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1. Introduction 
Throughout we shall deal with Cn×n, the space of 
n x n complex matrices. Let Cn be the space of 
complex n-tuples, we shall index the components 
of a complex vector in Cn from 0 to n-1, that is u = 
(u0, u1, u2, ..., un−1). Let G be the Minkowski metric 
tensor defined by Gu = (u0, − u1, − u2,….. − un−1). 
Clearly the Minkowski metrix matrix 

                                         𝐺 = (
1 0
0 −𝐼𝑛−1

).                                                                         

(1) 
G = G∗ and G2 = In. In [11], Minkowski inner product 
on Cn is defined by (u, v) = [u, Gv], where [., .] denotes 
the conventional Hilbert space inner product. A space 
with Minkowski inner product is called the 
Minkowski space and denoted as ℳ. For A ∈ Cn×n, 
x, y ∈ Cn by using (1),  
      (Ax, y) = [Ax, Gy] = [x, A∗Gy]
  
                   =[x, G(GA∗G)y] = [x, GA∼y] = (x, A∼y). 
 
  Where A∼ = GA∗G. The matrix A∼   is called the 
minkowski adjoint of A in ℳ. Naturlly we call        
a matrix A ∈ Cn×n ℳ.-symmetric in M. if A= A ∼ 
. 

 For A ∈  CnXn,  let  𝐴∗,  𝐴~, AmO 𝐴ϯ, R(A) and N(A) 
denote the conjugate transpose, Minkowski adjoint, 
Minkowaki inverse, Moore-Penrose inverse, range 
space and null space of a matrix A respectively. In 
denote the identity matrix of order n X n 

Generalized inverses of matrices have important roles 
in theoretical and numerical methods of linear 
algebra. The most significant fact is that we can use 
generalized inverse of matrices, in the case when 
ordinary inverses do not exists, in order to solve some 
matrix equations. Similar rea- soning can be applied 
to linear (bounded or unbounded) operators on 
Banach and Hilbert spaces. 
 

2. Preliminaries 
Definition 2.1 [7] Ag is said to be generalized 
inverse of A, if AAgA = A. 
 
Definition 2.2 [7] Ar is said to be a reflexive 
generalized inverse of A if AArA = A and 
ArAAr = Ar. 

Definition 2.3  [7] For A ∈ Cn×n, AmO  is the 
Minkowski inverse of A  if 

AAOmA = A, AmO AAOm = AOm, AAOm and AOmA  are 
m-symmetric. 
Definition 2.4  [7] An operator E ∈ Cn×n is said to 

be EP if there exists EmO and EEmO  = EmO E. 
Definition 2.5 [3] An operator E ∈ Cn×n is said 
to be normal if EE∼ = E∼E. 
Definition 2.6 [12] Let A be an m × n complex 
matrix. Then range space of A is defined by 

(A) = {y ∈ Cm : y = Ax for some x ∈ Cn}. 
Definition 2.7 [12] Let A be an m × n complex 
matrix. Then null space of A is defined by 

N (A) = {x ∈ Cn : Ax = 0}. 
Theorem 2.8  [3]  Let  X  be  a  Banach  space  and  

consider  E  ∈ L(X) such  that  EOm  exists  and 
E ∈ U (L(X)) in M.  Then the following 
statements hold. 

(i)R(E~) R(E) if and only if  E=EEEOm in ℳ. 

(ii) N(E)  N(E~) if and only if   E=EOmEE in ℳ. 
 In addition, if the condition of statements (i) 
and (ii) are satisfied, then E is an EP operator  
in ℳ. 
Proof: (i) Let us assume that  R(E~) R(E)    

To prove that E = EEEmO. 

 since R(E) = R(EEOm) = N (I − EEOm) 

R(E∼) ⊆ R(E) is equivalent to E∼ = EEmO E∼ 
Next consider U,V ∈ H(L(X)) such that E = U + 
iV  
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 E∼ = U ∼ iV ∼  
= U - iV (U, V are M-symmetry U ∼ = U,  V ∼ 
V)   

from we know from E = E EmOE 

 
  Adding E and E∼, we get 

E + E∼ = U + iV + U ∼ − iV ∼ 
= U + iV + U − iV 

E + E∼ =2U 

  E EmOE +E EmOE∼ = 2U 

EEmO (E + E∼) = 2U EEmO 2U  = 2U 

EEmO U  = U . 

