
  

  

 

320 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Synthesis and Analysis of Active Scheduling Procedures Targeting Reconfigurable 

Environment 

 

Ashish Subhashrao Bhopale  
Dept. of Electronics and Telecommunication Engineering 

Prof. Ram Meghe Institute of Technology and Research 

Badnera-Amravati, India 

profashishbhopale@gmail.com 

 

Dr. Archana O. Vyas 
Dept. of Electronics and Telecommuinication Engineering 

G. H. Raisoni University, Amravati 

Anjangaon Bari Road, Amravati, India 

nyasaarchana@gmail.com 

 

Abstract— In the computing environment, multiple data packets arrive at the node for processing. Multiple tasks are engaged to handle these 

data packets which accepts these data packets process them and executes further required steps. For handling the multiple data packets 

simultaneously, multiple tasks are engaged which utilizes the limited resources on time sharing basis. To make the limited resources useful 

and handle the multiple tasks efficiently, strong, highly active task scheduling algorithm is required. This research paper demonstrates the 

multiple tasks arriving and getting executed simultaneously in addition to the routing tasks. The algorithm is described using high speed 

integrated circuit hardware description language. The description is targeted to the modern concurrent programmable hardware architecture. 

The hardware description is performed using the Xilinx Vivado High Level Synthesis (HLS) Tool. 

Keywords— HDL, FPGA, Scheduling Algorithm, Xilinx Vivado, HLS, CPLD. 

I. INTRODUCTION 

The early generation processors are designed to perform 
basic operations of arithmetic and logical operations. These 
basic operations are then used to control different applications. 
From small to medium complex applications these processor 
environments perform better but with the increase in the 
complexity these processor fails to perform well. From this 
step modern processors are designed which is tightly designed 
architecture in which different required components like 
ADCs, signal conditioners, DAC and other significant 
components are pre-built. Such processors are well suitable 
for compact and medium to high applications requirements. 
But on the other side of the coin, to the applications where 
random pattern of data arrives and to be processed and 
produced randomly in size and pattern, these processor fails to 
perform. In such applications, programmable architectures are 
performing well. 

Programmable architectures are the microelectronic 
components which can be reconfigured according to the need 
of the applications or according to the user requirements. Most 
popular programmable logic devices are the Complex 
Programmable Logic Device (CPLD) and the Field 
Programmable Gate Array (FPGA). These are the magical 
devices with which it is possible to design highly customized 
architecture and deploy them into the applications. The 
advantage that we get with deployment of these devices is that 
since the hardware is custom designed, it uses highly 
optimized power, time, area, and speed. We demonstrate use 
of this technology for the implementation of the scheduling 
algorithm in which multiple tasks are operated individually 
and in concurrent mode. Further, AMD-Xilinx programmable 
devices are widely used in distinct applications, we make use 
of the Xilinx High Level Synthesis (Xilinx-HLS) Tool and the 
proposed algorithm is targeted to the latest programmable 
device.  

II. PREVIOUSLY CITED TECHNOLOGY 

Several scheduling prototypes have been available for the 
actual time communication and actual-time applications. The 
most general types of scheduling prototypes contain allocation 
determined, priority determined, and time determined 

algorithms. In this paper, the authors [1] have proposed a 
normal scheduling technique that is employed to incorporate 
these prototypes in a single structure. Allocator and 
correspondent are employed as scheduler elements in the 
proposed technique. For every individual task, the structure 
recognized four scheduling characteristics as resources, 
priority, start instant and end instant. The authors show that 
the proposed structure can be utilized to effectively compute 
several scheduling algorithms. 

 
Fig. 1.  Architecture of the scheduling algorithm 

Error tolerance plays an essential role in real-time 
processing unit systems, as the timing constrictions should not 
be interrupted. For a real instant processor atmosphere, two 
conventional queues-based scheduling algorithms as linear 
time heuristics and possible shortest pathway are available. 
The linear time heuristics algorithm thoroughly approximates 
the best possible algorithm. The possible shortest pathway 
algorithm can give the best possible error tolerant schedules, 
but it is not practically applicable due to its time complication. 
The possible shortest pathway algorithms work on the 
assumption that there is at least a single error present within 
the instant interval of ’t’. The authors [2] proposed an 
enhanced shortest possible pathway algorithm on the 
supposition that there will be no further error through the 



  

  

 

321 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

lowest inter-error instant 't' following a single fault occurs. 
The proposed technique enhanced system presentation by 
employing additional main jobs in an error tolerant program 
and decreases the time complication in backup programs. 

