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Abstract 

        In this paper, vertex geodetic number of a fuzzy graph is introduced. Let 𝑥 be a vertex of a connected non-

trivial fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇). A set 𝑆 of vertices of 𝐺 is 𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 if each vertex 𝑢 of  𝐺 lies on  𝑥 − 𝑦 

geodesic in 𝐺 for some element 𝑦 in 𝑆. The minimum cardinality of  𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 of 𝐺 is defined as  𝑥 −

𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝐺 and is denoted by 𝑔𝑛𝑥(𝐺). A  𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 of cardinality 𝑔𝑛𝑥(𝐺) is called  𝑔𝑛𝑥(𝐺) −

𝑠𝑒𝑡 of 𝐺. 
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1. Introduction: 

                 Zadeh in 1965[15] developed a 

mathematical phenomenon for describing the 

uncertainties prevailing in day-to-day life 

situations by introducing the concept of fuzzy sets. 

The theory of fuzzy graphs was later on developed 

by Rosenfeld in the year 1975[12]. A fuzzy graph is 

a triplet 𝐺: (𝑉, 𝜎, 𝜇) where 𝑉 is a vertex set, 𝜎 is a 

fuzzy subset on 𝑉 and 𝜇 is a fuzzy relation on 𝜎 such 

that 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦)∀𝑥, 𝑦 ∈ 𝑉. We assume 

that 𝑉 is finite and nonempty, 𝜇 is reflexive and 

symmetric. In all the examples 𝜎 is chosen suitably. 

Also we denote the underlying crisp graph by 

𝐺∗: (𝜎∗, 𝜇∗)  where 𝜎∗ = {𝑥 ∈ 𝑉: 𝜎(𝑥) > 0} 

and 𝜇∗ = {(𝑥, 𝑦) ∈ 𝑉 × 𝑉: 𝜇(𝑥, 𝑦) > 0}. Here we 

take 𝜎∗ = 𝑉. For basic fuzzy graph theoretic 

terminology we refer to Nagoorgani and 

Chandrasekaran VT [11]. A fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) 

is a complete fuzzy graph if 𝜇(𝑥, 𝑦) ≤ 𝜎(𝑥)⋀𝜎(𝑦) 

for every 𝑥, 𝑦 ∈ 𝜎∗.  

            A path  𝑃 of length 𝑛 is sequence of distinct 

vertices𝑢0, 𝑢1, … . , 𝑢𝑛 such that 𝜇(𝑢𝑖−1, 𝑢𝑖) > 0, 𝑖 =

1,2, … , 𝑛 and the degree of membership of a 

weakest arc is defined as its strength. The path 

becomes cycle if 𝑢0 = 𝑢𝑛, 𝑛 ≥ 3 and a cycle is called 

a fuzzy cycle if it contains more than one weakest 

arc. The strength of connectedness between two 

vertices 𝑥 and 𝑦 is defined as the maximum of the 

strength of all path between 𝑥 and 𝑦 and it is 

denoted by 𝐶𝑂𝑁𝑁𝐺(𝑥, 𝑦). An arc of a fuzzy graph is 

called strong if its weight is at least as great as the 

connectedness of its end vertices when it is deleted  

and a 𝑥 − 𝑦 path is called a strong path if 𝑃 contains 

only strong arcs. A connected fuzzy graph 

𝐺: (𝑉, 𝜎, 𝜇) is called fuzzy tree if it has a spanning 

fuzzy sub graph 𝐹: (𝑉, 𝜎, 𝜐), which is a tree such 

that for all arcs 𝑥, 𝑦 not in 𝐹, 𝐶𝑂𝑁𝑁𝐹(𝑥, 𝑦) >

𝜇(𝑥, 𝑦). A fuzzy star is a fuzzy tree whose unique 

maximum spanning tree is a star. A fuzzy graph 

𝐺: (𝑉, 𝜎, 𝜇) is a fuzzy bipartite if it has a spanning 

fuzzy sub graph 𝐻: (𝑉, 𝜏, 𝜋) which is bipartite 

where for all edge (𝑥, 𝑦) not in 𝐻, weight of (𝑥, 𝑦) in 

𝐺 is strictly less than the strength of pair (𝑥, 𝑦) in 𝐻. 

