Vertex Geodetic Number of a Fuzzy Graph

¹S. Sherly Jasmin, ²S. Chandra Kumar

 Research Scholar, Reg. No: 21213162092027, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil - 629 003, Tamil Nadu, India. sherlyjasmins.phd@gmail.com
 Associate professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629 003, Tamil Nadu, India. kumar.chandra82@yahoo.in

^{1, 2}(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India)

Abstract

In this paper, vertex geodetic number of a fuzzy graph is introduced. Let x be a vertex of a connected non-trivial fuzzy graph $G:(V,\sigma,\mu)$. A set S of vertices of G is x-geodetic set if each vertex u of G lies on x-y geodesic in G for some element g in G. The minimum cardinality of g and is denoted by g and g and g are g and g and g and g and g and g and g are g and g and g are g are g are g are g and g are g are

Keywords: geodesic path, geodesic number, vertex geodetic number. **2020 Mathematics Subject Classification:** 05C72, 05C12.

1. Introduction:

Zadeh 1965[15] developed in mathematical phenomenon for describing the uncertainties prevailing in day-to-day situations by introducing the concept of fuzzy sets. The theory of fuzzy graphs was later on developed by Rosenfeld in the year 1975[12]. A fuzzy graph is a triplet $G:(V,\sigma,\mu)$ where V is a vertex set, σ is a fuzzy subset on V and μ is a fuzzy relation on σ such that $\mu(x, y) \le \sigma(x) \land \sigma(y) \forall x, y \in V$. We assume that V is finite and nonempty, μ is reflexive and symmetric. In all the examples σ is chosen suitably. Also we denote the underlying crisp graph by $G^*: (\sigma^*, \mu^*)$ where $\sigma^* = \{x \in V : \sigma(x) > 0\}$ and $\mu^* = \{(x, y) \in V \times V : \mu(x, y) > 0\}$. Here we take $\sigma^* = V$. For basic fuzzy graph theoretic terminology we refer to Nagoorgani and Chandrasekaran VT [11]. A fuzzy graph $G: (V, \sigma, \mu)$ is a complete fuzzy graph if $\mu(x, y) \le \sigma(x) \wedge \sigma(y)$ for every $x, y \in \sigma^*$.

A path P of length n is sequence of distinct vertices u_0, u_1, \ldots, u_n such that $\mu(u_{i-1}, u_i) > 0$, $i = 1,2,\ldots,n$ and the degree of membership of a weakest arc is defined as its strength. The path becomes cycle if $u_0 = u_n, n \geq 3$ and a cycle is called a fuzzy cycle if it contains more than one weakest arc. The strength of connectedness between two

vertices x and y is defined as the maximum of the strength of all path between x and y and it is denoted by $CONN_G(x, y)$. An arc of a fuzzy graph is called strong if its weight is at least as great as the connectedness of its end vertices when it is deleted and a x - y path is called a strong path if P contains only strong arcs. A connected fuzzy graph $G:(V,\sigma,\mu)$ is called fuzzy tree if it has a spanning fuzzy sub graph $F:(V,\sigma,v)$, which is a tree such that for all arcs x, y not in F, $CONN_F(x, y) >$ $\mu(x,y)$. A fuzzy star is a fuzzy tree whose unique maximum spanning tree is a star. A fuzzy graph $G:(V,\sigma,\mu)$ is a fuzzy bipartite if it has a spanning fuzzy sub graph $H:(V,\tau,\pi)$ which is bipartite where for all edge (x, y) not in H, weight of (x, y) in G is strictly less than the strength of pair (x, y) in H. A fuzzy cut vertex w is a vertex in $G:(V,\sigma,\mu)$ whose removal reduces the strength of connectedness between some pair of vertices in $G:(V,\sigma,\mu)$. If $\mu(x, y) > 0$, then *u* and *v* are called neighbors. A fuzzy bipartite graph G with fuzzy bipartite (V_1, V_2) is said to be a complete fuzzy bipartite if for each node of V_1 , every vertex of V_2 is a strong neighbor. A vertex u in a fuzzy graph $G:(V,\sigma,\mu)$ is extreme in $G:(V,\sigma,\mu)$ if $N_G[u]$ is a complete fuzzy graph. A vertex in a fuzzy graph $G:(V,\sigma,\mu)$ having only one neighbor is called a pendent vertex. A vertex v is called a fuzzy end of $G: (V, \sigma, \mu)$ if it has at most one strong neighbor in $G: (V, \sigma, \mu)$.

