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ABSTRACT 

The vulnerability of existing structures to seismic events highlights the need for proactive measures to enhance 

resilience and mitigate damage. Retrofitting and strengthening techniques have become essential strategies to 

reinforce structures against seismic loading, ensuring their ability to withstand and recover from such events. 

This paper investigates the application of advanced techniques in retrofitting and strengthening existing 

structures to improve their seismic resilience. It presents a comprehensive review of current methodologies and 

technologies, including fibre-reinforced polymers (FRP), base isolation systems, and dampers, which have 

demonstrated their effectiveness in improving structural performance under seismic forces. These advanced 

techniques offer significant benefits, such as a high strength-to-weight ratio, flexibility, and energy dissipation, 

making them viable for enhancing the resilience of existing buildings. The integration of new materials and 

technologies with traditional retrofitting methods is explored to optimize performance and cost-effectiveness. 

Case studies of retrofitted structures using advanced techniques are analyzed, showcasing their real-world 

performance. Computational modeling and simulation techniques predict the behavior of retrofitted structures, 

offering valuable insights into their durability. The paper also addresses challenges like material compatibility, 

logistics, and cost considerations. Collaboration among engineers, architects, and stakeholders is crucial for the 

success of retrofitting projects. By leveraging innovative technologies like Geopolymer and Glass Fibre-

Reinforced Polymer (GFRP), structures can be fortified to withstand seismic events, ensuring the safety of lives 

and infrastructure. 

Keywords: Retrofitting, Seismic Loading, Resilience, Advanced Techniques, Glass Fiber-Reinforced Polymers 

(GFRP), Geopolymer, Base Isolation Systems. 

I. Introduction 

Seismic resilience in construction is a critical aspect, 

particularly for regions prone to earthquakes. It is 

the ability of a building or structure to withstand 

seismic forces, recover from damage, and minimize 

both immediate and long-term consequences. This 

resilience ensures the safety of occupants and the 

preservation of the built environment. Recently, 

seismic resilience has gained increased attention as 

a beyond-code approach to building design and 

construction. Retrofitting and strengthening 

techniques have been developed to enhance 

seismic resilience, ensuring that buildings can 

endure seismic loading without significant damage. 

However, seismic retrofitting does not guarantee 

immediate functionality post-event. The recovery 

of a building's functionality is influenced by several 

factors, including the intensity of the earthquake 

and the vulnerability of both structural and non-

structural elements. Resilience is typically 

quantified using a recovery function, which models 

the time it takes for a building to return to full 

functionality after an earthquake. This process 

includes downtime, delay time (DT) for repairs, and 

repair time (TRE), all of which can significantly 

influence recovery speed. In addition to retrofitting, 
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integrated seismic and energy retrofitting 

strategies are becoming increasingly relevant. 

These strategies consider the annualized expected 

value of recovery time, helping in reducing 

operational downtime and improving building 

performance in the face of seismic events. By 

incorporating advanced materials such as 

Geopolymer and Glass Fiber Reinforced Polymer 

(GFRP), buildings can be retrofitted to withstand 

seismic loading more effectively. These materials 

not only provide enhanced strength and durability 

but also offer sustainable, low-carbon alternatives 

to traditional methods. 

Thus, the seismic resilience of buildings is not only 

about withstanding immediate forces but also 

about ensuring efficient recovery through 

advanced retrofitting techniques and a 

comprehensive understanding of the recovery 

process, from initial damage to full operational 

restoration. The integration of modern 

technologies and interdisciplinary collaboration 

among engineers, architects, and policymakers is 

crucial to enhancing the resilience of existing 

structures and minimizing risks associated with 

seismic events. 

Ii. Related Work 

Delbaz Samadian et al. (2019): This study evaluates 

the seismic resilience of a retrofitted Iranian school, 

demonstrating how retrofitting improves structural 

vulnerability and reduces damage, with a focus on 

realistic vulnerability curves for assessing 

resilience. Foad Kiakojouri et al. (2022): This paper 

discusses the necessity of strengthening and 

retrofitting techniques to prevent progressive 

collapse, considering various factors such as 

structural topology and triggering events, offering a 

review of methods to mitigate such failures. 

Sandhya Chandrasekaran et al. (2015): This study 

uses a multi-objective evolutionary algorithm to 

optimize bridge retrofitting configurations, 

focusing on resilience and retrofit cost, with 

materials like steel, carbon fiber, and glass fiber 

composites. Fardad Haghpanah et al. (2017): A 

comparison of three retrofitting methods (base 

isolation, concrete jacketing, and steel jacketing) 

for a school building highlights the need for 

incorporating sustainability into seismic retrofitting 

to meet future earthquake resilience goals. 