Substracting E and E∼, we get 
E − E∼ = U + i V − U ∼ + iV ∼ 
               = U + i V − U + iV (U, V are 
M-symmetry U ∼ = U,   V ∼ = V )

E − E∼ = 2Vi 

  E EmOE - EEmO E∼ = 2V i 

  E EmO (E − E∼)=2Vi 

  E EmO  2Vi =2Vi 

 EEmO V  = V . 

  Therefore U  = EEmO U  and V  = EEmO V 
In addition, 

UEEmO  = EEmO U  and V EEmO  = EEmO V 
E = U + i V 

= UEEmO + i V EEmO 

= (U + i V )EEmO 

= EEEmO . 
Conversely, 

m
 

Let us assume that E=EEEmO . To prove 
that R(E~ ⊆ R(E). 

If E = EEEmO  then U + iV  = (U + iV )EEOm  = 

EEmO (U + i V ). 
  In particular

(UEEmO  -  EEmO U ) +i (V EEOm  -   EEmO V ) = 0                                                        
(2) 

However, since V, EEmO  ∈ H(L(X)), 

i (VEEmO  - EEmO V  ) ∈ H(L(X))  
In addition, 

(UEEmO  - EEmO VU )  = -i (VEEmO  -  EEmO V )    ∈ 
H(L(X)).   
Multiplying by  to –i  equation (2), we obtain 

(V EEmO − EEmO V ) + i(EEOmU − UEEmO ) =0 
 

Hence (V EEm − EEmO V ) ∈ H(L(N (E))). 

However, UE Em   = E EmO U  and V EEmO  = E EmO 

V . 

Consequently, since EEmO  is an idempotent, R(E) 

= R(EEOm) and 

N (EmO ) = N (EEOm) are closed invarient subspaces 
both for U  and V . 

Consider U
′   

= U  ∈
Om
L(N (EmO )) and V 

′   
= V  ∈ L(N 

(EOm)).  
 

U
′
, V 
′   

H(L(N (EmO ))).  
m
 

If 𝐸′the restriction of E
 
 
 
to N (EmO ) then it is clear 

that E
′   

= U
′  

+ iV 
′ 

. 

However, since E = EE EmO, N ( EmO) N (E) 

which according to implies that U
′ 

= V 
′ 

= 0. 

In particular, 𝐸~(N (EmO )) = 0.  It is clear that 
𝐸~ (R(E))   R(E). 
Therefore R(𝐸~) R(E). 
  
(ii) Let us assume that N (E)  N (𝐸~).  

To prove that E =. EmO EE 

Since N (E) = N (EmO E) = R(I-EmO E), N (E  )    N 

(𝐸~)  is equivalent to 𝐸~= 𝐸~EmO E . 
Now as in the proof of statement (i), if E = U+i V 
and 𝐸~=  U-i V  with   U,V ∈ H(L(N (E)))  
 Adding  and  subtracting  E  and 𝐸~  and  using  E  = 

EEmOE ,  it  is  then  clear  that  U  = UEmO E and V  = 

VEmO E 

  In particular, UEmO E, V EOmE H(L(N (E)))
  .Again 

UEmO E = EOmEU and V EOmE = EmO EV . 
E = U + iV 

= UEO E + iV EmOE 

= EmO E(U + iV ) 

 = EmO EE . 
Conversely, 

mO
 

Let us assume that E =EmOEE. 

To prove that N (E)   N (𝐸~)    
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⇒ 

By using statement (i) but considering     

that UEmO E = EOmEU  and V EOmE = EOmEV . 

As a result, since EmO E  is an idempotent such that 

N (EOmE) = N (E). 
Hence N (E) is a closed invarient subspaces for U 

and V . 

Consider Ũ = U,    Ṽ = V  ∈ L(N (E)). 

Ũ,  Ṽ ∈ H(L(N (E))). 
˜ ˜

 

However, since E (N (E)) = 0,   𝑈=𝑉 =̃ 0. 
Consequently, 𝐸~ (N (E)) = 0 equivalently N (E) 
⊆ N (𝐸~). 
Notice that   R(𝐸~)⊆R(E) is equvalient to 𝐸~ 

= E EOm𝐸~,   
 

b y  R ( E ) = R ( E EOm) = N ( I E EOm) .   
 