The central processing unit has been extensively employed 
for handling actual time procedures like manufacturing 
processing control systems. The utilization of central 
processing units for controlling actual instant instructions has 
speedily developed. The wide utilization of central processing 
systems to handle time complex instructions that have strict 
deadlines necessitates the utilization of simple and effective 
scheduling algorithms. In this paper, the authors [3] have 
taken into consideration the difficulty of periodic job 
scheduling in an actual instant atmosphere. The authors 
presented a preventative and non-preventative scheduling 
algorithm. A preventative scheduling algorithm is employed 
to evade needless preemption.  

Nowadays, Parallel genetic algorithms are employed more 
than traditional genetic algorithms as they provide a faster 
solution to a wide range of problems. In the actual scenario, 
the hardware structure of the parallel genetic algorithm can 
deal with such actual instant problems. An appropriate 
structure for image processing parallel genetic algorithm was 
developed based on the traditional crossover method. 
Numerous problems are more matched to combinational 
handlers such as organize based crossover. In this paper, the 
authors [4] have proposed a novel hardware structure based 
parallel genetic algorithm employing organized based 
crossover which can minimize an innovative group of actual 
time combinational difficulties. The disk scheduling 
technique has been recognized as a general actual instant 
minimization problem to determine the advantages of the 
proposed hardware structure. 

 
(a) 

 

 
(b) 

Fig. 2.  Grid (a) and hypercube (b) topology 

In real-time systems, a preprocessing period branch and 
bound implicit inventory algorithm endeavors to locate a 
possible allocation for a set of hard actual instant procedures. 
Procedures are supposed to be passively allocated to 
multiprocessors on a multimedia node. When it is contrasted 
with the handcrafted allocating techniques, the submission of 
this preprocessing scheduling algorithm to hard actual instant 
systems must decrease the resources needed for the processing 
period scheduling and context switching. The minimization 
standard is to optimize procedure tardiness defined as the 
dissimilarity between the procedure completion period and 
deadline. In this paper, the authors [5] show that the algorithm 
always doesn't be successful in obtaining the best possible 
output. 

In modern disseminated actual instant applications require 
vibrant ad adaptable scheduling algorithms to give enduring 
assurance to application things. In this paper, the authors have 
proposed a novel scheduling algorithm that makes the use of 
task negligence and the things important to take efficient 
scheduling judgments. The proposed scheduling algorithm 
utilizes actual instances and resources to identify the 
practicability of the jobs and to allocate the things to the 
microprocessors. Jobs instances characteristic and tolerance 
assessment report is taken from processor to processor; 
acquiescent a system extensive scheduling approach that 
necessitates restricted calculations. The main objective of the 
proposed algorithm is to guarantee that a low-priority task 
doesn't interrupt the implementation of a high-priority task. 
[6] 

 
Fig. 3.  The scheduling algorithm 

Several times complicated applications need conventional 
functions, and the jobs of these applications must have to meet 
their deadlines. A deadline failure to attend can be disastrous 
for jobs with strict deadlines. For quality of service degradable 
or soft actual time jobs, instantly estimated outputs of 
degraded quality and intermittent deadlines are adequate. The 
authors proposed a new dynamic scheduling algorithm for 
incorporated scheduling for actual instant jobs in 
multiprocessor systems. The most important goal of the 
proposed algorithm is to enhance the arrangement of jobs by 
making the utilization of the characteristics of these models in 
quality-of-service degradation. The proposed algorithm 
shows how it can be accepted incorporated scheduling for 
multiprocessor systems and strict actual instant jobs and 
performance of their efficiency in service of quality 
degradation. [7] 



  

  

 

322 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

 
Fig. 4.  The scheduling model 

The authors [8] presented an incorporated structure for the 
identification of non-predictable workloads, triggered by the 
identification of faults in an actual instant system. The 
structure is specifically constructed for the execution of 
predetermined priority preventative systems. A detailed 
investigation for recuperation workloads is done by 
constructing a standard for receptiveness of error recuperation 
executions. This encourages the authors to validate the timing 
exactness of actual time workloads under momentary 
recuperation workloads and give elegant deprivation to the 
actual time workload at the time of recuperation. By 
provisionally removing the low priority jobs, the receptive 
algorithm constructed by the authors is predictable to service 
the jobs with the highest priorities without damaging low 
priority jobs.   