A fuzzy cut vertex 𝑤 is a vertex in 𝐺: (𝑉, 𝜎, 𝜇)  whose 

removal reduces the strength of connectedness 

between some pair of vertices in 𝐺: (𝑉, 𝜎, 𝜇). 

If 𝜇(𝑥, 𝑦) > 0, then 𝑢 and 𝑣are called neighbors. A 

fuzzy bipartite graph  𝐺 with fuzzy bipartite (𝑉1, 𝑉2) 

is said to be a complete fuzzy bipartite if for each 

node of 𝑉1, every vertex of 𝑉2 is a strong neighbor. A 

vertex 𝑢 in a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is extreme in 

𝐺: (𝑉, 𝜎, 𝜇)if 𝑁𝐺[𝑢] is a complete fuzzy graph. A 

vertex in a fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) having only one 

neighbor is called a pendent vertex. A vertex 𝑣 is 
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called a fuzzy end of 𝐺: (𝑉, 𝜎, 𝜇) if it has at most one 

strong neighbor in 𝐺: (𝑉, 𝜎, 𝜇). 

        The geodetic number of a crisp graph was 

introduced in [5] and further studied in [2,3]. This 

concept was extended to fuzzy graphs using 

geodetic distance by N. T. Suvarna and M. S. Sunitha 

in [14] and using 𝜇 −distance by J. P. Linda and M. 

S. Sunitha in [7]. The concept of vertex 

geodomination number of crisp graph was 

introduced in [13]. Let 𝑥 be a vertex of a connected 

crisp graph 𝐺. A set 𝑆 of vertices of 𝐺 is an 𝑥 −

𝑔𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 of 𝐺 if each vertex 𝑣 of 𝐺 lies 

on 𝑥 − 𝑦 geodesic in 𝐺 for some element 𝑦 in 𝑆. The 

minimum cardinality of an 𝑥 −

𝑔𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡of 𝐺 is defined as the 𝑥 −

𝑔𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝐺 and is denoted 

by 𝑔𝑥(𝐺). An 𝑥 − 𝑔𝑒𝑜𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑒𝑡 of 

cardinality 𝑔𝑥(𝐺) is called 𝑔𝑥 − 𝑠𝑒𝑡. The concept of 

geodesics in fuzzy graph was introduced in [1].  

 

 

In this paper we introduce the concept of vertex 

geodetic number of fuzzy graph. The following 

theorem will be used in sequel. 

 

Theorem 1.1 [11]  Let 𝐺: (𝑉, 𝜎, 𝜇) be ay graph 

connected fuzzy graph and let 𝑥 ∈ 𝑉. The following 

are equivalent: 

1. 𝑥 is a cut vertex of 𝐺: (𝑉, 𝜎, 𝜇). 

2. There exists a vertices  𝑦 and 𝑧 distinct 

from 𝑥 such that 𝑥 is on every strongest path 

between 𝑦 and 𝑧. 

3. There exists a partition of the set of 

vertices 𝑉 − {𝑥} into subsets 𝑌, 𝑍 and 𝑋 such that 

for all 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍, the vertex 𝑥 is on every 

strongest path between 𝑦 and 𝑧. 

4.  

2. Vertex Geodetic Number of a Fuzzy Graph 

[𝒈𝒏𝒙(𝑮)] 

          In this section, we introduced vertex geodetic 

number of fuzzy graph. 

  

Definition 2.1 

       

         Let 𝑥 be a vertex of a connected non-trivial 

fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇). A set 𝑆 of vertices of 𝐺 − 𝑥 

is 𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 if each vertex 𝑟 of  𝐺 lies on  𝑥 −

𝑦 geodesic in 𝐺 for some element 𝑦 in 𝑆. The 

minimum cardinality of  𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 of 𝐺 is 

defined as  𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑛𝑢𝑚𝑏𝑒𝑟 of 𝐺 and is 

denoted by 𝑔𝑛𝑥(𝐺). A  𝑥 − 𝑔𝑒𝑜𝑑𝑒𝑡𝑖𝑐 𝑠𝑒𝑡 of 

cardinality 𝑔𝑛𝑥(𝐺) is called  𝑔𝑛𝑥(𝐺) − 𝑠𝑒𝑡 of 𝐺. 