Smith, J., & Johnson, A et al. (2020): A review of 

fiber optic sensors in structural health monitoring 

(SHM) discusses their advantages and limitations in 

detecting structural defects, offering a reliable 

method for monitoring civil infrastructure. Brown, 

L., & Davis, R et al. (2019): This paper reviews 

machine learning applications in SHM, focusing on 

algorithms like SVM and neural networks for 

analyzing sensor data to detect structural damage 

and predict the remaining useful life of 

infrastructure. TP Sathishkumar et al. (2014): Glass 

Fiber Reinforced Polymer (GFRP) composites are 

discussed for their mechanical properties, 

corrosion resistance, and lightweight nature, with a 

focus on their applications in automotive, 

aerospace, civil engineering, and other industries. 

A. Avci et al. (2004): This study investigates the 

fracture behavior of GFRP composites under 

various loading conditions, providing insights into 

their mechanical performance and failure 

mechanisms. 

Brahim Benmokrane et al. (2002): Accelerated 

aging tests on GFRP reinforcing bars demonstrate 

the impact of alkaline environments and moisture 

on their strength, showing different stress 

corrosion mechanisms. M R Sanjay et al. (2017): The 

development of hybrid composites combining 

natural and glass fibers for improved mechanical 

strength and environmental sustainability is 

reviewed, highlighting the benefits of such 

materials in engineering applications. Dipen Kumar 

Rajak et al. (2021): This review on GFRP and CFRP 

composites presents their manufacturing 

techniques, mechanical properties, and 

applications, emphasizing their advantages in high-

performance engineering. A.T. DiBenedetto et al. 

(2001): Research on the characterization of 

interfaces in GFRP composites is presented, 

focusing on how the bond between the polymer 

matrix and fiber reinforcement affects the 

material's mechanical properties and durability. 

Priyadarsini Morampudi et al. (2021): A 

comprehensive review of GFRP composites 

examines their mechanical properties, durability, 

and manufacturing processes, with a focus on their 

use in applications requiring high strength and 

corrosion resistance. Meltem Altin Karatas et al. 

(2018): This paper reviews the machinability 

properties of CFRP and GFRP composites, 
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highlighting challenges in their machining and the 

failure mechanisms during manufacturing. Ashish 

Kumre et al. (2017): This review explores the use of 

hybrid composites combining natural fibers like 

sisal with GFRP to enhance mechanical properties, 

discussing their applications in engineering and 

technology. 

III. CASE STUDY RETTROFITTING 

Case Study I- Gera Terraces 

Gera Terraces, a premium residential project in 

Viman Nagar, Pune, developed by Gera 

Developments Pvt. Ltd., faced issues such as water 

seepage, plumbing pipe deterioration, and cracks in 

external plaster. The retrofit and repair work 

included removing broken balcony plaster and 

applying new plaster, waterproofing, and touch-up 

painting, with a total estimated cost of ₹145,500. 

After completing the work, including debris 

disposal and minor repairs, the final invoice 

amounted to ₹130,000, reflecting an 80% 

completion of cement painting and waterproofing 

tasks. 

    

    

    

Fig 1 Structural Damage and Repair Images of Gera Terraces 

Case Study II - The Versatile Group Enterprise 

The Versatile Group Enterprise, based in Pune, 

specializes in structural rehabilitation, retrofitting, 

and waterproofing services. They provided 

structural rehabilitation for Cipla Pharmaceutical 

Ltd. over a 6-month period, including damage 

assessment, reinforcement of compromised 

structures, and waterproofing solutions, ensuring 

minimal disruption to operations. The project 

enhanced the facility's structural integrity and met 

safety standards. Services offered include structural 

rehabilitation at ₹500 per square meter, with 

various retrofitting methods such as jacketing, FRP 

wrapping, and micro-concreting. Post-retrofit 

evaluations showed significant improvements in 

structural stability, safety, and visual appearance. 



  

 

 

255 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 9 

   September 2025 

   

Fig 2 Retrofitting Process and Service Overview 

Case Study III Nad sunbeda  

NAD (Naval Armament Depot) in Sunabeda, Odisha, 

is a critical defense facility responsible for the 

storage, inspection, maintenance, and supply of 

naval ammunition and weaponry, supporting the 

Indian Navy's operational readiness. Sunabeda is 

also home to Hindustan Aeronautics Limited (HAL), 

contributing to its strategic significance. A 

structural integrity assessment of the buildings at 

NAD, Sunabeda, conducted by IIT Madras, revealed 

issues like spalling, reinforcement corrosion, and 

cracks. Various tests such as Rebound Hammer, 

Ultra Pulse Velocity, and Core Drilling were 

performed, highlighting the need for repairs to 

ensure safety and structural longevity. 