The geodetic number of a crisp graph was introduced in [5] and further studied in [2,3]. This concept was extended to fuzzy graphs using geodetic distance by N. T. Suvarna and M. S. Sunitha in [14] and using μ —distance by J. P. Linda and M. S. Sunitha in [7]. The concept of vertex geodomination number of crisp graph was introduced in [13]. Let *x* be a vertex of a connected crisp graph G. A set S of vertices of G is an x – *geodominating set* of G if each vertex v of G lies on x - y geodesic in G for some element y in S. The minimum cardinality of an x *geodominating set* of G is defined as the x – geodomination number of G and is denoted An x – geodominating setby $g_{x}(G)$. cardinality $g_x(G)$ is called $g_x - set$. The concept of geodesics in fuzzy graph was introduced in [1].

Table 1

	Minimum vertex	Vertex geodetic
Vertex	geodetic sets	number
u_1	$\{u_4, u_6\}$	2
u_2	$\{u_4, u_6\}$	2
u_3	$\{u_4, u_6\}$	2
u_4	$\{u_6\}$	1
u_5	$\{u_4, u_6\}$	2
u_6	$\{u_4\}$	1

In this paper we introduce the concept of vertex geodetic number of fuzzy graph. The following theorem will be used in sequel.

Theorem 1.1 [11] Let $G: (V, \sigma, \mu)$ be ay graph connected fuzzy graph and let $x \in V$. The following are equivalent:

- 1. x is a cut vertex of $G: (V, \sigma, \mu)$.
- 2. There exists a vertices y and z distinct from x such that x is on every strongest path between y and z.
- 3. There exists a partition of the set of vertices $V \{x\}$ into subsets Y, Z and X such that for all $y \in Y, z \in Z$, the vertex x is on every strongest path between y and z.

4.

2. Vertex Geodetic Number of a Fuzzy Graph $[gn_r(G)]$

In this section, we introduced vertex geodetic number of fuzzy graph.

Definition 2.1

Let x be a vertex of a connected non-trivial fuzzy graph $G:(V,\sigma,\mu)$. A set S of vertices of G-x is x-geodetic set if each vertex r of G lies on x-y geodesic in G for some element Y in S. The minimum cardinality of X-geodetic set of G is defined as X-geodetic number of G and is denoted by $gn_x(G)$. A X-geodetic set of cardinality $gn_x(G)$ is called $gn_x(G)-set$ of G.

Example 2.2

For the fuzzy graph $G:(V,\sigma,\mu)$ given in Fig. 2.1, the minimum vertex geodetic sets and the vertex geodetic numbers are given in Table 1.

For the fuzzy graph $G: (V, \sigma, \mu)$ given in Fig. 2.2, the minimum vertex geodetic sets and the vertex geodetic numbers are given in Table 2.

Fig 2.2 (with out $\delta - arcs$)

Table 2

	Minimum vertex	Vertex
Vertex	geodetic sets	geodetic
		number
u_1	$\{u_4, u_6\}$	2
u_2	$\{u_4, u_5, u_6\}$	3
u_3	$\{u_1,u_4,u_6\}$	3
u_4	$\{u_1, u_6\}$	2
u_5	$\{u_2,u_4,u_6\}$	3
u_6	$\{u_2, u_4\}$	2

Note 2.3 Each vertex in an x-y geodesic is x—geodetic to the other vertex via the vertex y. The vertex x and the internal vertices of an x-y geodesic do not belong to a " $gn_x - set$ " because a " $gn_x - set$ " is minimal by definition.

Theorem 2.4 For any connected fuzzy graph $G: (V, \sigma, \mu)$ on n vertices containing no $\delta - arcs$, $gn_x(G) = n - 1$ if and only if x is a vertex of G^* of degree n - 1.

Proof:

Let $gn_x(G)=n-1$. Assume that x is a G^* vertex with a degree lower than n-1. Then, in G, there is a vertex u that is not adjacent to x. There is a geodesic with a length of at least 2 from x to u say P since G is a connected fuzzy graph without $\delta-arcs$. According to Note 2.3, x and the internal vertices of P do not belong to the " gn_x-set ," hence the statement " $gn_x \leq n-1$ " is contradictory.