 

Example 2.2  

            For the fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇)given in Fig. 

2.1, the minimum vertex geodetic sets and the 

vertex geodetic numbers are given in Table 1. 

          

 
                              Fig. 2.1 (with 𝛿 − 𝑎𝑟𝑐𝑠) 

        

    For the fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇)given in Fig. 2.2, 

the minimum vertex geodetic sets and the vertex  

geodetic numbers are given in Table 2. 

 

 
      Fig 2.2 (with out 𝛿 − 𝑎𝑟𝑐𝑠) 

Table 1 

 

     

Vertex  

Minimum vertex 

geodetic sets 

Vertex geodetic 

number 

𝑢1 {𝑢4, 𝑢6} 2 

𝑢2 {𝑢4, 𝑢6} 2 

𝑢3 {𝑢4, 𝑢6} 2 

𝑢4 {𝑢6} 1 

𝑢5 {𝑢4, 𝑢6} 2 

𝑢6 {𝑢4} 1 
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Note 2.3 Each vertex in an 𝑥 − 𝑦 geodesic is 

𝑥 −geodetic to the other vertex via the vertex 𝑦. 

The vertex 𝑥 and the internal vertices of an 𝑥 − 𝑦 

geodesic do not belong to a " 𝑔𝑛𝑥 − 𝑠𝑒𝑡 " because a 

" 𝑔𝑛𝑥 − 𝑠𝑒𝑡" is minimal by definition.      

Theorem 2.4 For any connected fuzzy 

graph 𝐺: (𝑉, 𝜎, 𝜇)on 𝑛 vertices containing no 𝛿 −

𝑎𝑟𝑐𝑠, 𝑔𝑛𝑥(𝐺) = 𝑛 − 1 if and only if 𝑥 is a vertex of 

𝐺∗ of degree 𝑛 − 1. 

Proof:          

            Let 𝑔𝑛𝑥(𝐺) = 𝑛 − 1. Assume that 𝑥 is a  𝐺∗ 

vertex with a degree lower than n-1. Then, in 𝐺, 

there is a vertex 𝑢 that is not adjacent to 𝑥. There is 

a geodesic with a length of at least 2 from 𝑥  to 𝑢 

say 𝑃 since 𝐺 is a connected fuzzy graph without 

𝛿 − 𝑎𝑟𝑐𝑠. According to Note 2.3, 𝑥 and the internal 

vertices of 𝑃 do not belong to the " 𝑔𝑛𝑥 − 𝑠𝑒𝑡," 

hence the statement " 𝑔𝑛𝑥 ≤ 𝑛 − 1" is 

contradictory. 

              Conversely, all additional vertices of 𝐺 that 

are strong neighboring to vertex 𝑥 form the " 𝑔𝑛𝑥 −

𝑠𝑒𝑡" if vertex 𝑥 is a vertex of degree 𝑛 − 1 in the 

graph 𝐺∗. Therefore, 𝑔𝑛𝑥(𝐺) = 𝑛 − 1. 

Remark 2.5 For any connected fuzzy 

graph 𝐺: (𝑉, 𝜎, 𝜇)on 𝑛 vertices containing 𝛿 − 𝑎𝑟𝑐𝑠 

such that 𝑥 is a vertex of 𝐺∗ of degree 𝑛 − 1, then 

𝑔𝑛𝑥(𝐺) need not be 𝑛 − 1. 

 
                   Fig 2.3 

For example, the fuzzy graph given in Fig. 2.2 on 4 

vertices, here 𝑢2, 𝑢4 are the vertices of 𝐺∗ of 

degree 𝑛 − 1. But in this graph the arc (𝑢3, 𝑢4) is a 

𝛿 − 𝑎𝑟𝑐𝑠. So the vertex 𝑢4 contains only two strong 

neighbors, so {𝑢1, 𝑢3} is a 𝑔𝑛𝑢4
(𝐺)- set of 𝐺. 