An efficient time redundancy technique for accomplishing 
error forbearance in actual time system when gap redundancy 
can't be employed for mass restraints. In this paper, the authors 
[9] have proposed an error-tolerant scheduling algorithm for 
actual instant systems consisting of strict and rigid periodic 
jobs. According to the priority, rigid jobs can be normally 
missed out on only one occasion according to a predefined 
quality of service characteristic. While strict jobs have the 
highest priority. The proposed algorithm guarantees that every 
job occurrence is fulfilled within its instant restraints by the 
priority task. The algorithm increases the utilization of 
processor inactive time by executing the highest priority tasks 
and mechanically retrieves the auxiliary time conserved by de-
allocating support tasks. 

 
Fig. 5.  Error tolerant algorithm 

Enhance processing units are more proficient to evaluate 
parallel applications, several applications might be organized 
by some parallel jobs. Several applications might need timing 

restraints to make use of the preferred presentation. These 
restraints are available in control systems as hard tasks and 
multiprocessing systems as soft tasks. In this paper, the 
authors analyzed the trouble of giving separation and actual 
instant computation in preparation of multi-string applications 
on a particular processor. The proposed algorithm can be 
employed in a wide range of applications such as in a network 
association, wherever dissimilar streams of messages might 
need a convinced stage of function, or in multiprocessing 
actual instant systems, in which applications might need an 
assurance of the quality of service. The proposed scheduling 
algorithm is especially appropriate for soft actual instant and 
multiprocessing atmospheres as it doesn't need the accurate 
information of the tasks times and inter appearance times. [10] 

 
Fig. 6.  Bandwidth sharing server 

III. PROPOSED SCHEDULING ALGORITHM 

Effectiveness of the proposed technique is demonstrated 
by assuming the traffic light signal. In this case, traffic may 
arrive from four possible directions like East, West, North and 
South. Apart from having the routine traffic, there is 
possibility of traffic arriving for the last journey, traffic 
arriving with the VIP person and possibility of the sudden 
ambulance appearance. Considering this assumption, highest 
priority must be given to the ambulance, the second priority 
must be given to the last journey and third priority must be 
given to the VIP vehicle and when no other priority vehicles 
or traffic is appearing, in that case, routine traffic must be 
handled. Since the module is generic in nature open loop 
nature of the module is discussed by assuming that the routine 
traffic needs 5 clock cycles for handling, that means to handle 
the routine task we need 5 clock cycles. The time required to 
handle the priority task that is the ambulance is 5 clock cycles 
that means, module takes 5 clock cycles to complete the first 
priority task. The second priority task that is the time required 
to clear the traffic arising from the last journey is 10 clock 
cycles. That means to execute the second priority task module 
takes 10 clock cycles duration. On the other hand, to handle 
the traffic arising through the VIP vehicles takes 15 clock 
cycles of time. That means to execute the third priority task 
module takes 15 clock cycles of time. In these assumptions, 
the routine task of the module is indicated as the “rt”, the first 
priority task is indicated as the “fpt”, the second priority task 
is indicated as the “spt”, and the third priority task is indicated 
as the “tpt”. The subsequent figure Fig.7 depicts the 
systematic flow of the proposed procedure. 

As indicated, the power on reset condition indicates the 
default situation of the procedure in which the procedure is set 
to operate. This has been indicated through the figure Fig.8. 