   

   

Fig 3 Structural Integrity and Maintenance Tasks 

   

   

Fig 4 Structural Damage and Deterioration at NAD Sunabeda 
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IV. RESEARCH METHODOLOGY 

 

Fig 5 Flowchart 

Material properties 

Table 1 Key Material Properties 

 

Seismic analysis of the building 

  

  

 

Fig 6 Seismic Load Analysis and Load 

Combinations 

The fig 6 represent different load components 

analyzed in seismic studies for building design. 

Dead load accounts for the permanent, static 

weight of the building's structure and components, 

which remains constant. Live load refers to the 

variable forces, such as occupants, furniture, and 

equipment, that change over time. Earthquake 

load the dynamic forces generated during seismic 

events, which can significantly affect the building's 

stability. Load combination integrates these loads 

to assess the building’s overall response to various 

forces, ensuring structural safety and performance 

under all conditions. 

Retrofitting of the Structure 

 Seismic events pose a significant threat to 

structures, necessitating robust retrofitting 

strategies to enhance seismic resilience and overall 

structural performance. The following comparative 

analysis critically evaluates the three mentioned 

retrofitting techniques by examining key technical 

parameters and performance indicators. These 

observations will subsequently be attempted to 

results and conclusions

modelling  and analysisiden of critical beam-
column connection

retrofitting of critical 
beam column 

connection with 
conventional, gfrp & 

geo polymer

collection of data; information

study of 
geopolymer 
properties

ansys 
information

structural 
audit of 

building under 
consideration

study of literature

study of previous researches  through available 
literature (research papers)

Property GFRP Geopolymer 

Modulus of 

elasticity in 

KN/m2 

2.1*105 3.0*105 

Poisson’s ratio 0.26 0.3 

Shear modulus in 

KN/m2 

1520 1500 

Density in KN/m3 17.3 26.5 
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correlate in the upcoming sections of the paper 

using analytical results. A few examples of 

retrofitting using various techniques under 

consideration are as under: 

    

Conventional 

        

                       With GFRP bars   

                     

With Geopolymer 

V. RESULT AND DISCUSSION 

Key Structural Properties for Comparative Analysis 

of Retrofitting Techniques 

In evaluating retrofitting technologies, several 

structural properties are crucial, such as total 

deformation, equivalent elastic stress, and strain. 

Total deformation helps assess displacement 

under external loads, critical for structural stability. 

Equivalent elastic stress and strain measure stress 

distribution and material deformation, guiding the 

selection of effective retrofitting materials. Normal 

stress and shear stress analysis helps understand 

force distribution in building components, while 

elastic strain evaluates a material’s ability to resist 

stress without permanent damage. The 

comparative analysis of Geopolymer, GFRP, and 

conventional retrofitting technologies assesses 

these properties, ensuring optimal structural 

performance and resilience. 

   

      Model with Geopolymer 

 

Total Deformation 

 

Equivalent Elastic Strain 

 

       Model with GFRP 

 
Total Deformation 
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Equivalent Elastic Strain 

 

       Conventional Model 
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Comparative Analysis of Key Structural Properties 

in Retrofitting Techniques 

 

Fig 7 Comparison of Equivalent Elastic Strain in 

Beam-Column Joints 

This fig 7 presents the equivalent elastic strain in 

beam-column joints made from different materials: 

Geopolymer, GFRP, and Conventional concrete. 

The strain values indicate the deformation under 

applied stress. The conventional beam-column joint 

shows significantly higher strain (0.0010129) 

compared to the geopolymer (0.00016353) and 

GFRP (0.00017953) joints, implying that the 

conventional material has a lower resistance to 

deformation. This suggests that Geopolymer and 

GFRP offer better structural performance and can 

potentially be used in the design of more resilient 

multi-story RC buildings for extended life prediction 

and improved safety. 

 

Fig 8 Total Deformation Comparison for Different 

Beam-Column Joints 

The fig 8 illustrates the total deformation (in mm) 

for three types of beam-column joints: 

Geopolymer, GFRP, and Conventional. The total 

deformation for the conventional beam-column 

joint is significantly higher (2.1918 mm) compared 

to the Geopolymer (0.1592 mm) and GFRP (0.16688 

mm) joints. This highlights the better performance 

of Geopolymer and GFRP materials in minimizing 

structural deformation. The findings emphasize the 

potential of these materials for enhancing the 

durability and load-bearing capacity of multi-story 

reinforced concrete (RC) buildings, aligning with the 

goal of implementing structural health monitoring 

and life prediction using FEM for steel structures. 