So   𝑔𝑛𝑢4
(𝐺) = 2 ≠ 3. 

 

Theorem 2.6 Let 𝐺: (𝑉, 𝜎, 𝜇) be a connected non-

trivial fuzzy graph. 

(i) Each 𝑔𝑛𝑥 − 𝑠𝑒𝑡 contains every extreme 

vertex of G except for the vertex 𝑥(whether or not 𝑥 

is an extreme vertex).     

(ii) Eccentric vertices of any vertex 𝑥 are a part 

of the 𝑔𝑛𝑥 − 𝑠𝑒𝑡.  

(iii) No cut vertex of 𝐺 belongs to an𝑦 𝑔𝑛𝑥 −

𝑠𝑒𝑡. 

Proof:  

(i) Let 𝑥 represent any of 𝐺: (𝑉, 𝜎, 𝜇)′𝑠 vertex. 

By Note 2.3, 𝑥 is excluded from the 𝑔𝑛𝑥 − 𝑠𝑒𝑡. 

Let 𝑆𝑥  be 𝑔𝑛𝑥 − 𝑠𝑒𝑡 𝐺: (𝑉, 𝜎, 𝜇) and let 𝑎 ≠ 𝑥 be an 

extreme vertex. Let's say 𝑎 ∉  𝑆𝑥. Then, for 

some 𝑦 ∈  𝑆𝑥 , 𝑎 is an internal vertex of an 𝑥 − 𝑦 

geodetic, let's say 𝑃. Assume that 𝑏 and 𝑐 are  𝑎′𝑠  

neighbors on 𝑃, preventing them from being 

adjacent. As a result, 𝑎 is not an extreme vertex, 

which is incongruous.      

(ii) Y should be  𝑎′𝑠 eccentric vertex for 

𝑑𝑓(𝑥, 𝑦) = 𝑒𝑓(𝑥)d_f (x,y). Assume that 𝑦 is not a 

member of the   𝐺′𝑠  𝑔𝑛𝑥 − 𝑠𝑒𝑡. Then 𝑐 in the 

 𝑔𝑛𝑥 − 𝑠𝑒𝑡 has a vertex 𝑦 that is an internal vertex 

of an 𝑥 − 𝑐 geodesic. As a result, 𝑒𝑓(𝑥) ≤ 𝑑𝑓(𝑥, 𝑐), 

which is a contradiction, 𝑑𝑓(𝑥, 𝑦) < 𝑑𝑓(𝑥, 𝑐).     

(iii) Assume that 𝑣 is the cut vertex of 

𝐺: (𝑉, 𝜎, 𝜇). According to Theorem 1.1, the set of 

vertices 𝑉 − {𝑣} may be divided into subsets 

𝑌, 𝑍and  𝑋 such that the vertex 𝑣 is on each of the 

strongest paths connecting  𝑦 and 𝑧 for all values 

of 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍. Since 𝑣 is an internal vertex of 

an  𝑥 − 𝑧 geodesic if 𝑥 ∈ 𝑌, 𝑣 lies on every  𝑥 − 𝑌 

strong path for each vertex 𝑧in 𝑍. As a result, v is 

not a member of the  𝑔𝑛𝑥 − 𝑠𝑒𝑡. By note 2.3, 𝑣 does 

not belong to the "𝑔𝑛𝑥 − 𝑠𝑒𝑡" if  𝑥 = 𝑣.    

 Corollary 2.7 The  𝑥 −geodetic number of a 

complete fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices      

is 𝑛 − 1. 

Proof: Let 𝑥 ∈  𝐺: (𝑉, 𝜎, 𝜇). Since each vertex in a 

complete fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇) is an extreme 

Table 2 

 

     

Vertex  

Minimum vertex 

geodetic sets 

Vertex 

geodetic 

number 

𝑢1 {𝑢4, 𝑢6} 2 

𝑢2 {𝑢4, 𝑢5, 𝑢6} 3 

𝑢3 {𝑢1, 𝑢4, 𝑢6} 3 

𝑢4 {𝑢1, 𝑢6} 2 

𝑢5 {𝑢2, 𝑢4, 𝑢6} 3 

𝑢6 {𝑢2, 𝑢4} 2 
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vertex. Then by Theorem 2.5(ii), every extreme 

vertex of 𝐺 other than the vertex 𝑥 belongs to 

every 𝑔𝑛𝑥 − 𝑠𝑒𝑡 . Hence 𝑔𝑛𝑥(𝐺) = 𝑛 − 1. 