Conversely, all additional vertices of G that are strong neighboring to vertex x form the " $gn_x - set$ " if vertex x is a vertex of degree n-1 in the graph G^* . Therefore, $gn_x(G) = n-1$.

Remark 2.5 For any connected fuzzy graph $G: (V, \sigma, \mu)$ on n vertices containing $\delta - arcs$ such that x is a vertex of G^* of degree n-1, then $gn_x(G)$ need not be n-1.

Fig 2.3

For example, the fuzzy graph given in Fig. 2.2 on 4 vertices, here u_2, u_4 are the vertices of G^* of degree n-1. But in this graph the arc (u_3, u_4) is a $\delta-arcs$. So the vertex u_4 contains only two strong neighbors, so $\{u_1, u_3\}$ is a $gn_{u_4}(G)$ - set of G. So $gn_{u_4}(G) = 2 \neq 3$.

Theorem 2.6 Let $G:(V,\sigma,\mu)$ be a connected non-trivial fuzzy graph.

- (i) Each $gn_x set$ contains every extreme vertex of G except for the vertex x (whether or not x is an extreme vertex).
- (ii) Eccentric vertices of any vertex x are a part of the $gn_x set$.
- (iii) No cut vertex of G belongs to any gn_x set.

Proof:

- (i) Let x represent any of $G: (V, \sigma, \mu)'s$ vertex. By Note 2.3, x is excluded from the $gn_x set$. Let S_x be $gn_x set$ $G: (V, \sigma, \mu)$ and let $a \neq x$ be an extreme vertex. Let's say $a \notin S_x$. Then, for some $y \in S_x$, a is an internal vertex of an x y geodetic, let's say P. Assume that b and c are a's neighbors on P, preventing them from being adjacent. As a result, a is not an extreme vertex, which is incongruous.
- (ii) Y should be a's eccentric vertex for $d_f(x,y) = e_f(x)d_f(x,y)$. Assume that y is not a member of the G's $gn_x set$. Then c in the $gn_x set$ has a vertex y that is an internal vertex of an x c geodesic. As a result, $e_f(x) \le d_f(x,c)$, which is a contradiction, $d_f(x,y) < d_f(x,c)$.
- (iii) Assume that v is the cut vertex of $G:(V,\sigma,\mu)$. According to Theorem 1.1, the set of vertices $V-\{v\}$ may be divided into subsets Y,Z and X such that the vertex v is on each of the strongest paths connecting y and z for all values of $y \in Y, z \in Z$. Since v is an internal vertex of an x-z geodesic if $x \in Y, v$ lies on every x-Y strong path for each vertex z in z. As a result, v is not a member of the gn_x-set . By note 2.3, v does not belong to the " gn_x-set " if x=v.

Corollary 2.7 The x –geodetic number of a complete fuzzy graph $G: (V, \sigma, \mu)$ on n vertices is n-1.

Proof: Let $x \in G: (V, \sigma, \mu)$. Since each vertex in a complete fuzzy graph $G: (V, \sigma, \mu)$ is an extreme

vertex. Then by Theorem 2.5(ii), every extreme vertex of G other than the vertex x belongs to every $gn_x - set$. Hence $gn_x(G) = n - 1$.

Corollary 2.8 Let $G = FS_n$ be a fuzzy star with nvertices. Then $gn_{x}(G) =$ if x is an end vertex

 $\begin{cases}
n-2 \\
n-1
\end{cases}$ if x an intenal vertex.

Proof: Let $x \in G$.

Case (i): x is an internal vertex of G.

By definition of fuzzy star, the remaining n-1vertices are fuzzy end vertices of G. By Note [2.3], $gn_r(G) \ge n - 1$. Let S be the set of all fuzzy end vertices of G. Then S is a $gn_x - set$ of G. So that $gn_x(G) = n - 1.$

Case (ii): *x* is an end vertex of *G*.

Then $S' = S - \{x\}$ be the set of all fuzzy end vertices of G. Then by Note [2.3], S' is a subset of gn_x – set of G. Also $gn_x(G) \ge n-2$. Since the internal vertex y is a fuzzy cut vertex of G. By Theorem[2.6] (iii), y does not belong to any gn_x – set of G. Now S' is a gn_x - set of G. So that $gn_x(G) = n - 2.$

Corollary 2.9 Let P_n be a non-trivial fuzzy path.

