverse=True)
total_sum = @
for value in unique_data:
total_sum += value
average = total_sum / len(unique_data) if len(unique_data) > 0 else 8
for i in range(len(unigue_data)):
if unique_data[i] < @:
unique_data[i] = @
str_data = "'
for num in unique_data:
str_data += str(num) + ', '
return unique_data, total_sum, average, str_data

Figure 4: Code implementation from the Main Branch
(original unoptimized version).
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def process_data(data):
unique_data = sorted(set(data), reverse=True)
total_sum = sum(unique_data)
average = total_sum / len(unique_data) if len(unique_data) > 0 else ©
unique_data = [num if num >= @ else B for num in unique_data]
str_data = ",".join(map(str, unique_data))
return unique_data, total_sum, average, str_data

Figure 5: Code implementation from the Optimized
Branch (refactored version).

5. Conclusion and Future Scope

This paper proposes a comprehensive method of
improving the energy sustainability in the software
industry, with help of Al-driven energy consumption
prediction and sustainable code optimisation.
Predictive Al models provide predictions of accurate
energy consumption, so that tech companies and
consumers can make informed decisions that maximize
efficiency and promote green energy adoption. In
addition, LLMs help create energy-efficient codes by
reducing computational overheads by maintaining
functionality, which reduces the environmental impact

of computational hardware.

Despite its effectiveness, this approach has numerous
limits. The accuracy of energy consumption estimates
is heavily reliant on the quality and precision of
preceding data, which is not always accurate, reliable,
and accessible. Code optimisation is challenging in
many programming paradigms due to independent
architecture and a lack of performance constraints
making it difficult to optimize. Furthermore, large- scale
implementation presents obstacles such as scalability,
industry-specific constraints, and interaction with
existing infrastructure.

Future research will focus on expanding LLM
integration for large-scale code optimisation across
several programming languages, making sustainable
coding practices more widely available. Automating the
code refinement process in Cl/CD pipelines and GitHub
procedures will increase development efficiency by
allowing for continuous integration and optimisation
with minimal manual intervention. Furthermore, real-
time energy monitoring and adaptive feedback loops
will enable prediction models to dynamically adjust
optimisation strategies, matching code changes to
actual energy consumption trends. Addressing these
difficulties would aid in the development of
autonomous, scalable, and sustainable software
solutions, hence reducing computational waste and
enhancing overall energy efficiency.
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