Corollary 2.8 Let 𝐺 = 𝐹𝑆𝑛 be a fuzzy star with 𝑛 

vertices. Then 𝑔𝑛𝑥( 𝐺) =

{
𝑛 − 2                  𝑖𝑓 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑑 𝑣𝑒𝑟𝑡𝑒𝑥

𝑛 − 1                   𝑖𝑓 𝑥 𝑎𝑛 𝑖𝑛𝑡𝑒𝑛𝑎𝑙 𝑣𝑒𝑟𝑡𝑒𝑥.
 

Proof: Let 𝑥 ∈  𝐺. 

Case (i): 𝑥 is  an internal vertex of 𝐺. 

By definition of fuzzy star, the remaining 𝑛 − 1 

vertices are fuzzy end vertices of 𝐺. By Note 

[2.3] , 𝑔𝑛𝑥(𝐺) ≥ 𝑛 − 1. Let 𝑆 be the set of all fuzzy 

end vertices of 𝐺. Then 𝑆 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝐺. So that 

𝑔𝑛𝑥( 𝐺) = 𝑛 − 1. 

Case (ii): 𝑥 is an end vertex of 𝐺.  

Then 𝑆′ = 𝑆 − {𝑥} be the set of all fuzzy end 

vertices of 𝐺. Then by Note [2.3] , 𝑆′ is a subset of 

 𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝐺. Also  𝑔𝑛𝑥(𝐺) ≥ 𝑛 − 2. Since the 

internal vertex 𝑦 is a fuzzy cut vertex of   𝐺. By 

Theorem[2.6] (iii), 𝑦 does not belong to any 𝑔𝑛𝑥 −

𝑠𝑒𝑡 of 𝐺. Now 𝑆′ is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝐺. So that 

𝑔𝑛𝑥( 𝐺) = 𝑛 − 2. 

Corollary 2.9 Let  𝑃𝑛 be a non-trivial fuzzy path .  

Then 𝑔𝑛𝑥( 𝑃𝑛) = {
1    𝑖𝑓 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑣𝑒𝑟𝑡𝑒𝑥
2                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

Proof: Let  𝑃𝑛 be a non-trivial fuzzy path. Since 

there exist exactly two extreme vertices which are 

in two ends of the fuzzy path. Let 𝑥, 𝑦 be the two 

extreme vertices of 𝑃𝑛. 

 Case (i): Let 𝑥 ∈  𝑃𝑛 be an extreme vertex. Then by 

Note 2.3, 𝑥 does not belong to 𝑔𝑛𝑥 − 𝑠𝑒𝑡. Also by 

Theorem 2.5(i), {𝑦} is the only  𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝑃𝑛 . 

Hence 𝑔𝑛𝑥( 𝑃𝑛) = 1. 

Case (ii): Let 𝑤 ∈  𝑃𝑛 be any other vertex which is 

not an extreme vertex. Also 𝑤 is an internal vertex 

of 𝑥 − 𝑦 geodesic. It is easily verified that there 

exists exactly two paths 𝑥 − 𝑤 and 𝑤 − 𝑦, which 

covers all the vertex 𝑣 ∈  𝑃𝑛 . Thus {𝑥, 𝑦} is the 

only 𝑔𝑛𝑤 − 𝑠𝑒𝑡 of 𝑃𝑛 . Therefore  𝑔𝑛𝑤( 𝑃𝑛) = 2. 

Corollary 2.10 The  𝑥 −geodetic number of a fuzzy 

cycle 𝐺: (𝑉, 𝜎, 𝜇) on 𝑛 vertices, (𝑛 ≥ 3) is given by 

𝑔𝑛𝑥( 𝐺) = {
1              𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
2              𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑.

 

Proof: Let 𝑥 ∈  𝐺: (𝑉, 𝜎, 𝜇). 

Case (i): Let n be even. 