Then
$$gn_x(P_n) = \begin{cases} 1 & \text{if } x \text{ is an extreme vertex} \\ 2 & \text{Otherwise.} \end{cases}$$

Proof: Let P_n be a non-trivial fuzzy path. Since there exist exactly two extreme vertices which are in two ends of the fuzzy path. Let x, y be the two extreme vertices of P_n .

Case (i): Let $x \in P_n$ be an extreme vertex. Then by Note 2.3, x does not belong to $gn_x - set$. Also by Theorem 2.5(i), $\{y\}$ is the only $gn_x - set$ of P_n . Hence $gn_x(P_n) = 1$.

Case (ii): Let $w \in P_n$ be any other vertex which is not an extreme vertex. Also w is an internal vertex of x - y geodesic. It is easily verified that there exists exactly two paths x - w and w - y, which covers all the vertex $v \in P_n$. Thus $\{x, y\}$ is the only $gn_w - set$ of P_n . Therefore $gn_w(P_n) = 2$.

Corollary 2.10 The x –geodetic number of a fuzzy cycle $G:(V,\sigma,\mu)$ on n vertices, $(n \ge 3)$ is given by

$$gn_x(G) = \begin{cases} 1 & \text{when } n \text{ is even} \\ 2 & \text{when } n \text{ is odd.} \end{cases}$$

Proof: Let $x \in G: (V, \sigma, \mu)$.

Case (i): Let n be even.

Let y be eccentric vertex of x. Then $\{y\}$ is a x –geodetic set of G so that $gn_x(G) = 1$.

Case (ii): Let n be odd.

It is easily verified that no singleton subset of *G* is

not a x –geodetic set of G. Also $gn_x(G) \geq 2$. Let y, z be the two eccentric vertices of x. Then $\{y, z\}$ is a x – geodetic set of G so that $gn_x(G) = 1$.

Corollary 2.11 Let *T* be a fuzzy tree with number of fuzzy end vertices t.

Then
$$gn_x(T) = \begin{cases} t-1 & \text{if } x \text{ is end } vertex \\ t & \text{Otherwise.} \end{cases}$$

Theorem 2.12 Let $G: (V, \sigma, \mu)$ be a connected fuzzy graph containing no $\delta - arcs$.

- For the wheel fuzzy graph $W_n = K_1 +$ C_{n-1} $(n \ge 5)$, $gn_x(W_n) = n - 1$ or n - 4 according as x is K_1 or x is in C_{n-1} .
- Let $K_{\sigma_1,\sigma_2} = (V_1 \cup V_2, \sigma, \mu)$ be a complete fuzzy bipartite. Then

(1)
$$gn_x(K_{\sigma_1,\sigma_2}) = 1$$
, if $|V_1| = |V_2| = 1$.

$$(2) gn_x \left(K_{\sigma_1,\sigma_2} \right) = \begin{cases} 1 & \text{if } x \text{ is in } V_2 \\ 2 & \text{if } x \text{ is in } V_1 \end{cases}$$

where $|V_1| = 1$, $|V_1| \ge 2$.

(3)
$$gn_x(K_{\sigma_1,\sigma_2}) = \begin{cases} m-1 & \text{if } x \text{ is in } V_1 \\ n-1 & \text{if } x \text{ is in } V_2 \end{cases}$$

where $|V_1| = m$ and $|V_2| = n$, $(m, n) \ge 2$.

Proof:

Let x represent the K_1 vertex. Then, x is a (i) vertex of G^* of degree x because it is adjacent to every other vertex of W_n . Theorem 2.4 states that $gn_x(W_n) = n - 1$

Let the cycle W_n $C_{n-1}: u_1, u_2, u_3, \dots, u_{n-1}, u_1$. Let x represent any vertex in C_{n-1} . Take $x = u_1$ without losing generality. Since the eccentric vertices of x are set at the diameter of $d = 2, \{u_3, u_4, ..., u_{n-2}\}$. If K_1 is z, then the vertices u_2 , z and u_{n-1} are, respectively, located on the geodesics x, u_2, u_3 ; x, z, u_3 and x, u_{n-1}, u_{n-2} . Since $gn_x(W_n) = n - 4$ as a result of Theorem 2.6(ii), the $gn_x - set$ of W_n is $\{u_3, u_4, \dots, u_{n-2}\}.$

- (1) It follows from Corollary 2.7.
- (2) It follows from Corollary 2.11.
- (3) Let $x \in V_1$ be any vertex. Clearly V_1 $\{x\}$ is the set of eccentric vertices of x. Let v be any vertex of V_2 . Clearly v lies on the geodesic x, v, u for every vertex u in $V_1 - \{x\}$. By Theorem 2.6(ii), the $gn_{\chi} - set$ of K_{σ_1,σ_2} $V_1 - \{x\}$ is hence $gn_x(K_{\sigma_1,\sigma_2}) = m - 1$. Similarly $gn_x(K_{\sigma_1,\sigma_2}) = n - 1$ if x is in V_2 .