 
T h e  c o n d i t i o n  N (E) ⊆ N (𝐸~). Is equivalent 

to 𝐸~ =.𝐸~ EOmE. because  
 

N(E)=N(EOmE)=R(I- EOmE)  
 
 

3. Partial Isometry and EP Matrices 
In this section, we establish some characterizations 
of partial isometrices in Minkowski space. 
Theorem 3.1  Let E  be a unital Banach algebra 

and consider E∈ U (E) such that EOm  and E# 
exists in ℳ. then the following statements are 
equivalent 
(i)E is a partial isometry in ℳ 
(ii)E#𝐸~ E = E# 
(iii)E𝐸~ E# = E 
 
Proof:  (i)⟹(ii): 
Since E is       a partial isometry in ℳ,  EE~E = E 
To prove that E#E~E = E#. Now,    
E#𝐸~E= (E#)2E𝐸~𝐸  
    = (E#)2E 
= E#. 
(ii) (i): 
Let us assume that E#𝐸~ E = E#. 
To prove that E is a partialisometry in ℳ . 
Consider, 
E𝐸~E = E2(E#E∼E) 
= E2E# 
= E. 
 (i)    (iii): 
Let us assume that E is a partial isometry in ℳ, 
E𝐸~E = E 
To prove that EE∼E# = E#. Now, 
EE∼E# = EE∼E(E#)2 
= E(E#)2 
= E#. 
(iii) (i): 
Let us assume that EE∼E# = E#. 
To prove that E is a partial isometry in ℳ  

EE∼E = (EE∼E#)E2 
           = E#E2 
             = E. 
 
Theorem 3.2   L e t  X  ba a Banach space and 

consider E∈ ℒ (X) such that EOm  and E#  exists 
and let E∈ U(ℒ (X))in ℳ then the following 
statements are equivalent  : 
( i )  E is a partial isometry and EP in ℳ 
( i i )  E is a partial isometry and normal in ℳ  
( i i i )E∼ = E#,                                                                                                              

( i v )EE∼= EmOE and E=EEEOm,                                                                                  

( v )E∼E = EEmO and E=EOmEE,                                                                         

( v i ) EE∼= EE# and E =EEEmO,                                                              

( v i i ) E∼E = EE#  and EEmOEE,  

( v i i ) E∼EmO  = EmO E#, 

( i x )EmO E∼ = E#EmO , 

( x ) EOmE∼ = EOmE#  and E = EEEOm, 

( x i )E∼EmO  = E#EOm  and E = EOmEE,  

( x i i ) E∼E# = E#EmO  and E = EOmEE,  

( x i i i )E∼EmO  = E#E#  and E = EOmEE, 

( x v i ) E∼E# = E#E#  and E = EmO EE,  

( x v )EE∼E# = EmO  and E = EOmEE, 

( x v i ) E∼E2 = E  and E = EmO EE, 

( x v i i )E2E∼ = E  and E = EEEOm,  

( x v i i i ) EEOmE∼ = E#  and E = EEEOm,  

( x i x ) E∼EmOE=E#andE=EOmEE

Proof: (i) ⇒(ii):  
Let us assume that E is a partial isometry and EP 
in ℳ . It is enough to 
prove that E is normal in ℳ alone. 

Since E is EP  E = EEEOm, E∼ = EEOmE∼. 
since E is a partial isometry, we have 
EE∼E# = EE∼E(E#)2 [E# = 
E(E#)2] 
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Om 

⇒ 

⇒ 

⇒ 
⇒ 

⇒ 

m 

= (EE∼E)(E#)2 
= E(E#)2 
= E# 

E∼E#E = EEOm E∼E# E 

=  EOmEE∼EE# [E is an EP,   EEOm= EOmE] 
= E (EE∼E)E# 
= E EE# 
= E#EE# 

= E#. 

Thus EE∼E# = E∼E#E  and EEOmEE ⇒ E is 
normal 
(ii)⇒(iii): 

. 

Let us assume that E is a partial isometry and 
normal in ℳ.
 