Let 𝑦 be eccentric vertex of 𝑥. Then {𝑦} is a 

𝑥 −geodetic set of 𝐺 so that 𝑔𝑛𝑥( 𝐺) = 1. 

Case (ii): Let n be odd. 

It is easily verified that no singleton subset of 𝐺 is 

not a 𝑥 −geodetic set of 𝐺. Also 𝑔𝑛𝑥( 𝐺) ≥ 2. Let 

𝑦, 𝑧 be the two eccentric vertices of 𝑥. Then {𝑦, 𝑧} is 

a 𝑥 − geodetic set of 𝐺 so that𝑔𝑛𝑥( 𝐺) = 1. 

 

Corollary 2.11 Let 𝑇 be a fuzzy tree with number 

of fuzzy end vertices 𝑡.  

Then 𝑔𝑛𝑥( 𝑇) = {
𝑡 − 1                  𝑖𝑓 𝑥 𝑖𝑠 𝑒𝑛𝑑 𝑣𝑒𝑟𝑡𝑒𝑥

𝑡                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

 

Theorem 2.12 Let 𝐺: (𝑉, 𝜎, 𝜇) be a connected fuzzy 

graph containing no 𝛿 − 𝑎𝑟𝑐𝑠. 

(i) For the wheel fuzzy graph 𝑊𝑛 = 𝐾1 +

𝐶𝑛−1 (𝑛 ≥ 5), 𝑔𝑛𝑥(𝑊𝑛) = 𝑛 − 1 𝑜𝑟 𝑛 − 4 according 

as 𝑥 is𝐾1 or 𝑥 is in 𝐶𝑛−1. 

(ii) Let 𝐾𝜎1,𝜎2
= (𝑉1 ∪ 𝑉2, 𝜎, 𝜇) be a complete 

fuzzy bipartite. Then 

(1) 𝑔𝑛𝑥(𝐾𝜎1,𝜎2
) = 1, if |𝑉1| = |𝑉2| = 1. 

                 (2) 𝑔𝑛𝑥(𝐾𝜎1,𝜎2
) = {

1   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑉2

2   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑉1
  , 

where|𝑉1| = 1, |𝑉1| ≥ 2 . 

                  (3) 𝑔𝑛𝑥(𝐾𝜎1,𝜎2
) = {

𝑚 − 1   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑉1

𝑛 − 1   𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑛 𝑉2
 , 

where |𝑉1| = 𝑚 and |𝑉2| = 𝑛 , (𝑚, 𝑛) ≥ 2. 

Proof:  

(i)   Let x represent the 𝐾1 vertex. Then, 𝑥 is a 

vertex of 𝐺∗of degree 𝑥 because it is adjacent to 

every other vertex of 𝑊𝑛 . Theorem 2.4 states that 

 𝑔𝑛𝑥(𝑊𝑛) = 𝑛 − 1 

                     Let the cycle of  𝑊𝑛 be 

𝐶𝑛−1: 𝑢1, 𝑢2, 𝑢3, … . , 𝑢𝑛−1, 𝑢1. Let 𝑥 represent any 

vertex in 𝐶𝑛−1. Take 𝑥 = 𝑢1 without losing 

generality. Since the eccentric vertices of 𝑥 are set 

at the diameter of 𝑑 = 2, {𝑢3, 𝑢4, … , 𝑢𝑛−2}. If  𝐾1 is 𝑧, 

then the vertices  𝑢2, 𝑧 and  𝑢𝑛−1 are, respectively, 

located on the geodesics 𝑥, 𝑢2, 𝑢3; 𝑥, 𝑧, 𝑢3 and 

𝑥, 𝑢𝑛−1, 𝑢𝑛−2. Since  𝑔𝑛𝑥(𝑊𝑛) = 𝑛 − 4 as a result of 

Theorem 2.6(ii), the 𝑔𝑛𝑥 − 𝑠𝑒𝑡 of  𝑊𝑛 is 

{𝑢3, 𝑢4, … , 𝑢𝑛−2}. 

(ii) (1)  It follows from Corollary 2.7. 

 (2) It follows from Corollary 2.11. 