  

  

 

323 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

The 1000ns to 1100 ns simulation period indicates the power 
on reset condition in the fig.8. Initially the routine task “rt” is 
operated in which the routine traffic at the traffic signal is 
routed efficiently. At the same moment, the priority traffic is 
also checked concurrently. If no priority traffic is detected, 
then the routine traffic is set to operate with 5 clock cycles of 
time in each place. This condition is depicted through the 
figure Fig.9. After deactivating the power on reset conditions. 
At 1100 ns, first the higher priority traffic signals are 
identified at 1200ns. Since no higher priority traffic interrupts 
are identified, the routine task is activated at 1300 ns. The 
routine task continues to operate in repeated mode and at the 
same moment also check the generation of higher priority 
interrupt signals. 

 

Fig. 7.  Systematic Flow Chart 

 

Fig. 8.  Power On Reset Condition 

As soon as the higher priority traffic is identified, the 
routine traffic moment that is routine task is suspended and the 
procedure is switched to operate the respective higher priority 
traffic that means the higher priority task. This moment is 
indicated through the figure Fig.9 below. 

 

Fig. 9.  Execution of Routine Traffic Task and Higher Priority Traffic 

Insertions 

As shown in the figure above, since no higher priority task 
has been detected till the moment 1200ns, routine task is 
deployed for execution from 1300ns. At 1800ns of simulation 
period the first phase of the routine task is completed and since 
no higher priority task is active, the second phase of the 
routine task is initiated. While the second phase of the routine 
task is under process from 1800ns, the first priority task is 
inserted at 2000 ns of simulation period and accordingly, the 
routine task is suspended at 2100 ns and first priority task is 
serviced from 2200 ns of simulation period. Once the first 
priority task completes at 3200 ns of simulation period, the 
routine task which was suspended due to insertion of the first 
priority task “fpt”, is reinitiated. This is depicted through the 
following figure Fig. 10. 

 

Fig. 10.  Completion of First Priority Task and Re-Initiation of 

Suspended Task 

Accordingly, the second priority or third priority tasks are 
operated by suspending the routine task and after completion 
of the same again the routine task is initiated. If multiple 
priority tasks are activated at the same moment, then on 
priority first priority task is executed then second priority task 
is initiated and after completion of the second priority task, 
third priority task is initiated and finally after completion of 
all higher priority tasks, routine task is reinserted for 
execution. 

While performing the synthesis process, the proposed 
architecture of the scheduling procedure is targeted to the 
virtex-7 series field programmable gate array device. The 
Virtex-7 series xc7v585tffg1157-1 device is specifically 
targeted. While performing the schematic RTL analysis using 
the Xilinx Vivado HLS tool following RTL schematics are 
recorded. 



  

  

 

324 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

 

Fig. 11.  RTL Schematic View (a) 

 

Fig. 12.  RTL Schematic View (b) 

 

 

Fig. 13.  RTL Schematic View (c) 

 

Fig. 14.  RTL Schematic View (d) 

The hardware description language was initially designed 
for hardware architecture simulations, but later it is also used 

for synthesis purpose. Synthesis means hardware description 
using the software coding. Since the HDL was initially 
designed for simulation purposes only, all of the statements 
that means sentences are not synthesizable. Which means they 
don’t have direct hardware meaning. RTL schematic view 
confirms the perfect hardware conversion of the HDL 
constructs.  

Finally, the synthesis process is carried out, in which the 
implementation of the proposed architecture into the targeted 
FPGA device is carried out in three steps of Place, Map and 
Route. In these three steps, the software to hardware converted 
components are virtually placed on the device with different 
possibilities to meet the highest possible level of 
optimizations. Once the higher level of optimization is found 
then the hardware components are mapped and interconnected 
together which is also called as routing. Upon final 
implementation of the design, different parameters like power 
utilization, area utilization in terms of hardware complexity, 
time utilization which indicates minimum and maximum path 
delays and speed of operations are recorded. These parameters 
are disclosed through the subsequent table. 

Table 1: Statistical Analysis of Synthesis Outcomes 

Sr. No. Device Parameter Units 

1. 