. To prove that E∼ = E#. 
The condition E is normal E∼ = EE∼E#. 
Because E is a partial isometry, we have 
E∼= EE∼E# 
= EE∼E(E#)2 

= E(E#)2 
= E# 
(iii) (i): 
Let us assume that E∼ = E#.    
To prove that  E is a partial isometry and EP in 
ℳ.      
Since E∼= E#, we get 

    EE∼ = EE# 

= E#E      [E is an EP,   EEOm= EOmE]  
 
 
= E∼E 
Therefore EE∼ = E∼E  
            EE∼E = EE#E [E∼ = 
E#] 
             = E. 
E is normal gives E is EP. The condition (i) is 
satisfied. 
(ii)  (iv): 
Let us assume that E is a partial isometry and 
normal in ℳ. 

. To prove that EE∼ =  EOmE  and E = EEEmO . 
E  is normal gives EE∼E# = E#EE∼  and E = 

EEEOm 
Now, EE∼ = E(E#EE∼) 
= E(EE∼E#)
 [EE∼

E# = E#EE∼] 
= (EEE∼)E#

 [EEE
∼ = EE∼E] 
= (EE∼E)E# 
= EE#. 
since E is normal E is EP, then 
EE∼ = EE# 
   = E#E [since E  is normal, EE# = E#E] 

            =  EOm E . [E# = 

EOm ] 

(iv)  (vi): 

Let us assume that EE=EmOE   
 and E = 

m
EEEmO . 

To prove that EE∼ = EE# and E = EEEOm 
Consider, 

E#(EE∼)=E#EOm 
E 

                  = (E#)2EEOmE [E# = (E#)2E] 
              = E# 
Similarly, 
EE∼E# = E(EE∼E#)E# [ E∼ = 
EE∼E#] 
E(E#EE∼)E#       [EE∼E# 

= E#EE∼] 
         = EE#E# 
= E(E#)2 
= E#. [E# = 
E(E#)2] 
and E#EE∼ = EE∼E# 

E is normal and E is EP. 

 Hence EE∼ = EOm E  =EEmO =EE# 

 

 Let us assume that EE∼ = EE# and E = 

EEEmO 
To prove that E is a partial isometry and normal 
in ℳ. 
 Now, 
   E(EE∼) = EEE# 

 = E2E# 
 = E [E = 
E2E#] 
 = (EE#)E 
= EE∼E 
Hence E is a partial isometry and normal. 
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⇒ 

m 

⇒ 

m 

⇒ 

⇒ 

(ii) ⇒ (v) ⇒ (vii) ⇒ (ii): these implications can be 
proved in the same manner as (ii) ⇒ (iv) ⇒ (vi) ⇒ 

(ii) 
(i)⇒ (viii):is an immediate consequence 

(viii) (xi):         suppose that, E∼EmO  =EmOE# 

 To prove that E∼EmO  = E#EmO  and E = 

EOmEE. 
Consider, 
  EE# = EE(E#)2 [E# = 
E(E#)2] 

= EE EmO E(E#)2 

= EE(EmO E#) [E# = 
E(E#)2] 

= EEE∼EmO 

= EE(E∼EmO )EEmO 

                = EEEmO E#EEmO 

= EEEmO EE#EmO [EE#EmO  

= EmO EE#] 

               = EEmO [EmO  = EmO 

EE#] 
Hence, EE# is hermitian and E is EP. Now 
condition (xi) is satisfied by 

 E∼EmO  = EmO E#            

                                 =      E#  EmO        

    [  EmO E# =      E#  EmO]                   

and EmO EE = EEmO E = E . 

(xi) (xvi): 
 
Let us assume that 
  

E∼EmO = E#  EmO             and E = EOmEE  

  

To prove that E∼E2 = E  and E = EmO EE. 

The assumptions E∼EmO  = E#EOm  and E = 

EOmEE. 
Now,  

E∼E2 = (E∼ EmO)EE2 

= E#EO EE2 

= (E#)2EEmO EE2 [E# = 
(E#)2E] 

= E#EmO EE2 

= E#EmO EEE 
= E#EE 
= E#E2 
= E. [E = 
E#E2] 
 
(xvi)     ⇒ (xiv):  

Let us assume that  

E∼E2 = E and  E=EEOmE.  
       To prove that  
E∼E# = E#E# and  

     E = EEOmE. 
Multiplying E∼E2 = E  by (E#)3  from the right 
side, we get 
E∼E2(E#)3 = E(E#)3 
E∼E2(E#)2E# = E(E#)2E# 
E∼EE(E#)2E#=E#E# 
E∼EE#E# = E#E#             [E# =E(E#)2]  
E∼E(E#)2 = E#E# 
E∼E# = E#E#. 
Hence E satisfies condition (xiv). 
 