Note 2.13 Even if x is an extreme vertex of G, Note 2.3 states that x does not belong to the $gn_x - set$. **Theorem 2.14** For any vertex x in a connected non-trivial fuzzy graph $G: (V, \sigma, \mu), gn_x - set$ is unique and it is contained in every x —geodetic set of G.

Proof: Let's imagine there are two $gn_x - sets$, S_1 and S_2 . Give u the role of a vertex in G such that $u \in S_1$ and $u \notin S_2$. There is a vertex $v \neq u$ in G such that $v \in S_2$ and $v \notin S_1$ because S_2 is a $gn_x - set$ and $|S_2| = |S_1|$. There is a vertex $w \in S_1$ such that $v \in I[x, w]$ exists since S_1 is a $gn_x - set$.

Case 1: Let's say $w \in S_2$. Since v is an internal vertex of an x - w geodesic and S_2 is a $gn_x - set$, this results in a contradiction that v is not in S_2

Case 2: Let's say $w \notin S_2$. If S_2 is a $gn_x - set$, then there is an element $y \in S_2$ such that w is on a x - y geodesic say P. Say Q because v is located on an x - w geodesic. So that $v \in I[x, y]$, the geodesic formed by the union of the geodesic Q from x to w and the w - y section of the geodesic P is an x - y geodesic. As a result, v is an internal geodesic x - y vertex. A contradiction results from the fact that v is not in S_2 since S_2 is a $gn_x - set$.

Now assert that every x —geodetic set of G contains the gn_x — set. Let y be a component of the gn_x — set of G, let's say S. Since S is the smallest, no other vertex of G can make y as x —geodetic. It is contradictory for y to be x —geodetic by the vertex v in G if there is an x —geodetic set, let's say S', such that y is S'. This is because y lies on an x — v geodesic for some v in S'.

3. Conclusion

In this article, we studied the concept of vertex geodetic number of fuzzy graph. We extend the concept of other distance related parameters in fuzzy graph for future work.

References

1. K. R. Bhutani and A. Rosenfeld, Geodesics in fuzzy graphs, Electronic Notes in Discrete Mathematics 15(2003), 49-52.

- 2. G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002), 1-6.
- 3. G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graphs, Discussiones Mathematicae Graph Theory 20 (2000), 129-138.
- 4. F. Harary, Graph Theory, Addition-Wesley, 1969.
- 5. F. Harary, E. Loukakis and C. Tsourus, The geodetic number of a graph, Mathematical and Computer Modelling 17(1993), 89-95.
- 6. J. John, On the vertex monophonic, vertex geodetic and vertex Steiner numbers of graphs, Asian- European Journal of Mathematics, 14(10) (2021), 2150171.
- 7. J. P. Linda and M. S. Sunitha, Geodesic and Detour distances in Graphs and Fuzzy Graphs, Scholar's Press, 2015.
- 8. S. Mathew and M. S. Sunitha, Types of arcs in a fuzzy graph, Information Sciences 179 (2009), 1760-1768.
- 9. J. N. Moderson and P. S.Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica-Verlag, Heidelberg, 2000.
- 10. J. N. Moderson and Y. Y. Yao, Fuzzy cycles and fuzzy trees, The Journal of Fuzzy Mathematics 10 (2002), 189-202.
- 11. Nagoorgani and Chandrasekaran V. T, A first look at fuzzy graph theory, Allied Publication Pvt. Ltd, India, 2010.
- 12. A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their Applications to Cognitive and Decision Processes, Academic Press, New York (1975), 77-95.
- 13. A. P.Santhakumaran and P. Titus, Vertex geodomination in graphs, Bulletin of Kerala Mathematics Association, 2(2) (2005) 45-57.
- 14. N. T. Suvarna and M. S. Sunitha, Convexity and Types of Arcs & Nodes in Fuzzy Graphs, Scholar's Press, 2015.
- 15. L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965), 338-353.