Xilinx Virtex – 7 

Estimated Frequency 305.997552 MHz 

2. Estimated Period 3.268 ns 

3. Total Complexity 169 

4. Power 0.002 W 

 

IV. CONCLUSION 

Scheduling procedure for active task using the 
reconfigurable environment is proposed through the paper. In 
this assumptions, three priority tasks along with the routine 
task is considered for implementation. For effective 
description of the model, traffic light signals and other 
different conditions are assumed. Routine task is the default 
task which reconfigurable device is executing and at the same 
moment, the higher priority tasks are also checked for their 
activeness. If multiple priority tasks are engaged then routine 
task is suspended immediately and first priority task will be 
executed then after completion of the first priority task, second 
priority task will be executed and after completion of the 
second priority task third priority task will be executed. Once 
all the priority tasks are completed, then routine task execution 
is engaged. The described architecture is first time simulated 
then elaborated to confirm the hardware conversion and 
finally, the description is synthesized. The outcomes are 
indicated through the table 1. As indicated, estimated 
frequency of 305.997552 MHz is recorded which assures 
3.268 ns of maximum delay at the cost of 0.002W of energy 
consumption. 

REFERENCES 

[1] Y. -. Wang and K. -. Lin, "Implementing a general real-time scheduling 
framework in the RED-Linux real-time kernel," Proceedings 20th 
IEEE Real-Time Systems Symposium (Cat. No.99CB37054), 1999, 
pp. 246-255, doi: 10.1109/REAL.1999.818850. 

[2] Hyungil Kim, Sungyoug Lee and Byeong-Soo Jeong, "An improved 
feasible shortest path real-time fault-tolerant scheduling algorithm," 
Proceedings Seventh International Conference on Real-Time 
Computing Systems and Applications, 2000, pp. 363-367, doi: 
10.1109/RTCSA.2000.896412. 



  

  

 

325 

 

Vol 44 No. 8 

August 2023 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

[3] H. Singh, "Scheduling techniques for real-time applications consisting 
of periodic task sets," Proceedings of 2nd IEEE Workshop on Real-
Time Applications, 1994, pp. 12-15, doi: 10.1109/RTA.1994.316133. 

[4] B. C. H. Turton and T. Arslan, "A parallel genetic VLSI architecture 
for combinatorial real-time applications-disc scheduling," First 
International Conference on Genetic Algorithms in Engineering 
Systems: Innovations and Applications, 1995, pp. 493-498, doi: 
10.1049/cp:19951097. 

[5] T. F. Abdelzaher and K. G. Shin, "Comment on "A pre-run-time 
scheduling algorithm for hard real-time systems"," in IEEE 
Transactions on Software Engineering, vol. 23, no. 9, pp. 599-600, 
Sept. 1997, doi: 10.1109/32.629495. 

[6] V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser, "Dynamic 
scheduling for soft real-time distributed object systems," Proceedings 
Third IEEE International Symposium on Object-Oriented Real-Time 
Distributed Computing (ISORC 2000) (Cat. No. PR00607), 2000, pp. 
114-121, doi: 10.1109/ISORC.2000.839518. 

[7] A. Mittal, G. Manimaran and C. S. R. Murthy, "Integrated dynamic 
scheduling of hard and QoS degradable real-time tasks in 
multiprocessor systems," Proceedings Fifth International Conference 
on Real-Time Computing Systems and Applications (Cat. 
No.98EX236), 1998, pp. 127-136, doi: 10.1109/RTCSA.1998.726408. 

[8] P. Mejia-Alvarez and D. Mosse, "A responsiveness approach for 
scheduling fault recovery in real-time systems," Proceedings of the 
Fifth IEEE Real-Time Technology and Applications Symposium, 
1999, pp. 4-13, doi: 10.1109/RTTAS.1999.777656. 

[9] M. Caccamo and G. Buttazzo, "Optimal scheduling for fault-tolerant 
and firm real-time systems," Proceedings Fifth International 
Conference on Real-Time Computing Systems and Applications (Cat. 
No.98EX236), 1998, pp. 223-231, doi: 10.1109/RTCSA.1998.726422. 

[10] G. Lipari and G. Buttazzo, "Scheduling real-time multi-task 
applications in an open system," Proceedings of 11th Euromicro 
Conference on Real-Time Systems. Euromicro RTS'99, 1999, pp. 234-
241, doi: 10.1109/EMRTS.1999.777470.

 