 

Fig 9 Equivalent Stress in Beam-Column Joints 

The bar chart presents the equivalent stress values 

for three different types of beam-column joints: 

Geopolymer, GFRP, and Conventional. The results 

highlight that the conventional beam-column joint 

experiences the highest equivalent stress at 27.643 

MPa, indicating a significantly higher stress 

concentration compared to the Geopolymer and 

GFRP joints, which have equivalent stresses of 

5.8254 MPa and 4.7334 MPa, respectively. This 

suggests that alternative materials like Geopolymer 

and GFRP could offer better stress distribution and 

structural performance, potentially enhancing the 

durability of multi-story reinforced concrete (RC) 

buildings. The data supports the need for efficient 

structural health monitoring and life prediction 

strategies. 

Response of Beam-Column Joints to Uniform 

Loading for Retrofitting Techniques 

In our analysis of beam-column joints under 
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uniform loading, three retrofitting methods—

GFRP-based, Geopolymer-based, and 

Conventional—were studied for their effectiveness 

in reducing stress and enhancing joint resilience. 

GFRP-based retrofitting exhibited significant 

reduction in equivalent stress, attributed to its high 

strength-to-weight ratio and corrosion resistance, 

which allowed for effective load distribution and 

minimal deformation under stress. This 

demonstrated GFRP's potential to mitigate failure 

risks and improve structural durability. 

Geopolymer-based retrofitting, while also 

reducing stress, showed slightly less effectiveness 

compared to GFRP. The unique bonding properties 

of geopolymers helped to enhance the joint's load-

bearing capacity and provide increased stability. On 

the other hand, conventional retrofitting involving 

steel bars and concrete displayed less favorable 

results, with a higher degree of deformation and 

limited ability to mitigate stress, indicating that 

conventional materials may not be as effective 

under dynamic loading conditions. 

Comparison of Key Retrofitting Properties for 

Seismic Resilience 

The comparative analysis of GFRP, Geopolymer, 

and Conventional retrofitting techniques highlights 

distinct differences in their ability to enhance 

seismic resilience. GFRP offers a high strength-to-

weight ratio and excellent corrosion resistance, 

although it may have limitations in ductility and 

energy dissipation during seismic events. Despite 

these challenges, GFRP provides a significant 

improvement in seismic performance due to its 

lightness and ability to absorb seismic energy. 

Geopolymer-based retrofitting stands out for its 

superior compressive strength, chemical 

resistance, and seismic ductility, making it ideal for 

high seismic resilience. Its environmental benefits, 

such as reduced carbon footprint, further enhance 

its sustainability. In contrast, Conventional 

retrofitting, while proven to provide seismic 

resistance, often suffers from drawbacks such as 

increased weight, corrosion over time, and lack of 

energy dissipation capacity. Overall, GFRP and 

Geopolymer offer superior long-term benefits for 

seismic resilience, while conventional techniques 

may require more maintenance and have reduced 

effectiveness in dynamic conditions. 

VI. CONCLUSION 

In our comprehensive study to identify the critical 

beam-column joint in the G+3 RC structure, 

advanced STAAD.Pro software was employed to 

accurately locate the pivotal junction, facilitating a 

thorough structural audit. The audit focused on 

evaluating the building's performance under 

extreme shear forces and bending moments. Our 

comparative analysis, enhanced by Finite Element 

Method (FEM) analysis, revealed that Glass Fiber 

Reinforced Polymer (GFRP) retrofitting resulted in 

the lowest equivalent stress, followed by 

Geopolymer-based retrofitting, both of which 

outperformed conventional retrofitting techniques. 

In terms of equivalent strain, Geopolymer-based 

retrofitting demonstrated superior results, closely 

followed by GFRP, while conventional methods 

showed higher strain values, indicating less 

favorable performance. Additionally, disparities in 

total deformation were evident, with Geopolymer-

based solutions achieving the best outcomes, 

followed by GFRP. Both modern retrofitting 

methods also showed significant improvements in 

load-carrying capacity compared to conventional 

techniques. Ultimately, our findings validated that 

GFRP and Geopolymer retrofitting not only 

enhanced structural strength and longevity but also 

bolstered seismic resilience, extending the 

building’s lifespan by approximately 8-10 years, 

ensuring continued safety and performance. 
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