                (3) Let 𝑥 ∈ 𝑉1 be any vertex. Clearly 𝑉1 −

{𝑥} is the set of eccentric vertices of 𝑥. Let 𝑣 be any 

vertex of 𝑉2. Clearly 𝑣 lies on the geodesic 𝑥, 𝑣, 𝑢 for 

every vertex 𝑢 in 𝑉1 − {𝑥}. By Theorem 2.6(ii), the 

 𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝐾𝜎1,𝜎2
 is 𝑉1 − {𝑥} and 

hence 𝑔𝑛𝑥(𝐾𝜎1,𝜎2
) = 𝑚 − 1. Similarly 

𝑔𝑛𝑥(𝐾𝜎1,𝜎2
) = 𝑛 − 1 if 𝑥 is in 𝑉2. 
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 Note 2.13 Even if 𝑥 is an extreme vertex of 𝐺, Note 

2.3 states that 𝑥 does not belong to the  𝑔𝑛𝑥 − 𝑠𝑒𝑡. 

Theorem 2.14 For any vertex 𝑥 in a connected 

non-trivial fuzzy graph 𝐺: (𝑉, 𝜎, 𝜇), 𝑔𝑛𝑥 − 𝑠𝑒𝑡 is 

unique and it is contained in every 𝑥 −geodetic set 

of 𝐺. 

Proof: Let's imagine there are two  𝑔𝑛𝑥 − 𝑠𝑒𝑡𝑠, 

 𝑆1  and  𝑆2. Give 𝑢 the role of a vertex in 𝐺 such that 

𝑢 ∈ 𝑆1and 𝑢 ∉ 𝑆2. There is a vertex 𝑣 ≠ 𝑢 in 𝐺 such 

that 𝑣 ∈ 𝑆2 and 𝑣 ∉ 𝑆1 because  𝑆2 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡 

and |𝑆2| = |𝑆1| . There is a vertex 𝑤 ∈ 𝑆1 such that 

𝑣 ∈ 𝐼[𝑥, 𝑤] exists since  𝑆1 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡.               

Case 1: Let's say  𝑤 ∈ 𝑆2 . Since 𝑣 is an internal 

vertex of an 𝑥 − 𝑤 geodesic and  𝑆2 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡, 

this results in a contradiction that 𝑣 is not in 𝑆2 

Case 2: Let's say  𝑤 ∉ 𝑆2. If  𝑆2 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡, then 

there is an element 𝑦 ∈ 𝑆2 such that 𝑤 is on a 𝑥 − 𝑦 

geodesic say 𝑃. Say 𝑄 because 𝑣 is located on an 𝑥 −

𝑤  geodesic. So that 𝑣 ∈ 𝐼[𝑥, 𝑦], the geodesic formed 

by the union of the geodesic 𝑄 from 𝑥 to 𝑤 and the 

𝑤 − 𝑦 section of the geodesic 𝑃 is an 𝑥 − 𝑦 

geodesic. As a result, 𝑣 is an internal geodesic 𝑥 − 𝑦 

vertex. A contradiction results from the fact that 𝑣 

is not in  𝑆2 since 𝑆2 is a  𝑔𝑛𝑥 − 𝑠𝑒𝑡.              

        Now assert that every 𝑥 −geodetic set of 𝐺 

contains the  𝑔𝑛𝑥 − 𝑠𝑒𝑡. Let 𝑦 be a component of 

the  𝑔𝑛𝑥 − 𝑠𝑒𝑡 of 𝐺, let's say 𝑆. Since 𝑆 is the 

smallest, no other vertex of 𝐺 can make 𝑦 as 

𝑥 −geodetic. It is contradictory for 𝑦 to be 

𝑥 −geodetic by the vertex 𝑣 in 𝐺 if there is an 

𝑥 −geodetic set, let's say  𝑆′, such that 𝑦 is  𝑆′. This 

is because 𝑦 lies on an 𝑥 − 𝑣 geodesic for some 𝑣 

in 𝑆′.               

  

3. Conclusion  

     In this article, we studied the concept of vertex 

geodetic number of fuzzy graph. We extend the 

concept of other distance related parameters in 

fuzzy graph for future work.  
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