(xiv) (xii): 
Let us assume that E∼E# = E#E#  and E = 

EmO EE

Let us assume that E∼EmO  = 
m
E#E#  and E

m
= EmO 

EE 

To prove that E∼EmO  = 
m
E#EmO and E

m
= EmO EE 

Multiplying the equality E∼EmO  = 
m
E#E#  by   

EEmO  

E∼EmO  =
 m
E#E# EEmO 

              = (E#)2 EEmO 

              =

 m
E#EmO                                          [E# = 

(E#)2E] 

Hence E∼EmO  = E#EOm.  So, we deduce that 
condition (xi) holds. 

(xii)   (vii): 

Let us assume that         E∼E#=E#EmOand E = 
EmOEE 
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⇒ 

m 

⇒ 

⇒ 

⇒ 
⇒ 

To prove that E∼E = EE#  and E = EmO EE 
Now, 
E∼E = (E∼E#)E2 [E = 
E#E2] 

        = E#(EO E2) [E = 

EOmE2] 
= E#E. 
(i) ⇒ (ix) ⇒ (x) ⇒ (xvii): similarly as (i)  ⇒ (viii) ⇒ 
(xi)=⇒ (xvi). 

(xvii)  (vi): 

Let us assume that E2E∼ = E  and E = EEEmO 
To prove that 

 EE∼ = EE# and E= EE EmO 
Consider, 
EE∼ = E#E2E∼ 
  = E#E. 
and the condition (vi) is satisfied. 
 

(xiii)⇒ (xi):

Let us assume that  E∼EmO   = E#E# and E = 

EmOEE 

To prove that E∼EmO   = E#EmO and E = EmOEE 

Multiplying the equality E∼EmO  = E#E# 

by EEmO from right side, we get 

E∼EmO   = E#E# EEmO 

             = (E#)2EEmO                                       

        = E#EmO            [E#=(E#)2E]          

Hence E∼EmO   = E#EmO 

 

So we deuce that  

condition(xi) holds. 
              
 (xi)⇒ (xiii): 
By (xi), we have that E is EP and condition (xiii) is 
satisfied.
  
(xv)⇒ (i): 

Let us assume that  EE∼E# = EmO  and  E = EmO 

EE . 
To prove that E is partial isometry and EP in ℳ. 
Now, 

EE∼E  = (EE∼E#) E2  

         = EmO EE  
               =E 

EmO  = EE∼E#  

         = E#E2E∼E(E#)2                [E= E#E2]     
        = E#E(EE∼E)(E#)2             [since E is a 
partial isometry, EE∼E=E ]   

= E#EE(E#)2               
        = E#EE# [E# = 
E(E#)2] 
      = E#. 
Therefore, E is a partial isometry and EP in ℳ. 
 
(i)  (xv): 
Let us assume that E  is a partial isometry and EP  

in ℳ. To prove that EE∼E# = EmO  and E = EmO 

EE . 

The hypothesis E  is EP gives E = EOmEE  and 
because (i) implies (iii). 
EE∼E# = EE#E# 
= E(E#)2 
= E# [E# = 
E(E#)2] 

= EmO 

(xviii)  (iii): 

Let us assume that EEmO 
E∼ = E# and E = EEEmO . 

To prove that E∼ = E#. 
Now, 

E∼ = EEmO E∼ 
= E#. 
(iii)  (xviii): 
Let us assume that E∼ = E# 

To prove that EEOmE∼ = E# and E = EEEOm 
  Now,     

 EEOmE∼= EEmOE# 

              = EEmO E(E#)2 [E# = 
E(E#)2] 

 = E#. 

and E  is EP E = EEEmO 
It is clear that 
(iii) ⇔ (xix): Analogy as (iii) ⇔ (xviii) 
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